

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1878

Optimizing Adversarial Attacks on Graph Neural Networks via Honey

Badger Energy Valley Optimization

Mr. Ganesh Ingle *1, Dr. Sanjesh Pawale 2

Submitted: 27/01/2024 Revised: 05/03/2024 Accepted: 13/03/2024

Abstract: In recent years, Graph Neural Networks (GNN) has gained considerable attention due to the practical importance of graph

structure data in graph representation learning. It is most commonly utilized in fraud detection, privacy-inference attacks, completion of

knowledge graphs, item recommendation, and so on. The GNN is highly vulnerable to adversarial attacks, which affect the reliability of

the system, reduce the accuracy of prediction on test data, and increase the loss function of training data. However, the existing approaches

utilized to reduce the impacts of adversarial attacks on GNN focus only on highly linked training process. Thus, a GNN_Attacker model

is designed in this research for the generation of adversarial attacks in GNN. The binary image is allowed for graph construction and the

adversarial attacks are generated in the constructed graph using GNN. Here, the Energy Honey Badger Optimization (EHBO) is introduced

for the generation of training samples and GNN is again utilized for testing the generated adversarial attacks. Moreover, the adversarial

attack generation performance of GNN_Attacker is validated. It demonstrates that the GNN_Attacker attained superior performance with

maximum visual similarity, classification accuracy, and attack success rate of 90.77%, 94.68%, and 96.54% respectively.

Keywords: Energy valley optimization, Honey Badger Optimization Algorithm, Graph Neural Network, Energy Honey Badger

Optimization

1. Introduction

Graphs are considered as a data structure used for general

purposes that comprises entities represented by edges and

nodes. In recent years, graph-based machine learning

techniques have been widely utilized in different

applications, like graph classification, community

detection, link prediction, and semi-supervised learning

[19][8]. The relation among the complex systems and

entities is characterized by the effective representation of

graph structure. The real-world complex applications of

graph theory in technical, semantic, biological, and social

networks have been analysed by many researchers based

on network theory over the past several decades. The area

of graph data mining has gained huge attention among

researchers due to the generation of huge volumes of

graph data via graph representation and real-world

networked systems of independent samples. Moreover,

more efforts are given to focus on link prediction utilized

for the detection of spurious links as well as uncovering

missing links by using intrinsic structural features of the

graphs. The performance of knowledge-related tasks is

increased by using link prediction in various applications

[20][3]. The increasing growth of graph-based machine

learning techniques, such as graph-based approaches and

other machine learning approaches makes the models

vulnerable to adversarial attacks [18][8]. It is necessary to

simulate adversarial attacks by learning and assessing the

vulnerability and stability of the models in certain cases

of deploying the models in a social network environment.

The main goal of generating adversarial attacks in graphs

is to perform various learning tasks [8].

The modified node embeddings are highly influenced by

the adversarial perturbations on raw local data, which

creates threats to the server model by making false

decisions [2]. GNN and other related modifications are

becoming mainstream approaches that gained significant

attention among researchers. The GNN is used to

understand the representation of graphs in various fields,

like graph generation, combinatorial optimization,

knowledge mapping, natural science research, computer

vision, and natural language processing [17][1]. The wide

application of GNN encountered different security issues,

where incorrect predictions may occur due to imposed

slight deliberate perturbations in the GNN model [24][25].

Advanced learning models like graph convolution are

generally utilized by GNN as compared with other

conventional models for the extraction of latent

information from neighbours of node and to record high

performance while performing downstream tasks that

includes node classification. The GNN’s deep learning

nature makes them highly vulnerable to the generation of

adversarial attacks. The GNN is applied to security-

critical tasks due to the potential increase of security

concerns of the model and their reasoning capability as

well as powerful learning ability. Generally, adversarial

1 Department of Computer Engineering, Vishwakarma University, Pune

ORCID ID: 0000-0001-5628-0388
2 Department of Computer Engineering, Vishwakarma University, Pune

ORCID ID: 0009-0006-7556-2528

* Corresponding Author Email: ganesh.ingle-308@vupune.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1879

attacks on graph data are categorized into two distinct

types, such as structural perturbation-based techniques

and attribute perturbation-based techniques. The attribute

perturbation-based attacks techniques misclassify the

GNN by perturbing the attributes of edges or nodes to

follow the adversarial attacks on images [16][4].

