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Abstract: In the realm of intelligent tutoring systems, the concept of clustering groups holds immense potential for enhancing the 

adaptability and efficacy of educational platforms. Clustering techniques play a pivotal role in organizing learners into meaningful groups 

based on various criteria, such as learning preferences, proficiency levels, and engagement patterns. In this groundbreaking research paper, 

we meticulously evaluate the performance of clustering algorithms within the context of intelligent tutoring systems. Our study employs 

three key metrics—Caliński-Harabasz (CH) Index, Silhouette Score, and Diversity Index—to assess the outcomes of clustering processes 

across diverse datasets. The investigation is specifically tailored to inform the clustering of learners into groups within intelligent tutoring 

systems. Our analysis spans datasets such as R15, Aggregation, D31, Pathbased, Jain, and Spiral, offering profound insights into the 

strengths and limitations of clustering methodologies in the context of educational adaptability. By elucidating optimal clustering scenarios, 

our findings aim to guide the creation of tailored learning groups, fostering personalized and efficient educational experiences for learners 

within intelligent tutoring systems. This research significantly advances the discourse on clustering strategies, providing valuable insights 

for the enhancement of intelligent tutoring systems. 

Keywords: Adaptive Learning, Intelligent Tutoring Systems, Clustering Algorithms, Evaluation Metrics. 

1. Introduction 

In the rapidly evolving landscape of educational technology, 

Intelligent Tutoring Systems (ITS) have become 

instrumental in shaping personalized and adaptive learning 

experiences. A crucial facet of this transformative paradigm 

is the intricate process of clustering learners into groups 

based on shared characteristics, allowing for nuanced and 

responsive instructional strategies. This research embarks 

on a multifaceted journey into the realm of clustering 

algorithms within ITS, aiming to unveil their potential for 

optimizing group formation and, consequently, enhancing 

educational adaptability. 

The primary impetus behind intelligent tutoring is to 

transcend traditional one-size-fits-all models, 

acknowledging the diverse and evolving needs of learners. 

Clustering algorithms, by organizing learners into groups 

with similar attributes, offer a promising avenue to tailor 

instructional content, pacing, and methodologies. These 

attributes may span a spectrum, encompassing learning 

preferences, proficiency levels, and engagement dynamics. 

Through a meticulous exploration of clustering 

methodologies, our research seeks not only to enhance the 

adaptability of tutoring systems but also to contribute to the 

creation of dynamic, responsive, and learner-centric 

educational environments. 

Our investigation hinges on the utilization of three key 

evaluation metrics—Caliński-Harabasz (CH) Index, 

Silhouette Score, and Diversity Index. These metrics serve 

as critical yardsticks for gauging the quality and 

effectiveness of group formation within the tutoring system. 

The datasets selected for analysis, including R15, 

Aggregation, D31, Pathbased, Jain, and Spiral, represent 

diverse educational scenarios, mirroring the intricate nature 

of real-world learning datasets. 

As we navigate the labyrinth of clustering intricacies, 

pivotal questions come to the fore. How does one determine 

the optimal cluster size that aligns with the ground truth of 

the educational context? What are the trade-offs and 

implications associated with different clustering metrics? 

What insights can be gleaned from the analysis of varied 

datasets, each posing unique challenges and opportunities? 

The forthcoming sections of this research delve into a 

granular analysis of results, unraveling the nuanced 

interplay between clustering methodologies and educational 

datasets. We dissect each dataset, exploring the subtleties of 

metric interactions, optimal cluster configurations, and 

deviations from ground truth. Our aim is not only to 

contribute to the academic discourse on educational 

adaptability but also to provide actionable insights for 

educators, instructional designers, and system developers 

striving to optimize the efficacy of intelligent tutoring 

platforms. 

By the culmination of this research endeavor, we envision 
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not only a deeper understanding of clustering methodologies 

within ITS but also a tangible impact on the design and 

implementation of future educational technologies. The 

insights derived from this exploration promise to propel the 

evolution of intelligent tutoring systems toward a future 

where learning is not just adaptive but truly individualized 

and responsive to the unique needs of each learner. 

