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Abstract: Sleep-stages play important roles in the diagnosis of the sleep disorders and the sleep-related illnesses. In this sense, accurate 
identification of the sleep-stages is a necessity for more robust and efficient diagnosis systems. Several traditional machine-learning and 
pattern recognition algorithms are deployed on the modern computer aided diagnosis systems. However, current results are not as 
satisfactory as expected. In the last two decade, a new concept has emerged with ‘ensemble learning’ title. It has attracted the attention of 
many researchers from various disciplines. In this study, several ensemble-learning methods are utilized and inspected on EEG signals for 
sleep-stage classification. Conventional machine-learning methods are also performed in same testing phase to report comparative results. 
Additionally, methods are evaluated in two different scenarios; subject specific and independent. Study proves that combination of DTs 
and SVMs in bagging theorem surpasses all of the conventional methods used in the experiments. Moreover, test trials reveal that both 
conventional and ensemble models need to be improved for subject independent scenario which is more essential case in the development 
of patient independent computer based diagnosis systems. 
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1. Introduction 
Nowadays, inventive researches are being carried out to develop 
new methods for the identification and treatment of sleep disorders 
such as narcolepsy, idiopathic hypersomnia and sleep apnea. 
Problems related with sleep adversely affect physical and social 
quality of life of a person [1]. Besides the sleep disorders, sleep-
related illnesses, including diabetes, cardiovascular diseases, 
obesity, etc. are other focuses of the researches [2, 3, and 4]. For 
this reason, the accurate identification of sleep-stages is an 
important subject in computer aided diagnosis that may lead to 
more precise diagnoses. A handbook about the determination and 
scoring of the human sleep stages has been published by twelve 
researchers, under the editorship of Rechtschaffen and Kales [5, 6]. 
According to this manual, the duration of the sleep for a healthy 
person can be divided into two main stages; rapid eye movement 
(REM) and non-rapid eye movement (NREM) stages. The NREM 
stage also consists of four sub-periods (NREM I, NREM II, NREM 
III, and NREM IV) that have discriminative amplitudes of certain 
frequencies. All stages are defined according to Polysomnography 
(PSG) results of the patients. According to sleep staging method 
developed by the American Academy of Sleep Medicine (AASM), 
NREM III and IV stages are defined in single stage, known as slow 
wave sleep (SWS) or deep sleep [7]. Polysomnography (PSG) is a 
“gold standard” method for clinical diagnosis; sleep medicine 
industry and sleep-stage classification studies. PSG contains 
crucial physiologic signals, including electroencephalography 
(EEG), electrooculography (EOG), electromyography (EMG), 
pulse oximetry (SpO2), and electrocardiography (ECG). Analysis 
of PSG requires the participation of an expert in a specific sleep 

centre during recording, but this is a relatively expensive and time-
consuming procedure for both the patients and the experts on 
sleeping. Hence, automatic sleep-staging has become an important 
challenge for researchers in different disciplines [8, 9, and 10]. 
In literature, several methods have been studied on the 
classification of sleep-stages. The frequency-domain analysis 
methods [11, 12, and 13], wavelet transform [10, 14] and fuzzy 
logic [15] are examples of some methods with agreement rates 
ranging from 60% to 80%. Virkkala et al. have classified the sleep 
stages using only EOG signals with the agreement of 72% [16]. 
Mendez et al. have utilized a Hidden Markov Model (HMM) with 
spectral features of heart rate variability to classify NREM and 
REM and the classification accuracy is measured around 80% in 
both training and test sets [17]. Liang et al. have presented a rule-
based sleep-stage classification method using features of temporal 
and spectral analyses of the EEG, EOG, and EMG signals with an 
agreement rate of 86.68% [18]. Different types of feature selection 
methods, including the multiple iterative, suitable linear and non-
linear methods have been proposed for classification of sleep 
stages by Zoubek et al. [19], and accuracies of wakefulness (W), 
NREM I, II, SWS, and REM are obtained as 84.57%, 64.56%, 
85.55%, 92.90% and 72.81%, respectively. In [20], the energy 
features of single-channel EEG signals are utilized for 
classification of sleep-stages using neural classifiers and EEG 
epochs were classified as wakefulness, NREM I, II, SWS or REM, 
and the overall accuracy is 81.8%. In another study, Koley and Dey 
[21] applied a Support Vector Machine (SVM) based ensemble 
method on their data set to classify it into five stages as similar to 
[20] with using different feature extraction methods. Furthermore, 
a type of SVM based recursive feature elimination algorithm is 
applied on 39 extracted features in order to enhance their result. It 
is reported in the study that 85% and 87% agreements were 
obtained with training and independent testing data sets 
respectively. 
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The goal of this study is to evaluate and compare the latest and 
conventional learning methods on sleep-stage classification. The 
best classifier for EEG signals based automatic sleep-staging 
system may be assessed according to the obtained results of this 
study. For this purpose, several well-known conventional methods 
(i.e., Support Vector Machines (SVMs), Naive Bayes (NB), Linear 
Discriminant Classifier (LDC), K-Nearest Neighbour (KNN) and 
Decision Tree (DT)) and some of their combination in ensemble 
learning (Bagging and Adaboost) are selected as classifier. It is 
aimed to demonstrate the effectiveness of ensemble combinations 
on results with comparative tables. 
This paper consists of six sections. The details of the Sleep-EDF 
database are presented in Section 2. Signal pre-processing, feature 
extraction, and classification methods are described in Section 3. 
Performance metrics and the results are placed in Section 4. 
Discussions about results are given in Section 5, and the study ends 
up with conclusion and future works in Section 6. 

2. Materials 
PSG is a multi-parametric test that is used to identify illnesses 
caused by sleep disorders. It is also effectively used to derive the 
characteristic schema of the sleep. Several PSG records which are 
obtained from PhysioNet open database have been used in this 
study [22]. The PhysioNet [23] is a well-known biomedical data 
source, which is frequently used in many studies [18, 19, and 20]. 
PSG data sets contain several signals from various sensors. It is 
obtained from the records of eight Caucasian male and female 
volunteers aged from 21 to 35 years. The records are separated into 
two groups according to obtaining procedures. The first four 
patients with “sc” initial letters are combined into Group I. The 
other group contains the rest of four patients, which are designated 
with “st” initial letters. Group I records were acquired over 24 hour 
period from healthy patients in normal daily life with a modified 
cassette tape recorder. Group II records were obtained from 
patients having mild difficulty falling asleep and otherwise healthy 
in a hospital setting a 12-hour night period. None of the patients in 
both groups have been given medication for any illnesses or 
disorders. 
Group II records are more challenging according to sleep disorder 
reports of the patients. Group I have more clear signals because of 
the modified analog cassette recorder. Furthermore, Group I 
recordings have more samples than Group II, which provides more 
efficient classification performance. Despite the differences, all 
PSG records commonly contain two EEG channels (Fpz-Cz and 
Pz-Oz) and a single EOG channel with a sampling frequency of 
100 Hz. Additionally, both groups have sub-mental EMG signals 
with different sampling frequencies. Moreover, Group I recordings 
include additional signals, oral nasal airflow and rectal body 
temperature, sampled at a 1-Hz frequency. 
The records are scored by using Rechtschaffen and Kales (R&K) 
rules with 30-second intervals, which are called epochs. Each 
epoch has one sleep-stage label stored in a hypnogram. According 
to R&K standards, sleep-stages are divided into six stages, namely 
W (Wakefulness), REM (Rapid Eye Movement), NREM I, II, III, 
and IV (Non-Rapid Eye Movement). In some studies NREM III 
and IV stages are combined into a single stage (SWS - Slow-wave 
Sleep) to increase classification ratio [19, 20], but in our study all 
stages will be separately taken into account in order to show the 
efficiency of ensemble methods. In the proposed study, sleep-stage 
classification is performed based on only EEG signals. The 
representation of the EEG channels is referred as a montage, and 
different montages are available in practical sessions at hospitals 