The relational knowledge of nodes is highly utilized by

graph-based methods to effectively change the structure

of a graph while performing graph tasks by attacking

conventional graph-based methods [15][4]. The reasoning

or training efforts of GNN are highly deteriorated due to

changes that occur in the network topology. Thus, the

paradigm of structural perturbation-based attacks is

prompted by a large number of studies [14]. Moreover, the

perturbations are adopted to increase the robustness of the

model during the process of adversarial training. The

graph embeddings are effectively performed by using the

GNN-based adversarial training approaches. Similarly, a

robust graph representation learning approach is designed

directly to effectively generate adversarial attacks [26].

The Regional Graph Convolutional Neural Network (R-

GCN) is used for the creation of adversarial attacks

directly, which also effectively reduces the various

negative impacts that occur due to adversarial attacks

[27]. In addition, various databases are utilized to perform

adversarial training to obtain highly robust models as

compared with the existing models [5]. The majority of

traditional adversarial attack generation approaches

utilize query limitations while generating graph-based

adversarial attacks. The graph classification carried out by

executing adversarial attacks generally train the attacking

agents by accessing a portion of the test set, require high

computational time, and requires to query the target model

[8]. Hybrid optimization algorithms are also employed to

fine-tune the models while providing solutions to various

adversarial attacks on graph classification.

This research presents a GNN_Attacker model for

adversarial attack generation in GNN. The graph is

constructed from the input binary image taken from the

database initially. Afterward, the generation of adversarial

attacks is performed on the constructed graph by using

GNN. Moreover, the newly designed algorithm approach,

EHBO is used for the generation of training samples by

considering fitness functions, such as visual similarity and

classification accuracy. The generated training samples

are utilized to fine-tune the GNN model. Also, the

generated adversarial attacks are tested again by using

GNN.

The main research contribution is,

• Designed GNN_Attacker for adversarial attack

generation: The GNN_Attacker is designed for the

generation of adversarial attacks in GNN. The

training of GNN is performed by using the EHBO

approach based on fitness functions, like visual

similarity and classification accuracy. The EHBO is

designed by integrating Energy Valley Optimization

(EVO) and Honey Badger Optimization Algorithm

(HBA) approaches.

The article is arranged as, the analysis of traditional attack

generation approaches is elucidated in section 2, and

section 3 explicates the adversarial attack generation

performance of GNN_Attacker. Moreover, section 4

portrays the validation of experimental outcomes with

discussions and the article is concluded in section 5.

2. Motivation

The GNN has gained huge attention in various research

areas, like traffic, social networking, and e-commerce that

performs link prediction, node classification, and so on

with high performance. As compared with other networks,

the GNN is highly susceptible to adversarial attacks that

severely influence the practical application of GNN. The

prevailing techniques used for the generation of

adversarial attacks in GNN were not successful in

updating the graph which also affects the robustness of the

model. Hence, a GNN_Attacker is introduced for the

adversarial attack generation in GNN.

2.1. Literature Survey

Wu, Y., et al. [1] designed Parattack model Training for

the creation of adversarial attacks against graph data. This

model significantly detected model training parameters

before and after the generation of the attack. It effectively

verified the hypothesis of parameter discrepancy

rationality and achieved high accuracy, but it failed to

differentiate various attack directions by analyzing the

parameters. Chen, J., et al. [2] developed Graph-Fraudster

for the creation of adversarial attacks by embedding noise-

added global nodes. It generated attacks by stealing the

embeddings of the global node and creating the server's

shallow model. This technique recorded very low network

complexity, but it encountered severe leakage of

information while generating adversarial attacks in GNN.