2. Theoretical Background 

2.1. Social constructivism 

The emergence of social constructivism as a learning theory 

has been greatly influenced by the works of various 

researchers, namely Lev Vygotsky in 1934. Social 

constructivist learning theory emphasizes learners' 

autonomy, problem-solving, collaborative learning, and 

scaffolding [1], Vygotsky  aimed to transcend behaviorism, 

introducing additional elements that could enhance the 

process of knowledge assimilation. This evolution brought 

forth fresh insights into how individuals engage with their 

surroundings. Extending  Vygotsky 's ideas, Doise, Mugny, 

and Perret-Clermont (cited in Joshua and Dupin) [2] build 

upon this foundation, asserting that within sociocultural 

contexts, the interaction between two learners sparks 

sociocognitive conflicts, thereby fostering a potent avenue 

for effective knowledge acquisition. 

Social constructivism underscores the significance of the 

social aspect in learning, pointing out that knowledge is 

formed through interactions in problem-solving contexts. In 

this framework, teaching is aimed at steering students 

towards collaborative activities, providing them with 

chances to mold their understanding through the 

experiences of their peers and the resources present in their 

learning surroundings. 

Within the platform of social constructivism, learning 

unfolds through the collective efforts of a community of 

learners. This approach encourages learners to engage with 

the diverse human resources within the learning 

environment, including teachers, tutors, and fellow learners. 

Such interactions lead to sociocognitive conflicts that 

contribute to the development of the learner's psychological 

functions and the expansion of their zone of proximal 

development [3]. Consequently, knowledge acquisition 

becomes more efficient. 

At the core of the principles advocated by social 

constructivist scholars lies the acknowledgment of the 

inherently social essence of learning. Certain scholars have 

taken this notion a step further by emphasizing the 

dispersion of intelligence across individuals and their 

surroundings. However, recognizing that learning unfolds 

within a social framework is no longer adequate for 

guaranteeing profound learning achievements. The potential 

of group work to elevate the quality of learning could be 

compromised without a thorough evaluation of pivotal 

factors, which encompass: 

▪ Diverse learning styles 

▪ Methodology for forming groups. 

▪ Modes of interaction 

▪ Task characteristics 

Furthermore, effecting change in individuals' habits and 

conceptions presents a formidable challenge, thereby 

exacerbating the complexity of problem situations. 

Ultimately, the dominance of subjectivity during 

collaborative tasks over individual learning remains a 

persistent risk.  

2.2. Unsupervised machine learning for online education 

customization 

It is commonly understood that people learn in various 

methods. Authors in [4] (Khopiya) suggest that certain 

individuals prefer teaching, while others prefer self-directed 

learning. Therefore, Creating and adapting information to 

meet the requirements of diverse learners is crucial for 

optimizing and accelerating the procedure of learning. This 

is known as "personalizing" e-learning [5]. Personalization 

is a popular issue in e-learning. Adapting information to 

students' various electronic devices is crucial for 

maximizing and accelerating learning. E-learning 

customization involves two key tasks: categorization and 

suggestion. Classification attempts to divide the dataset into 

distinct classes based on certain parameters. 

Recommendation aims to optimize or enhance a 

performance measure by recommending a course of study 

based on the previously indicated categorization. 

Classification is an important stage in the e-learning 

customization process. The approach relies on grouping 

related points in a collection under one umbrella. This 

allows the system to produce better recommendations. 

There are several aspects.  

categorization is necessary for several purposes, including 

question/task categorization and the status of students 

classification [6]. E-learning customization includes 

recommendation as the second stage. This stage suggests the 

right course of action in accordance with the categorization 

findings. According to authors in [7], the recommended 

action aims to optimize customer pleasure and utility. These 

systems are utilized in several industries, including e-

commerce and public transit route planning. In e-learning, 

recommender systems play a key role in modifying course 

material by suggesting content suitable to interests of 

learners, stage of learning, and so forth, in [8] authors 

suggest categorizing material based on its prior 

categorization and users. 