[24]. The sleep EDF data set includes two channels recorded under 
the sequential montage. Because the Fpz-Cz channel is more 
distinctive than others according to some recent research papers 
[20], we also utilize and focus on Fpz-Cz channel in our study. 

3. Methodology 
Fpz-Cz channel of EEG recordings is selected as input for the 
evaluations of the classification methods. Fig. 1 indicates the flow 
diagram and steps of this study. 

 
Fig. 1. The flow chart of the methodology 

Methodology will be investigated in four sub-sections: (a) signal 
preprocessing, (b) feature inference and extraction, (c) formation 
of training and testing sets, and (d) classification. Performance 
metrics will be explained as a final step. 

3.1. Signal Pre-processing 

Biomedical signals can be easily affected by artificial or natural 
non-controllable factors hence signal pre-processing step is a 
necessity and inevitable process in order to isolate raw signals. 
A small part of samples are labeled as ’undefined’ in the records. 
Therefore, these samples are accepted as noise and removed. 
Additionally, Butterworth band-pass filters with 0.2 Hz and 40 Hz 
cut off frequencies are implemented on the records as noise-
removal process. Signals over 40 Hz and below 0.2 Hz frequencies 
are mostly EEG irrelevant signals. Sample distributions with 
corresponding stages after de-noising processes are presented in 
Table 1. 

Table 1. Number of samples after signal preprocessing step 

 Data Set  WAKE  NREM 
I  

 NREM 
II  

 NREM 
III  

 NREM 
IV  REM  Total  

G
ro

up
 I sc4002e0  1884 59 373 94 203 215 2828 

sc4012e0  1823 92 660 80 16 176 2847 
sc4102e0  1908 117 607 25 0 199 2856 
sc4112e0  2103 18 396 90 21 151 2779 

G
ro

up
 II

  st7022j0  75 74 353 127 157 159 945 
 st7052j0  128 121 396 53 127 226 1051 
 st7121j0  70 34 452 120 83 267 1026 
 st7132j0  60 89 384 83 20 216 852 

3.2. Feature Inference and Extraction 

Feature extraction methods directly state the success of the used 
classification algorithm in next step; hence feature extraction is 
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crucial step for any signal classification as in biomedical field. 
Features should express the original signal as much as possible. 
Moreover, they must be discriminative and informative in order to 
increase classification results. 
Generally in the literature, feature extraction methods can be 
categorized into three sections: time, frequency, and spatial 
domain based techniques. Additionally, combined time-frequency 
based techniques are also available such as short time Fourier 
transforms (STFTs) and wavelet transforms [25]. In this study, 
frequency domain based feature extraction methods are selected. 
The EEG signals can be represented in frequency domain with 
seven characteristic waves, namely alpha (α), beta (β), theta (θ), 
delta (δ), spindle, saw-tooth, and K-complex. The 10th-order 
infinite impulse response (IIR) Butterworth filters are designed 
with relevant cut off frequencies, and applied on signals after 
preprocessing step in order to obtain these waves. The names of 
the waves and the corresponding spectral-band frequencies are 
presented in Table 2. 

Table 2. Cut-off frequencies of Butterworth filters 

Characteristic Wave Spectral Band Freq. 
 Alpha  8   - 13 Hz. 
 Beta   12   - 30 Hz. 
 Theta  4   -  8 Hz. 
 Delta  0.5 -  2 Hz. 
 Spindle  12- 14 Hz. 
 Saw-tooth  2 - 6 Hz. 
 K Complex  1 Hz. 

Subsequently, energy values of characteristic waves are calculated 
with (1); 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 = �𝑥𝑥𝑛𝑛2
𝑁𝑁

𝑛𝑛=1

 (1) 

where N denotes the total number of samples in one epoch, which 
is 3000 by taking 30-second intervals at the sampling frequency of 
100 Hz. Here, 𝑥𝑥𝑛𝑛 representsthe 𝐸𝐸𝑡𝑡ℎsample in corresponding 
characteristic wave.The sum of the energy values of relevant 
waves are assigned as discriminative features of the signal. 
However, the distributions of feature characteristics vary with 
different ranges; hence these features need to be normalized in 
order to use them together. Additionally, the normalization 
procedure provides more accurate assessment for the subject 
independent scenario. In that case, all features are normalized into 
the [0-1] range before the classification step as follows: 

𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁𝑒𝑒𝑖𝑖𝑘𝑘 =
𝐸𝐸𝑖𝑖𝑘𝑘 − 𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛

𝑘𝑘

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘 − 𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛

𝑘𝑘  (2) 

where 𝐸𝐸𝑖𝑖𝑘𝑘  shows the normalized 𝑁𝑁𝑡𝑡ℎ  energy value for the 
corresponding k characteristic wave. 𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛

𝑘𝑘  and 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘  are minimum 

and maximum values within the 𝑘𝑘𝑡𝑡ℎ characteristic wave. 
As a summary, normalized energy values of extracted 
characteristic waves of Fpz-Cz EEG channel signals are selected 
as feature sets which will be divided into training and testing set in 
next section. 

3.3. Training and Testing set formations 

Two testing approaches are mainly presented in literature; subject 
independent and subject specific [26]. Classification methods are 
tested under both scenarios in this study. There are differences in 

sample selection step between the scenarios. Training samples are 
selected from one patient’s records with a split ratio in the subject 
specific strategy, and the testing is performed on the rest of data 
belongs to same patient. On the other hand, training set is formed 
by entire records of all patients except one in the subject 
independent strategy. Isolated patient is reserved for testing within 
the same group. First strategy gives more theoretical information 
about the success of the model in terms of the machine learning 
concept, and other scenario is related with more practical 
experiments in order to apply the methods on unseen samples. 
Automatic sleep-staging system deals with more practical 
problems which is more likely to be encountered in hospitals, 
clinics and institutes.  
A well-known method named as k-fold cross-validation is 
implemented for the subject specified strategy. The k value 
represents the number of partitions. Samples are divided into k 
equal sizes for every class. Number of k-1 defines the size of 
training set and the rest of data is assigned to testing set.  The 
minimum k can be two which indicates that training and testing 
sets are formed with equal number of samples. The k also 
represents the rotation number which indicates the number of 
repetitions with different samples but same size in training set. k is 
chosen 2 in this study. Additionally, testing process is repeated 10 
times for strengthen the results. Final decision is made by majority 
voting technique which is based on calculation of average score of 
all results. 
Another cross validation method, leave-one-out cross-validation, 
is used in order to arrange the sample proportions for the subject 
independent strategy. All the records of three patients are selected 
as training set and the remaining is considered as testing set within 
the same group. 

3.4. Classification Methods and Parameter Settings  

Several well-known classification methods are utilized in this 
study. Selected methods are separated into two titles: a.) 
Conventional machine-learning and b.) Ensemble-learning 
methods. The brief descriptions of the utilized methods and 
parameter settings are explained in following sub-sections.  As a 
preliminary work, each method are tested with their different 
parameter settings in order to find the model’s best accurate results 
and corresponding settings. Parameter setting tests are performed 
on the same dataset (50% of data set assigned as training, another 
as testing) at once. Afterwards, all methods with defined 
parameters are evaluated in experimental section with 
abovementioned formation of data set. Same as parameter setting 
tests, comparative tests are also performed on same testing data set 
at once for all methods in experimental tests.   

3.4.1. Conventional Machine Learning Methods 

Many algorithms are developed with the fast advance of the 
machine-learning. Majority of these algorithms are highly utilized 
on biomedical data sets to derive more meaningful information and 
classify with better accuracy. This study contains several familiar 
machine-learning algorithms (Support Vector Machines (SVMs), 
Decision Tree (DT), K-Nearest Neighbor (KNN), Naive Bayes 
(NB), Artificial Neural Network (ANN) and Linear Discriminative 
Classifier (LDC)) to evaluate the methods on the abovementioned 
sleep-stage data sets. 

3.4.1.1. Support Vector Machine (SVMs) 

SVM is one of the prominent classification algorithm which can be 
used large-scale data sets and provides more efficient results than 
statistical and neural classifiers. In SVM, higher classification 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(4), 174-184  |177 

accuracies can be achieved by even small size train sets with the 
help of well-fitted cost function in kernel space as well [27]. In this 
section, SVM terminology and its usage in the sleep stage 
classification are briefly explained. 
SVM uses the core idea of kernel based learning. Kernel based 
learning aims to separate data in high dimensional feature space by 
mapping data points with a kernel function. SVM creates a 
decision surface between the samples of different classes by 
finding the optimal hyperplane that is closest to the deciding 
training samples (support vectors). That way an optimal 
classification can be achieved for linearly separable classes. In case 
of linearly inseparable situations, kernel versions of SVM are 
defined. The main purpose of kernel approach in SVM is to 
transform the data to a higher dimensional space (ϴ : 𝑅𝑅𝑛𝑛 → 𝑅𝑅ℎ,
ℎ > 𝐸𝐸 ) where binary classification can be achieved linearly again 
[28]. Kernel functions are mainly used to define cost function, and 
the response of the cost function defines the weight and bias values 
in the learning model. Fig. 2 graphically demonstrates an example 
of binary classification problem. Data samples are classified into 
two classes -1 and +1 with a formed hyperplane by SVM model. 
The cost function is set o to define the margin distances between 
the support vectors. 

 
Fig. 2. SVM methodology on the binary classification. 

The minimum response/value of the cost function provides the best 
position of the hyperplane. The penalty parameter is another 
variable used in the calculation of the cost function. Model 
flexibility in the formulation can be adjusted with penalty 
parameter given by the user. The large values of penalty parameter 
make the model stricter, and it ends with more misclassification 
errors. On the contrary, with the small values, the model becomes 
loose and, therefore classifies some outliers as well [29]. 
SVM maintains a binary classification of two-class datasets. In 
order to use SVM in multiclass structures, “one against one” or 
“one against all” are the most popular strategies in literature. Each 
strategy has own advantages and disadvantages mentioned in [30]. 
In order to define well-fitted settings of SVM on sleep stage 
classification problem, different penalty (1, 10, 100, 250, 500), 
kernels (radial-basis, Polynomial, quadratic, linear) and its 
parameters are tested at the initial part of study and registered in 
Table 3. According to the accuracies of parameter testing, two 
different SVM model with polynomial and RBF kernels are 
included in the study. Polynomial kernel selected as 3th degree of 
equation and RBF kernel fixed with sigma ‘1’. Penalty parameters 
are defined as 25 and 100 respectively. Additionally, one against 
one strategy is used for evaluation between classes owing to 6 
classes’ presence in sleep stage datasets. 

Table 3. SVM parameter test results 
 Penalty Parameters 

Kernels 1 10 25 50 100 200 500 
Linear 64.95 67.17 67.62 68.12 67.86 67.79 67.80 

Quadratic 71.19 74.82 75.57 75.90 76.58 75.87 76.83 

RBF 
(σ) 

0.1 61.12 60.17 61.05 60.7 61.5 59.95 60.40 
0.5 72.53 74.96 76.14 75.77 76.17 75.32 75.96 
1 69.58 75.46 76.62 77.11 77.23 76.79 77.05 
5 58.21 66.13 67.37 68.73 69.81 71.34 72.71 
9 50.8 61.49 63.79 65.71 66.74 68.75 69.94 

Poly 
(d) 

2 71.19 74.82 75.57 75.91 76.58 75.87 75.83 
3 75.49 76.58 77.57 76.01 76.68 75.21 75.30 

 

3.4.1.2. Artificial Neural Network (MLP) 

The idea of Artificial Neural Network in machine learning is same 
as in biological concept of central nervous systems. In biological 
meaning, neural synapses are connected with each other and 
transmit each sense to the brain to feel and understand the sense. 
This transmission can be increased by the power and variety of the 
sense. Moreover, some senses can be transmitted by some 
predefined path in order to react quickly to the sense. Similar to 
this definition, each sample is considered as sense to be classified 
in machine learning terminology, and parameters (bias, weight) are 
the impact factors of the samples showing the importance of 
senses. Each neuron has interconnections to other neurons to 
provide the transmission of the information. It is maintained by 
different mathematical functions owing to distributions of the 
samples (similar to different senses uses various transmission path) 
between layers which is the group of neurons. Number of the 
neurons and layers defines the complexity of the network. 
MLP (Multi-Layer Perceptron) is the advanced version of ANN. 
Minimum two layers connected with two functions should be 
utilized. Different parameters and functions are tested at initial 
studies in order to define best settings of MLP network for sleep 
stage classification. According to results, MLP network as in Fig. 
3 is considered for experimental tests with hyperbolic tangent 
activation function in the hidden layer. Weight and Bias are fixed 
with 0.8 and 1, respectively. Total 100 neurons were utilized in the 
hidden layer. 