Uncertainty about students' learning styles and participation 

prevents the implementation of supervised classification 
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methods. Hence, unsupervised machine learning methods 

must be used to group the students are divided into distinct 

groups. According to the author in [9], unsupervised 

machine learning involves inferring a function or pattern 

from unlabeled training data. The training data consists of 

inputs (x1, x2, …, xM) with no known outcomes. 

Unsupervised learning algorithms analyze training data to 

identify patterns and relationships. Grouping and clustering 

data points is an effective technique to make sense of them. 

Creating a limited collection of groups instead of 

randomized data points improves data understanding and 

organization. 

The word "clustering" is used instead of "classification" 

when points of data lack labels for specific classes. 

Unsupervised machine learning methods have recently been 

suggested in the literature for online education [10]. 

2.3. Clustering 

Clustering[11] is an unsupervised method [12], involving 

activities of segmenting data sets into similar clusters such 

that components in the same set are as similar and items in 

a separate cluster are as different as possible. It Clustering 

has a long and distinguished history in a diversity of 

systematic disciplines such as biology, medicine, 

anthropology, psychology, mathematics, computer science, 

psychology, and engineering. Clustering's major goal is to 

partition a dataset into several clusters so that data in one 

cluster have similar features while data in other clusters 

have distinct features from data in another cluster. Various 

types of similarity metrics could be used to identify classes, 

based on the data and the function, with the similarity 

measure controlling how the clusters are generated. The K-

means method [13] is the most popular and simple 

partitioning algorithm. The K-Means Algorithm[14] has 

numerous variations depending on centroid initiation, 

distance metrics, k mean reliability variants, and so on.  

2.4. K-means clustering algorithm 

The K-means clustering technique is a basic unsupervised 

learning system that solves the well-known clustering issue. 

The process uses a basic and straightforward approach to 

classify a given data set using a predetermined number of 

clusters (k clusters). The primary concept is to specify k 

centroids, one per every cluster. These centroids ought to be 

set in a strategic manner since various locations provide 

varied results. The ideal option is to arrange them as far 

apart as possible. The following step is to link each point in 

the data set at hand with its closest centroid. When no points 

are outstanding, the initial step is accomplished, and an early 

"grouping" occurs. At this point, we must recalculate K new 

centroids that serve as the barycenters for the clusters 

created in the preceding phase. Once there are those K new 

centroids, a fresh connection must be performed across the 

previous data set points and a nearby new centroid. A 

continuous sequence has been created. As the outcome of 

this loop, we can see the way the K centroids alter their 

position at each step until no further changes occur. In other 

words, centroids have no movement anymore. Algorithm 1 

demonstrates that. 

 

2.5. K-means methods 

On the other hand, its main drawback is that it asks for the 

number of clusters as a parameter to enter which breaks the 

problem of the most optimal number of clusters and in this 

its several metrics have been developed over time as the 

elbow method, The Cali´nski-Harabasz method, The 

silhouette method and the diversity method. 

2.5.1. The elbow method 

The elbow technique [15] looks at how much variance is 

described by clustering as a function of the amount of 

clusters k. If we plot the per cent of variation described 

versus k, first clusters will be able to clarify a large number 

of variances, however, the margin gain will decrease at 

some point, resulting in a graph with an "elbow." At this 

stage, the optimal k is chosen since adding more clusters 

would not improve the dataset's description of variance, 

albeit such an "elbow" cannot always be detected 

unambiguously [16]. We utilize a an altered modification of 

this method in this study, which plots the intra-cluster 

variation curve [17]: 

𝐸(𝐾) = ∑ 𝑊(𝐶𝑟)
𝑘
𝑟=1   (1) 

where W(Cr) is the variance within the r-th cluster Cr  

2.5.2. The Cali´nski-Harabasz method 

Milligan et al [18] assessed 30 unlike methods to estimate 

the number of clusters in a set, and found that the best 

performing method is given by Cali´nski and Harabasz [19]. 