Fig. 3. MLP network for Sleep Stage Classification 

3.4.1.3. Naïve Bayes Classifier (NBC) 

Naive Bayes is a kind of probabilistic approaches in machine 
learning concept using modified Bayes theorem. Generally, in 
probabilistic classification, it is maintained based on the sample 
distributions, and samples aren’t strictly assigned into the classes. 
Models give the probabilities of samples over set of classes instead 
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of single class. Bayes theorem uses all probabilities of the features, 
but Naive Bayes assumes that features are independent each other. 
In this sense, algorithm can be performed with less computational 
cost rather than regular probabilistic methods. Naive Bayes result 
will provide us to see the probabilistic classifier success on Sleep 
Stage Classification problem within this study. 

3.4.1.4. Linear Discriminative Classifier (LDC) 

Linear classification is major issue in the machine learning 
literature. In this study, linear discriminative classifier realizes 
simple classification using only covariance matrices. Obtained 
model forms a multivariate normal density to each group derived 
from training set and estimates testing samples’ labels with 
calculated covariance with estimations [31]. Basic linear 
classification is tested in order to demonstrate effects of a simple 
linear model on the sleep stage classification besides complex 
methods. 

3.4.1.5. K-Nearest Neighbour (KNN) 

KNN is a benchmark method in many classification problems in 
the literature due to the high accuracy results and easy to 
implement. As a short explanation of the KNN, samples are 
classified based on predefined K labels of the nearest neighbors. In 
the testing stage of the algorithm, new samples from test set are 
assigned to the classes according to the closest K number of K 
samples’ class label in training set with majority voting technique. 
The K value is the key determinant parameter in the definition of 
class labels. In this study, K value is set to 5 according to 
preliminary studies on parameter selection of K. Distance metric 
determined as “Euclidean” algorithm within tested other distance 
metrics (Euclidean, Cityblock, Chebychev, Minkowski, 
Mahalanobis, and Cosine). Table 4 shows the accuracies of other 
K values with different distance metrics. 

Table 4. Accuracy Results of KNN 
 
 

K 
3 5 7  9 11 13 

M
ET

RI
CS

 Euclidean 82.69 83.29 83.27 83.15 82.79 82.62 
Cityblock 82.33 82.89 82.81 82.76 82.68 82.46 

Chebychev 81.00 81.39 81.39 81.11 80.99 80.76 
Minkowski 81.85 82.4 82.52 82.34 82.12 81.85 

Mahalanobis 81.76 82.38 82.43 82.45 82.21 81.97 
Cosine 79.94 80.67 80.75 80.55 80.48 80.21 

3.4.1.6. Decision Tree (DT) 

Decision Tree is known as rule based machine-learning method. 
Basically, it works based on tree terminology. The path from root 
to leaf presents classification rules. The roots represent the most 
informative features and the leaves indicate the labels. Information 
gain (IG) is the rule defining criteria. The most widely used 
methods are entropy, twoing, and Gini to calculate the IG. 
Decision Tree is easy to implement similar to KNN. Additionally, 
interpretation of the classification is much easier than other 
methods and, it can be useful for some regression problems. 
However, DT produces low performance on large scale data sets 
with few training samples compare to SVM [32]. Furthermore, the 
pruning process is another obstacle point to avoid from over-
fitting. According the results of preliminary studies on parameter 
settings, DT model was modified with pruning functionality and 
Gini’s Diversity Index for IG. 

3.4.2. Ensemble Learning Methods 

Ensemble learning methods are evolved from the principles of 

conventional machine learning concepts. The key point of the 
ensemble learning relies on the proper combination of several 
machine learning algorithms. Not only one method as in 
conventional methods, many learners contribute to decision step of 
classification in ensemble methods, therefore it provides higher 
success. Machine learning classifiers such as decision trees, Bayes 
classifiers, KNN, etc. is called base learners or weak classifier in 
ensemble models. Three ensemble models, which have different 
base learner combinations and/or sample selection strategies, are 
implemented in this study. Majority voting is used to define final 
decision of base learners. 

3.4.2.1. Random Forest (RF) - (DT + Bagging) 

Random Forest is combination of multiple decision trees with 
bagging sample selection strategy. Bagging is shortened form of 
bootstrap aggregation, which is a way for improving the quality of 
estimates by the aid of well-formed train samples. It is also cited 
as re-sampling. The main strategy underlying the bagging is to 
distort the data set by re-sampling, and to train weak learners using 
re-sampled training sets. The distortion of the samples is carried 
out with a voting process of weight parameters. The weights of the 
samples are defined equally in bagging, therefore, train sets are 
generated by random selection. As a result of bagging, different 
samples are selected in train set iteratively. Process helps to 
enhance the diversity of the samples’ distribution. The average of 
the each decision of base learners determines the final decision. 
More information about RF can be found in [33]. 
RF is commonly used by many studies in literature because of fast 
computation time, high accuracy, easy to handle with noise and 
over fitting problems. Various number of decision tree 
combination from 10 to 1000 is tested over sleep stage dataset in 
order to define best parameter settings. According to results, 200 
decision tree combination is dedicated to use in experimental tests. 

3.4.2.2. Adaptive Boosting - (DT + Adaboost) 

Boosting is another technique similar to bootstrap. The difference 
between boosting and bootstrap is at the re-sampling step. 
Bootstrap ignores the weight values of the samples and it re-
samples randomly, however boosting technique defines different 
weights for each samples after first iteration. At the end of the first 
step, the probabilities of misclassified samples are boosted for the 
second step, and subsequent classifiers are trained. Likewise, other 
steps are sustained with different weight parameters defined by 
technique. Readers are referred to an essential guide [34] for 
boosting theorem in literature. 
Adaboost is abbreviation of adaptive boosting which mainly 
outperforms other regular boosting techniques and, more robust for 
over-fitting problem. However, it is still easily affected by noise in 
data and outliers. In this study, the same ensemble model structure 
in RF strategy is used to assess the effects of Adaboost re-sampling 
over the sleep stage classification (200 DTs combination). 
 

3.4.2.3. Random Subspace (RSS) - (KNN + Bagging) 

RSS is a generalized form of the RF algorithm. RF is composed of 
decision tree ensembles whereas RSS can be derived from any 
other classifiers. In this study, KNN classifiers are used in RSS as 
base learners. The identical number of base learners similar to 
other ensemble models are utilized in order to demonstrate the 
effect of re-sampling on regular KNN methods in terms of 
Ensemble concept. 

3.4.2.4. Ensemble SVM - (SVM + Bagging) 
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SVM is already explained in previous sub-section, but regular 
SVM uses random sample selection within the concept of binary 
classification. However, this study aim to present comparative 
results, hence, regular SVM is modified with bagging process to 
indicate the effect of ensemble theory. Polynomial kernel SVM is 
only adapted with Bagging re-sampling and combination theory. 
Same parameters are arranged for base learners in ensemble SVM 
model (25 for penalty parameter and polynomial kernel having 3th 
degree of equation). More details can be found in [35]. 

4. Evaluation Metrics and Testing Results 
Kappa, Accuracy, F-measure, sensitivity (recall) and precision 
values are considered as performance measurements in this study. 
Brief information about evaluators is provided in the following 
sub-sections. 

4.1. Evaluation Metrics 

Generally, performance metrics is derived from confusion matrix 
which is an essential table to summarize all classification results 
under four notations as in Fig. 4. True Positive (TP) shows the 
relevant samples classified correctly in desired class by model, 
whereas wrong grouped samples are gathered under False Positive 
(FP), in other words Type I Error. False Negative (FN), indicates 
the samples misclassified in desired class which is also referred to 
as Type II error as well. The last notation is True Negative (TN) 
which is about true classification for undesired samples in 
undesired classes. The higher classification performance can be 
gathered with higher scores in TP, TN and lower samples in FN, 
FP together. 

 
Fig. 4. Notations in the confusion matrix form 

Accuracy is the key benchmark metric for any classification. It 
signifies the percentage of the correctly classified samples within 
all testing set by using (3). An accuracy of 100% shows the given 
samples in test set is all correctly classified. However, higher 
accuracies does not mean the success of the model entirely. In the 
terminology in literature, accuracy paradox [36] tells that all 
distribution of the confusion matrix is important to evaluate the 
model success, however accuracy only indicates the true classified 
samples. Other metrics are also given in the studies in order to 
prove complete model success. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝑁𝑁𝐴𝐴𝐸𝐸 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝑇𝑇𝑁𝑁 (3) 

Sensitivity (SE) and precision (PR) are accepted as other 
performance metrics in order to evaluate the model in terms of 
Type I and Type II errors. Sensitivity and precision can be 
calculated by (4) and (5), respectively. 

𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝐸𝐸 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 (4) 

𝑇𝑇𝐸𝐸𝐸𝐸𝐴𝐴𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝐸𝐸 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 (5) 

F-Measure (F1-Score) can be derived from sensitivity and 
precision measures as in (6). It reaches to the best value at 1 and 
worst score at 0. F-Measure values are more reliable than accuracy 
rates due to inclusion of the FP and FN in the results. 

𝐹𝐹–𝑀𝑀𝐸𝐸𝑁𝑁𝑆𝑆𝐴𝐴𝐸𝐸𝐸𝐸 =  2 ×
𝑇𝑇𝐸𝐸𝐸𝐸𝐴𝐴𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝐸𝐸 × 𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝐸𝐸
𝑇𝑇𝐸𝐸𝐸𝐸𝐴𝐴𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝐸𝐸 + 𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝐸𝐸 (6) 

Cohen’s Kappa (κ) is another performance metric, commonly used 
in many statistical problems [37]. It mainly assesses the inter-rater 
agreement which covers the similarity of the raters to each other. 
κ statistics reveals more informative results due to taking into 
account the prior probabilities than other metrics. Also in some 
cases having similar accuracy values but different confusion 
matrix, κ gives more reliable information about the success of the 
learning model. It also evaluates the raters. κ score is calculated 
with using (7). 

𝐾𝐾𝑗𝑗 =  
𝑇𝑇𝐴𝐴 − 𝑇𝑇𝐶𝐶𝑗𝑗
1 − 𝑇𝑇𝐶𝐶𝑗𝑗

 (7) 

where 𝑇𝑇𝐴𝐴 represents the proportion of observed values and 
𝑇𝑇𝐶𝐶demonstrates proportion of real values derivedfrom confusion 
matrices. 𝑇𝑇𝐴𝐴 and 𝑇𝑇𝐶𝐶 will be generated from (8) and (9) in multi-
class models with two raters. 

𝑇𝑇𝐴𝐴 =  
𝑇𝑇11 + 𝑇𝑇22 + 𝑇𝑇33 + ⋯+ 𝑇𝑇66

𝑇𝑇𝑁𝑁𝑁𝑁
 (8) 

𝑇𝑇𝐶𝐶𝑗𝑗 =  �
𝑇𝑇𝑃𝑃𝐶𝐶𝑗𝑗 ∗ 𝑇𝑇𝐴𝐴𝐶𝐶𝑗𝑗
𝑇𝑇𝑁𝑁𝑁𝑁2

� + ��1 −
𝑇𝑇𝑃𝑃𝐶𝐶𝑗𝑗
𝑇𝑇𝑁𝑁𝑁𝑁

� ∗ �1 −
𝑇𝑇𝐴𝐴𝐶𝐶𝑗𝑗
𝑇𝑇𝑁𝑁𝑁𝑁

�� (9) 

j is the total number of classes and 𝑇𝑇𝑃𝑃𝐶𝐶𝑗𝑗  and 𝑇𝑇𝐴𝐴𝐶𝐶𝑗𝑗  are abbreviated 
as predicted and actual values for 𝑗𝑗𝑡𝑡ℎ class respectively. In sleep 
stage classification case, six stages are defined under R&K rules. 
Two raters are considered as actual hypnogram and predicted 
results. The Kappa schema for the sleep-stage classification can be 
seen on Table 5. Kappa score for each class is calculated based on 
this schema with referred formulas (7, 8, and 9). 

Table 5. Confusion matrix schema used in calculation of κ 

 Predicted Values by Classifier 
 W NREM1 NREM2 NREM3 NREM4 REM Total 

A
ct

ua
l V

al
ue

s 

 W  
11P  

21P  31P
 41P  51P

 61P
 1PCP

 
 NREM1  12P  

22P  32P
 42P

 52P
 

62P
 2PCP

 

 NREM2  13P
 23P

 33P
 43P

 53P
 63P

 
3PCP

 

 NREM3  14P  24P  34P
 44P

 54P
 64P

 4PCP
 

 NREM4  15P
 25P

 35P
 45P

 55P
 65P

 5PCP
 

 REM  16P
 26P

 36P
 46P

 
56P

 66P
 6PCP

 

 Total  1ACP
 2ACP

 
3ACP

 4ACP
 5ACP

 6ACP
 NNP
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General κ scores of the models are derived by using (10). It 
calculates the averages of each kappa scores corresponding to 
classes. 𝜅𝜅𝑚𝑚𝑎𝑎𝑎𝑎 scores will be present in comparison tables. 

𝜅𝜅𝑚𝑚𝑎𝑎𝑎𝑎 =
1
6
�𝜅𝜅𝑗𝑗

6

𝑗𝑗=1

 (10) 

4.2. The Subject Specific Scenario  

The subject specific scenario contains the analyses of the methods 
on a certain record. Both training and testing samples are selected 
from the specific record. Models are concurrently trained with 
predefined number of samples located in selected record with the 
cross-validation technique. The rest of the samples in the same 
record are allocated for testing set. Individual and averaged 
accuracies of methods with relevant group divisions are presented 
in Table 6. Tests are repeated 10 times to strengthen and generalize 
the results. Standard deviations (Std) occur between repetitive tests 
because of the sample rotation in testing set with the theory of cross 
validation. Std values are also noted in the Table 6 to show the 
consistency of the corresponding methods. It is certainly more 
preferred to have minimum deviation between all tests, hence, 
methods will be evaluated in this respect as well.  