𝐶𝐻(𝐾) =
𝐵(𝐾)/(𝐾−1)

𝑊(𝐾)(𝑛−𝐾)
          (2) 
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where B(k) is the inter-cluster alteration (i.e. the sum of 

squared distances for the k clusters), and W(k) is the 

intracluster variance. The predicted number of clusters is 

obtained by maximizing CH(k) versus various values of K. 

2.5.3. The silhouette method 

The silhouette approach was suggested by Rousseeuw et al 

[20], and its major goal is to determine whether an item (i) 

is well categorized in the cluster or not. The silhouette of 

each item or point (i) is measured in terms: 

𝑆(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max(𝑎(𝑖),𝑏(𝑖))
   (3) 

While a (i) is the average distance of item i to all the items 

in the same cluster and b(i) is its average distance to all the 

items in the near cluster. The i-th item is well-clustered if 

the value of S(i) approaches the maximum which is 1, while 

an S(i) value of 0 indicates that item (i) belongs to the other 

cluster. Subsequently plotting the silhouette score averaged 

over all the items in contradiction of dissimilar values of k, 

the right number of clusters is predictable to be the k 

yielding the maximum average silhouette score. 

2.5.4. The diversity method 

We use the output of the given clustering method (such as 

k-means) to identify the optimal number of clusters in a set 

of data within items, and then determine the difference 

between all the diversity of clusters and the sum of each 

cluster's local diversity of their members, defined by Q(k) 

and provided by 

𝑄(𝑘) = 𝐷𝑖𝑣𝐺 − ∑ 𝐷𝑖𝑣
𝐿
𝑟𝑘

𝑟=1  (4) 

where DivG is the global variety of k clusters (each cluster 

being a species), and DivL r is the localized diversity of the 

r-th cluster (each member item of the cluster being a 

species), as evaluated by Rao's quadratic probability 

(Equation) (4). For different values of k, i.e., for k from 1 to 

n, we compute the diversity-based statistic Q(k), and the 

highest amount of Q(k) should be able to determine us the 

ideal clusters in the dataset, i.e., 

𝑘 = 𝑎𝑟𝑔 max
1≤𝑘≤𝑛

𝑄(𝑘)   (5) 

This diversity method's basic concept is that efficient 

clustering, the items inside each cluster should be as 

homogenous as feasible (i.e., less local diversity), whereas 

the clusters themselves should be as varied as possible (i.e., 

more global diversity). A high degree of diversity across 

clusters implies a balancing of cluster sizes.    

It is worth noting that the 'elbow' method relies primarily on 

a graphical representation, leveraging human visual 

perception to detect the optimal number of data clusters by 

observing the transition point in the curve, resembling an 

elbow shape. Therefore, this method will not be addressed 

in this study. 

3. Proposed Approach 

In the given context, user models are repositories of 

individualized data, encompassing information such as the 

user's knowledge level, progress, age, occupation, and 

emotional state. While these details aren't directly utilized 

for system adaptation, they serve the purpose of 

categorizing users into stereotypes. These stereotypes, 

indicative of common user behaviors, enable the system to 

foresee and understand user actions more effectively. The 

organization of users into meaningful groups is facilitated 

through these stereotypes, proving particularly 

advantageous in the domain of learning multiple languages. 

To implement this organizational process, an unsupervised 

clustering algorithm, specifically the K-means algorithm, is 

integrated into the system's workflow. 

Figure 1 shows the proposed workflow of our method. The 

workflow begins by determining the number of clusters (k) 

to be formed. Following this, (k) entities are randomly 

chosen to act as initial cluster centers. The system then 

iteratively recomputes the clusters and adjusts the cluster 

centers. The distance between the remaining entities and the 

central cluster points is calculated, leading to the assignment 

of entities to the cluster represented by the nearest center. 

Clustering outcomes are generated based on this process. 

Subsequently, the system verifies the results. If the 

verification is successful, a decision is made. If not, the 

system checks whether the cluster centers have altered since 

the last iteration. If there is a change, the process returns to 

recomputing clusters. If there is no change, the system 

concludes. This iterative cycle ensures that the system 

continuously refines its understanding of user behaviors and 

adapts to any evolving patterns within the user data. 

In order to achieve better performance in our system, 

especially in the group creation phase, it is essential to select 

the optimal number of clusters for K-means. To accomplish 

this, we must utilize the most effective metric that yields the 

best results. In this article, we will take data for which we 

already know the number of clusters and analyze it using 

various metrics, namely diversity, CH (Caliński-Harabasz), 

and silhouette. The goal is to determine the metric that 

produces the best results. 
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Fig 1. The proposed approach workflow. 

 

4. Datasets used 

In this comprehensive research endeavor focused on 

clustering algorithms within Intelligent Tutoring Systems 

(ITS), a diverse selection of datasets has been meticulously 

curated to capture the complexity and variability inherent in 

educational contexts. The datasets selected for analysis 

encompass a range of characteristics and a predefined 

number of clusters (K), providing nuanced scenarios for 

evaluating the performance of clustering methodologies. 

The datasets presented in figure 2 under scrutiny are as 

follows: 

4.1. R15 Dataset 

The R15 dataset [11] encapsulates a rich spectrum of 

learning characteristics, simulating an environment with 

fifteen distinct clusters. Learners within each cluster exhibit 

diverse preferences, proficiency levels, and engagement 

patterns, providing a robust benchmark for evaluating the 

adaptability of clustering algorithms. This dataset serves as 

a foundational benchmark, offering a clear ground truth for 

optimal clustering scenarios. Its multifaceted nature enables 

the exploration of how clustering methodologies respond to 

varied learning attributes. 

4.2. Aggregation Dataset 

The Aggregation dataset [21] poses a unique challenge for 

clustering algorithms due to its intricate and non-uniform 

structure. Learners are grouped in a way that demands 

algorithms to discern subtle relationships and patterns 

within the data, mirroring the complex nature of real-world 

educational datasets. This dataset aims to assess the 

adaptability of clustering methodologies to scenarios where 

the underlying structure is not immediately apparent, 

providing insights into the algorithms' capability to uncover 

intricate learning patterns. 

4.3. D31 Dataset 

  The D31 dataset [22] is characterized by thirty-one 

clusters, presenting a diverse range of proficiency levels and 

learning attributes. This dataset emulates scenarios where 

learners exhibit a wide spectrum of skills and knowledge, 

enabling a nuanced exploration of optimal cluster 

configurations. With a multitude of clusters, this dataset 

facilitates an examination of clustering performance in 

scenarios where learners vary significantly in their learning 

attributes, contributing to the understanding of diverse 

educational settings. 

4.4. Pathbased Dataset 

 The Pathbased dataset [11] is designed to challenge 

clustering algorithms by featuring intricate learning paths. 

Learners within this dataset follow non-linear trajectories, 

introducing complexities that test the adaptability of 

clustering methodologies to unconventional learning 

structures. This dataset offers insights into how clustering 

algorithms respond to learners with diverse and non-linear 

learning trajectories, reflecting real-world scenarios where 
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students may follow unique educational paths. 

4.5. Jain Dataset 

The Jain dataset [11] presents specific challenges to 

clustering algorithms due to its distinctive characteristics. It 

requires algorithms to adapt to scenarios where traditional 

approaches may face limitations, emphasizing the need for 

adaptability to unique learning contexts. This dataset 

contributes to understanding the nuanced interplay between 

algorithmic adaptability and specific learning attributes, 

shedding light on scenarios where conventional methods 

may encounter challenges. 