Table 7. The κ results for subject specified scenario 

 Methods  Group I Group II  Averaged 

M
ac

hi
ne

 
Le

ar
ni

ng
 

NB  0.66 0.64  0.65 
KNN  0.80 0.65  0.73 
LDC  0.65 0.62  0.64 
NN  0.78 0.54  0.66 
DT  0.76 0.65  0.70   

SVM  0.74 0.59  0.67 

En
se

m
bl

e 
Le

ar
ni

ng
 Adaboost DTs  0.69 0.56  0.62 

Bagging 
KNNs  0.38 0.42  0.40 
DTs  0.82 0.72  0.77 

SVMs  0.83 0.76  0.79   

Accuracy scores can give an idea about the performance of 
methods in general, but scores is more stronger and trustable 
criteria that contains inter-rater comparison as well. In this sense, 
averaged scores of groups are given in Table 7. Best numerical 
results for each learning concepts are separately signified with bold 
and italic numbers. Bold style is used for ensemble, and italic is 
assigned for conventional methods best case registration. 
Additionally, F-measure scores of each methods are demonstrated 
as bar charts in Fig. 5 and 6 for Group I and II respectively. In this 
way, more individual and meaningful inferences of each method 
can be derived from visual demonstrations. Explications about 
tables and figures will be made in Discussion section. 

4.3. The Subject Independent Scenario  

Table 6. Individual and average accuracies for subject specified scenario 

 

Methods 
                     

Conventional Machine Learning Ensemble Learning 
NB KNN LDC NN DT SVM KNNs+Bagging DTs+Adaboost DTs+Bagging SVMs+Bagging 

Acc Std Acc Std Acc Std Acc Std Acc Std Acc Std Acc Std Acc Std Acc Std Acc Std 
 sc4002e0 85.52 0.65 90.61 0.42 83.68 2.21 91.65 0.55 89.12 0.78 85.31 0.85 71.43 0.79 86.93 0.49 92.11 0.35 93.02 0.27 
 sc4012e0 71.99 1.34 86.93 0.62 65.21 2.11 84.21 1.82 84.65 0.87 82.16 1.27 68.99 0.95 80.74 1.83 88.43 0.99 89.38 0.39 
 sc4102e0 79.57 1.34 88.62 0.66 77.35 1.24 86.31 1.17 85.78 1.05 86.72 0.86 72.41 0.45 80.37 1.36 89.53 0.68 91.99 0.17 
 

 sc4112e0 88.96 0.84 94.86 0.32 92.22 1.02 94.33 1.66 93.62 0.52 93.02 1.17 84.68 0.62 91.86 2.27 95.33 0.31 96.85 0.35 
 Average 81.51 1.04 90.26 0.5 79.62 1.65 89.12 1.3 88.29 0.8 86.8 1.04 74.38 0.7 84.98 1.49 91.35 0.58 92.81 0.30 
 st7022j0 70.81 1.38 70.69 1.05 71.57 1.95 67.31 4.54 69.17 2.02 63.31 2.39 55.26 1.66 65.98 0.76 75.44 1.39 76.06 1.67 

 st7052j0 75.56 1.28 77.91 1.65 77.28 3.37 57.28 2.31 79.07 0.96 74.61 3.62 60.44 0.89 68.97 3.19 85.99 1.1 86.81 1.24 
 st7121j0 75.91 1.06 75.78 1.65 67.47 2.03 75.3 2.55 74.87 1.37 70.12 1.33 61.04 1.58 72.32 0.66 81.06 0.72 81.57 1.12 
 st7132j0 70.94 1.47 74.79 1.37 69.55 2.27 72.65 1.49 72.51 1.91 69.2 1.67 64.2 2 69.38 1.08 76.91 1.68 77.10 1.23 
 

 Average 73.3 1.3 74.79 1.43 71.47 2.4 68.14 2.72 73.91 1.56 69.31 2.25 60.24 1.53 69.16 1.42 79.85 1.22 80.39 1.31 
 Total Avg. 77.4 1.17 82.52 0.97 75.54 2.02 78.63 2.01 81.1 1.18 78.06 1.65 67.31 1.12 77.07 1.46 85.6 0.9 86.60 0.80 
                        

 

Fig. 5.  F-Measure rates for Group I sleep stages (Subject Specified Scenario) 

 
Fig. 6. F-Measure rates for Group II sleep stages (Subject Specified Scenario) 
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In the subject independent scenario, models are trained with three 
records whereas other record in the same group is reserved for the 
testing. This selection method is referred as ’leave-one-out cross-
validation’ in literature. The goal of this scenario is to evaluate the 
success of the model on classification of unseen samples, which is 
likely to be encountered in clinics and hospitals. Results are 
presented in similar forms as in the subject specific tests. Only one 
difference can be seen that standard deviation does not occur for 
this scenario, because there is no sample rotation in testing set. 
Individual and averaged accuracies with scores are recorded in 
Table 8. It can be derived from the table that the subject 
independent scenario is obviously more challenging than the 
subject specific scenario because of the relatively low accuracy and 
κ scores with the same configuration of the handled methods. 
F-measure scores are presented in Fig. 7 and 8 for Group I and 
Group II respectively. Figures indicate individual performances of 
classifiers over each sleep stages. In other words, methods can be 
analyzed with more detailed based on sleep stages. The main 
challenge is the individual differences of the patients in this 
scenario. Additionally, different artifacts can be occurred while 
recording the signals with several kind of noises. All features are 
normalized at the pre-processing step in order to scale the signals 
in a standard form and overcome outlier problems. Otherwise, 

some records can be incompatible or inconsistent with each other. 
However, remaining outliers induce under-training in model 
learning significantly, and as a result of that evaluation metrics 
produce relatively lower results than the subject specified scenario. 
On the other hand, the subject independent tests are more important 
than the subject specified tests, because the key idea behind the 
subject independent scenario is to provide the results in a patient-
free system. System can be trained by previously retrieved healthy 
and unhealthy records to build a model, then the diagnosis of 
unknown case can be made based on predefined criteria. In this 
sense, the subject independent tests are more beneficial in current 
computer aided diagnosis systems which mainly aim to give 
diagnose directly. However, the subject specific tests depend on 
the long term diagnoses of specific patients. The variations in the 
conditions of patient during the treatment can give a trace about 
the diagnosis in the specific scenario. 
 