4.6. Spiral Dataset: 

The Spiral dataset [22] introduces a unique structure, where 

learners exhibit interconnected and non-linear learning 

patterns resembling a spiral. This dataset aims to explore 

how clustering methodologies  

respond to scenarios with unconventional learning 

structures. By challenging algorithms with a spiral structure, 

this dataset provides insights into the adaptability of 

clustering methodologies to complex and interconnected 

learning scenarios, contributing to a more holistic 

understanding of educational contexts. 

Each dataset has been meticulously chosen to encapsulate 

diverse educational scenarios, ensuring a comprehensive 

evaluation of clustering methodologies within the context of 

Intelligent Tutoring Systems. The subsequent sections will 

delve into a detailed analysis of each dataset, unraveling the 

intricacies and insights gained from the application of 

clustering algorithms in these rich learning environments. 

 

 

Fig 2 Datasets used 

5. Results and discussion 

The extensive analysis of clustering results across diverse 

datasets provides valuable insights into the performance and 

behavior of clustering algorithms under different conditions. 

The evaluation metrics employed, including the Caliński-

Harabasz (CH) Index, Silhouette Score, and Diversity 

Index, offer a comprehensive understanding of the 

effectiveness and limitations of the clustering processes; 

assess the optimal number of clusters using various 

methods. Ultimately, we color the obtained results, labeling 

them as correct in green, false in red, and close estimations 

in orange, in the following results (Table 1).  

 

Table 2. Comparative Analysis of Clustering Performance Metrics Across Diverse Datasets 
  

CH Silhouette Diversity 

DataSet k* k 
Error=(k-

k*)/k* 
k 

Error=(k-

k*)/k* 
k 

Error=(k-

k*)/k* 

R15 15 15 0% 14 -7% 14 -7% 

Aggregation 6 29 383% 4 -33% 7 17% 

D31 31 34 10% 33 6% 31 0% 

Pathbased 3 30 900% 3 0% 2 -33% 

Jain 2 17 750% 7 250% 2 0% 

Spiral 3 30 900% 30 900% 3 0% 

AVERAGE 

of the Error 
    491%   199%   9% 
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The error term, expressed as Error = (k - k^*)/k*, serves as 

a metric for evaluating the performance of clustering 

algorithms. Here, k represents the number of clusters 

determined by the algorithm, and (k*) denotes the pre-

defined or ground truth number of clusters in the dataset. 

The error calculation involves subtracting the actual number 

of clusters (k) from the pre-defined number (k*), dividing 

this difference by the pre-defined number (k*), and finally 

expressing this as a fraction. 

The resulting error metric provides valuable insights into the 

alignment between the algorithm's output and the actual 

structure of the dataset. A lower error indicates a closer 

match between the algorithmic clustering and the pre-

defined clusters, signifying higher accuracy. Conversely, a 

higher error suggests a divergence from the ground truth, 

indicating potential challenges or limitations in the 

algorithm's performance in accurately determining the 

optimal number of clusters. This error term serves as a 

quantitative measure to assess the effectiveness of clustering 

algorithms in capturing the inherent structure of the data, 

guiding the quest for optimal cluster configurations. 

Beginning with the R15 dataset, both the CH Index and 

Silhouette Score align optimally with the ground truth (k) of 

15, demonstrating a remarkable consistency and accuracy in 

capturing the underlying patterns within the data. This 

dataset serves as a benchmark for an ideal clustering 

scenario. 

Contrastingly, the Aggregation dataset poses challenges, 

especially evident in the substantial errors reflected by both 

the CH Index and Silhouette Score. The large error 

percentages suggest a considerable divergence from the 

ground truth, emphasizing the sensitivity of the algorithm to 

the intrinsic complexity and structure of the data. The 

Diversity Index, however, provides a contrasting 

perspective, indicating a moderate discrepancy. This 

discrepancy may indicate a nuanced aspect of diversity that 

the other metrics might not fully capture. 

Moving to the D31 dataset, the clustering performance is 

notably stable, with relatively low errors in both the CH 

Index and Silhouette Score. The minimal error percentages 

suggest a commendable alignment with the ground truth, 

emphasizing the algorithm's ability to discern underlying 

patterns in datasets of varying complexity. 