5. Discussions 
Ensemble SVM with a bagging resampling idea surpasses over all 
other methods in overall accuracy according to Table 6. Another 
ensemble method, Random Forest (DTs combination with 

 

Fig. 7.  F-Measure rates for Group I sleep stages (Subject Independent Scenario) 

 
Fig. 8.  F-Measure rates for Group II sleep stages (Subject Independent Scenario) 

 

Table 8. Individual and average accuracies and κ scores for subject independent scenario 

Data sets 

Methods 
Conventional Machine Learning Ensemble Learning 

NB KNN LDC NN DT SVM KNNs+Bagging DTs+Adaboost DTs+Bagging SVMs+Bagging 
Acc. κ Acc. κ Acc. κ Acc. κ Acc. κ Acc. κ Acc. κ Acc. κ Acc. κ Acc. κ 

Gr
ou

p 
I 

 sc4002e0  70.16 0.33 74.62 0.34 61.00 0.22 77.37 0.49 68.03 0.34 67.86 0.31 70.91 0.19 65.87 0.08 75.02 0.37 76.32 0.34 
 sc4012e0  67.90 0.47 74.75 0.36 40.50 0.18 67.97 0.26 70.14 0.35 67.40 0.35 67.54 0.18 65.30 0.05 75.98 0.36 75.02 0.38 
 sc4102e0  69.47 0.40 77.80 0.55 55.36 0.37 75.07 0.56 64.36 0.33 59.98 0.34 71.04 0.19 70.44 0.23 70.60 0.39 74.05 0.41 
 sc4112e0  70.64 0.37 70.60 0.38 58.08 0.33 85.86 0.64 77.83 0.48 75.85 0.48 70.47 0.36 75.28 0.46 79.67 0.64 78.17 0.67 
Average 69.54 0.39 74.44 0.41 53.73 0.28 76.57 0.49 70.09 0.38 67.77 0.36 69.99 0.23 69.22 0.20 75.31 0.44 75.89 0.45 

Gr
ou

p 
II 

st7022j0  55.24 0.41 44.97 0.20 40.21 0.25 51.01 0.34 47.09 0.30 41.59 0.25 47.31 0.16 50.47 0.11 62.15 0.39 63.60 0.41 
st7052j0  23.50 0.03 27.52 0.10 23.60 0.03 25.40 0.06 31.78 0.15 23.12 0.11 29.52 0.06 28.49 0.07 30.30 0.13 32.38 0.15 
st7121j0  64.91 0.57 51.01 0.28 47.66 0.33 64.32 0.44 59.16 0.40 39.08 0.18 44.89 0.22 50.14 0.27 62.59 0.49 70.57 0.50 
st7132j0  39.55 0.23 48.96 0.22 37.32 0.23 48.24 0.27 42.72 0.22 24.53 0.14 47.27 0.20 37.62 0.12 53.28 0.28 54.78 0.30 
Average 45.80 0.31 43.11 0.20 37.20 0.21 47.24 0.28 45.19 0.27 32.08 0.15 42.25 0.16 41.68 0.14 52.08 0.32 55.33 0.34 

Total Avg. 57.67 0.35 58.78 0.30 45.47 0.24 61.91 0.38 57.64 0.32 49.93 0.26 56.12 0.19 55.45 0.17 63.70 0.38 65.61 0.40 
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Bagging), is measured as second successful method. However, 
same combination with Adaboost resampling strategy doesn’t 
result in as successful as in Bagging version. Similar to Adaboost 
and DT combination, also KNN with Bagging ensemble method is 
not successful and meaningful combination for subject specified 
sleep stage classification as it can be seen on Table 6 with worst 
accuracy results of all. 
KNN is evaluated as the best accurate classifier within 
conventional machine learning methods with 82% accuracy. It is 
also graded as third rank classifier in overall accuracy. However, 
it is not consistent like RF and ensemble SVM. Several subjects 
are classified with low accuracies and KNN is evaluated as fourth 
rank or more in another cases. On the contrary, RF and ensemble 
SVM are always steady during all subjects’ classification. 
Ensemble SVM classified all individual subjects with the best 
accuracies and RF comes second. Besides to the best results, 
another ensemble method, Random Sub Space having KNN 
classifier with bagging resampling, is also steady in 
misclassification of all subjects. In both state; successive and 
failure, results prove that ensemble methods act more stable which 
makes the algorithms more reliable for implementation on real 
system design. Controversially, regular methods result with 
different rankings on each datasets. For example, NB gives better 
results on some subjects within Group II, whereas KNN or LDC 
come up in classification of another subjects within same group. 
This is suspicious aspects of regular methods in sleep stage 
classification usage. 
Another consistency criteria, Standard Deviation (std), also 
emphasize the importance of ensemble SVM or any other 
ensemble method within this study. Classifiers with minimum 
standard deviation is more preferable in practical usage. In that 
meaning, ensemble SVM with the 0.80 deviation is highlighted 
within all other tested methods. Similar to accuracy sorting of 
methods, best three methods are same in consistency based on 
standard deviation; SVM (1st), RF (2nd) and KNN (3th) in subject 
specified scenario. 
As a kernel based method, regular SVM (using random sample 
selection strategy), is evaluated with less classification accuracies 
contrary to ensemble version. Similarly, also DT classification 
results indicates the importance of having several learner instead 
of using only one learner. When compare to ensemble combination 
of DTs, accuracies of each subjects classification in DT stay far 
behind from multi DT combination. It can be derived that the rule-
based or even a kernel based method is not useful alone for sleep 
stage classification based on single EEG channel. When several of 
them combined with a bagging re-sampling strategy, results are 
increased noticeably in terms of subject specified scenario. 
In some cases, accuracy is not enough criteria for evaluation. 
Principal problem in accuracy formula is the ignorance of Type I 
and Type II error in confusion matrixes. In order to resolve that 
problem, summarized scores of each methods are also presented 
besides the accuracy table to verify the results. In the theory, 
formula grades the results as ‘accidental (by chance)’ or ‘not 
accidental’. Lower results than 0.5 score is submit as ‘accidental’, 
and it is advised that method should be avoided for application. 
This study presents that the classification of KNN combination 
with bagging re-sampling is directly an accidentally resulted 
process for subject specified scenario. It is an important criteria for 
medical science, because accidentally results shouldn’t be taken 
into account in human life. In that respect, ensemble KNN is 
entirely useless for sleep stage identification. Other methods have 
different scores which are all over 0.5, but it is better to use the one 
which nearest to 1. In that meaning, as in accuracy results, 