In the case of the Pathbased dataset, the CH Index reflects a 

substantial error, indicating challenges in capturing the 

inherent structure. However, the Silhouette Score, which is 

optimal at (k= 3), highlights a robust performance in terms 

of individual cluster quality. This discrepancy underscores 

the importance of considering multiple metrics to gain a 

holistic understanding of clustering outcomes. 

The Jain dataset presents a scenario where both the CH 

Index and Silhouette Score exhibit considerable errors, 

suggesting challenges in accurately representing the 

underlying structure. The Diversity Index, on the other 

hand, shows no error, indicating a perfect match with the 

optimal clustering. This raises questions about the 

interpretation of diversity and the trade-offs between 

different metrics. 

The Spiral dataset introduces an interesting dynamic where 

the CH Index indicates a substantial error, while the 

Silhouette Score suggests optimal clustering at a value 

significantly different from (k). This scenario highlights the 

importance of careful metric selection, as different metrics 

may capture distinct aspects of clustering quality. 

The averaged errors across datasets serve as a crucial 

summary, emphasizing the variability in performance 

metrics across different datasets. The high average error for 

the CH Index underlines the challenges in achieving 

consistent performance. The Silhouette Score, with a lower 

but still significant average error, reflects the algorithm's 

sensitivity to variations in the optimal number of clusters. In 

contrast, the Diversity Index maintains a relatively low 

average error, signifying a more consistent performance in 

capturing the diversity of clusters. 

The diversity, silhouette, and Calinski-Harabasz methods 

were employed to evaluate the clustering performance, as 

illustrated in Figures 2, 3, and 4, respectively, as depicted in 

the appended index. Figure 2 showcases the outcomes of the 

Diversity method, providing insights into the variability of 

learning attributes within the formed clusters. Meanwhile, 

Figure 3 delineates the results of the Silhouette method, 

offering a visual representation of the quality and cohesion 

of individual clusters. Lastly, Figure 4 illustrates the outputs 

of the Calinski-Harabasz method, presenting a comparative 

analysis of the separation and compactness of clusters 

across diverse datasets. These figures collectively contribute 

to a comprehensive understanding of the effectiveness and 

adaptability of clustering algorithms within the context of 

Intelligent Tutoring Systems. 

6. Conclusion 

In conclusion, this research offers a thorough exploration 

and analysis of clustering algorithms within the realm of 

Intelligent Tutoring Systems (ITS). The study delves into 

the adaptability and efficacy of these algorithms across 

diverse educational datasets, shedding light on their ability 

to form meaningful learner groups. Utilizing three key 

metrics—Caliński-Harabasz Index, Silhouette Score, and 

Diversity Index—the research meticulously evaluates the 

clustering outcomes across various datasets with pre-

defined and varying cluster structures. 

The findings from this study highlight the nuanced interplay 

between algorithmic performance and dataset 

characteristics. Datasets with pre-defined cluster structures, 

such as R15 and D31, provide a benchmark for assessing the 
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accuracy of clustering algorithms. The presented metrics, 

visualized in Figures 3, 4, and 5, offer a comprehensive 

understanding of the quality, cohesion, and diversity within 

the formed clusters. 

Through this exploration, the research not only contributes 

valuable insights into the optimal configurations of 

clustering algorithms for educational adaptability but also 

addresses the broader implications for the design and 

implementation of ITS. The outcomes serve as a guide for 

educators, instructional designers, and system developers 

seeking to enhance the efficacy of adaptive learning 

platforms. By understanding the strengths and limitations of 

clustering methodologies, we pave the way for the 

continued evolution of intelligent tutoring systems, 

fostering personalized and responsive learning 

environments for diverse learners. 

6.1.  Appendix

 

Fig 3. Result of the Diversity method 

 

Fig 4. Results of the sillouhette method 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1842–1851 |  1850 

 

Fig 5. Result of the calinski harabaz method 
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