ensemble SVM or DT should be utilized for sleep stage 
classification in subject specified scenario as well. 
Fig. 5 and Figure 6 are derived to show methods success on each 
individual sleep stage classification. Figures are graphically 
demonstration of F-Measure scores. F-Measure score gives an 
average of SE and PR rates which solve the Type I and II error in 
confusion matrix forms. Methods except ensemble version of 
KNN are mostly gave successful results on Wake, NREM II and 
REM stages in Group I samples. Figures also prove that ensemble 
KNN is entirely worthless method in the subject specified scenario, 
because it is resulted under 10% F-measure score in mostly NREM 
stages. Additionally, Adaboost in terms of re-sampling method is 
useless when compare to Bagging on DT combination. NN and 
LDC classify the stages with the worst scores in terms of regular 
machine learning concept. 
Group II records are more challenging because of the including 
patients having some mild difficulties in sleeping. This effects the 
results with less success of methods in classification when compare 
to Group I. NREM III is the deepest point of sleep, and more 
distinctive. As a result, all methods give the most successful F-
Measure scores at that point. Still, Ensemble KNN with bagging 
and DT with Adaboost are finalized with the worst scores. 
Specifically, NN is the worst method within regular machine 
learning algorithms for Group II. 
Another information can be depicted from figures that REM and 
NREM II stages are more clear and distinctive stages to classify in 
any condition. Wake is easily classified stage for heathy records 
but hard to analyze in disorder cases according to tested methods. 
Some studies approved combination of NREM I into NREM II and 
NREM III into NREM IV as one class named NREM I and SWS. 
In these studies, classification will be made into 4 class. However 
in this study, all stages are individually observed to emphasize 
ensemble methods. Obviously, combined approach will increase 
the success rates. 
For an overall classification results without group division in 
subject specific scenario, Ensemble SVM with bagging resampling 
idea is the most successful method in terms of accuracy rate of 
86.60%. The second promising method is another ensemble 
method; DTs with bagging. Third one and also the most accurate 
method within conventional machine learning algorithms is KNN 
with 82.52% accuracy. 
Another tested scenario, subject independent, is considered as a 
special case for more practical usage be-cause tests are performed 
on unseen records such as in hospitals. Subject specified tests 
generally resulted with relatively high accuracies, but it is not at 
satisfactory level in the subject independent case. Diversity of the 
records and artifacts during recordings are the main reason of 
inefficiency. Artifacts and individual differences are tried to be 
eliminated by normalization and noise removal procedures but 
some samples still remained as outliers for the models. 
Tests are performed with leave-one-out cross validation method 
which focuses on one subject’s entire samples in each testing step. 
The rest of three records are used for training set for learning 
process of method. As presented in Table 8, similar to subject 
specified scenario, Group II classification accuracies are lower 
than Group I and the best obtained accuracies are unstable. Not 
only specific algorithm, different algorithms concluded with best 
accuracies, so it is better to analyze results independently based on 
records instead of using overall success. In that meaning, the 
maximum accuracy results of each records are separately written 
with bold numbers in Table 8. Group II records are classified with 
more consistent and stable than Group I. 
NN is the most accurate method for Group I with an overall score 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2017, 5(4), 174-184  |183 

of 76.57%. It achieved its maximum accuracy with the last record 
in Group I whereas others failed. Additionally, NN is also 
prosperous for the first record. Ensemble DT with bagging 
resampling and regular KNN have more power on second and 
thirty records respectively. 
Group II classification results are more determined. SVM is graded 
as the best model with 53.77 %, and DT with Bagging comes 
behind with little difference. As an overall conclusion for Group 
II, all methods give unsuccessful accuracy in subject independent 
scenario. Additionally, κ scores also promote that outcome. 
The κ scores are provided in detailed form rather than summarized 
table as in subject specified scenario, because each score of the 
method is important in terms of tested subject record. κ scores over 
than 0.5 means not accidental results. It gives more meaning to 
corresponding accuracy rates, otherwise, calculated accuracies are 
not important because method classified the samples by chance. 
Only two records accuracies are acceptable in both groups 
according to κ scores. Rest of them is accidentally classified. Even 
if the accuracy rate is high but κ score below than 0.5, it is defined 
as unsuccessful classification such as in subject 2 with 75.98 % 
accuracy but 0.36 score in ensemble DT method. The worst 
classification result obtained by all methods on subject 2 in Group 
II. As an overall result, the highest score is obtained by Ensemble 
SVM, but it is not acceptable and needs to be improved because it 
is lower than 0.5. 
Similar to subject specified scenario, Fig 6 and 7 are prepared for 
subject independent case. As it can be seen on both figures, success 
of the methods is low in terms of individual stage classification as 
well. Only the KNN with bagging resampling has an impact on 
Wake stages, but in other stages, similar to subject specified 
scenario, KNN with bagging is still useless. Mostly methods 
classified NREM I and REM stages in subject independent 
scenario. 
It can be derived from all results of subject independent scenario 
that the tested methods are insufficient and accidental because of 
the aforementioned complexities and differences. 

6. Conclusions 
In this study, sleep stages are classified based on single-channel 
EEG signals. Several prominent ensemble and conventional 
machine learning methods are tested on a well-known dataset. 
Comparative results provide to define best method which can be 
used in an automatic sleep staging system in the future. 
Furthermore, detailed figures and explanations shed light on the 
compelling side of stages. 
Dataset is divided into two parts as Group I and II according to 
patient status. Group I records are taken during daily life with an 
analog modified cassette, thus records within the Group I has more 
samples and more clear than Group II. On the other hand, Group II 
records are obtained in hospital during night period with digital 
recorders which can be affected by other devices in terms of 
external factors. Effects can be described as artifacts and noises. 
Additionally, Group II have some mild difficulties in sleeping 
which causes more complexity in EEG signals. 
At the first step, preprocessing is performed on EEG signals in 
order to remove outliers and noises. In the feature extraction phase, 
some frequency based characteristic waves are obtained from 
signals and, subsequently, a set of energy features are derived from 
these waves as representative features. Normalization process is 
applied on energy features to scale the ranges of various records of 
subjects. 
In the subject specific scenario, obtained results are in efficient 

level with 92.81% and 80.39% of averaged accuracy rates for 
Group I and II, respectively. The highest individual accuracies of 
each record vary between 76% and 97%. The highest accuracy 
rates are obtained by multiple SVM combination with bagging 
resampling in terms of ensemble learning concept. Another 
ensemble method, DT combination with bagging, is the second 
prominent classifier. In addition, KNN resulted as the best method 
within conventional methods whereas stated in 3rd place in overall 
success list. 
Contrary to the subject specified scenario, the subject independent 
tests are resulted with lower success because of the different 
patients data used for another patient’s sleep stage prediction. 
Differences in each metabolism and device settings affect the 
prediction results. As a consequence, the averaged results stay 
behind the regular specified scenario with an accuracy of 75.89% 
and 53.77% for Group I and II. Ensemble SVM is still the most 
robust classifier for Group II whereas algorithms are resulted with 
various rates for Group I. The highest individual accuracies can be 
seen between 32% and 86% κ scores are more reliable criteria 
instead of accuracy rates. κ scores prove that the extra processes 
still need to be applied to eliminate outliers and noises in order to 
increase the classification even if it has remarkable accuracy rates. 
As a conclusion, the subject independent scenario is not an easy 
task for computer aided diagnosis. Mainly ensemble SVM and 
partly some other methods provide better results, but practical 
problems needs more generalized solution which can be 
implemented in any condition. Ensemble SVM surpasses other 
methods in terms of classification accuracy for Group II, but not 
robust enough according to κ scores. Furthermore, results are 
inconsistent in Group I. Several methods are finalized with the best 
accuracies on different recordings instead of only one as in Group 
II. In order to constitute an automatic sleep staging system, a 
combined method of those should be optimized or an artificial 
decision system performed to decide the classification method 
according to each recording characteristics, for example 3rd 
recording should be utilized with KNN whereas NN should be used 
especially for 4th records. 
This study is aim to be a source for sleep stage classification based 
on both ensemble and conventional machine learning algorithms 
by using single channel EEG. As a future work, some extra 
preprocessing and feature extraction techniques methods will be 
investigated especially for Group II data sets and subject 
independent scenario. Additionally, different machine learning 
ensembles will be tested for further improvement on the sleep stage 
classification in order to compose more acceptable solution on a 
computer aided diagnosis system. 
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