Xian, X., et al. [3] established Deep Ensemble Coding

(DeepEC) for the creation of adversarial examples by

utilizing a structure enhancement mechanism. In this

model, an evolutionary perturbation-based link selection

mechanism was presented to demonstrate the performance

of adversarial attack generation. It recorded very low

execution time during the generation of adversarial

attacks. However, due to the absence of structure

estimation of input data malicious tasks were also

generated in this model. Zhang, C., et al. [4] introduced a

Saturation adversarial Attack with Meta-gradient (SAM)

to obtain the necessary information on the gradient by

considering structural perturbations of the graph. The

attack efficiency of the model was effectively improved

by flipping multiple edges of the determined meta-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1880

gradients in one query. This model determined query-

based poisoning attacks and possessed high pooling

capacity during the generation of global attacks against

graph node classification. However, it was not successful

in analyzing the stealthiness of adversarial attacks in

GNN.

Qiao, Z., et al. [5] designed a Graph transformation

mechanism for the transformation of the graph. This

approach was highly suitable for the generation of

adversarial attacks under four transformation forms to

optimize the defense flow against the attacks on graph

data. It effectively covered the defense effectiveness of

the model under less computational time. However,

because of excessive transformation, the model recorded

high damage to the harmless structures. Wu, X.G., et al.

[28] developed Calibrated Co-training (C2oG) to identify

the effects of adversarial perturbations. The structure

information as well as feature information was effectively

integrated to design the C2oG model. This model was

simple to implement and effectively increased its

robustness against adversarial attacks, but the model

suffered from high computational complexity issues

during the defense against adversarial attacks. Alarab, I.

and Prakoonwit, S., [7] introduced Monte-Carlo based on

Adversarial Attacks (MC-AA) to capture the uncertainty

of the model by using the adversarial attack idea. It

effectively classified binary nodes by estimating the

uncertainties and examined the viability of the model.

This model significantly captured the wrong labels in

overlapping regions, but it failed in multiclass node

classification. Wan, X., et al. [8] established a Bayesian

optimization-based attack method for the classification of

graph models. It linked the vulnerability of graph-based

machine learning models by analyzing the generated

adversarial examples. It effectively solved the

vulnerabilities of graph classification systems that largely

outweigh the risks. However, it failed to utilize various

mainstream victim models to verify the robustness of the

model while generating adversarial examples. Ganesh

Ingle, et.al. [6,12,13] explores the optimal masking ratio

presents a significant research gap, as understanding the

precise balance between model accuracy and robustness

against adversarial attacks remains unresolved. Further

investigation into detailed masking ratios and the creation

of adaptive masking strategies, which adjust according to

a model's exposure to adversarial threats, is crucial.

Additionally, the effectiveness of novel adversarial attack

strategies highlights the potential shortcomings of

existing Graph Neural Network (GNN) defense

mechanisms. There's a clear necessity for the

development of adaptive defense strategies that can

dynamically evolve in response to the continually

changing nature of adversarial attacks, particularly

leveraging internal model insights like Class Activation

Mapping (CAM). Moreover, the successful application of

Input Adversarial Training (IAT) in controlled

experiments prompts the need for research into its

deployment in real-world power quality management

systems. The scalability, efficiency, and real-time

processing capabilities of IAT in environments with

highly variable data and operational conditions represent

pivotal areas for future exploration. These gaps

underscore the ongoing need for advancements in

defensive techniques to secure neural network models

against sophisticated adversarial threats. Ingle, G.B., et.al.

[21] delve into the practical implications of adversarial

attacks and defenses across various applications, from

image recognition and autonomous vehicles to

cybersecurity and fraud detection. These discussions

highlight the real-world significance of improving model

resilience, emphasizing the need for ongoing research and

development in adversarial machine learning.

2.2. Challenges

The limitations encountered by classical adversarial attack

detection techniques are demonstrated below,

• The Parattack model used in [1] effectively resisted

adversarial attacks presented in various real-time

applications, but the model only recorded fuzzy

attack directions and deviations from the correct

attack direction due to the optimization of different

parameters.

• The Graph-Fraudster developed in [2] was highly

robust in the generation of attacks. However, this

model failed to consider node features for

perturbation and was not successful to reduce the

impact of data imbalance of attacks.

• The DeepEC used in [3] achieved high

computational efficiency during adversarial attack

generation. However, the generalization of link

prediction models was affected because the

corrupted version of inputs and the adversarial

examples generated by different attacks were not

incorporated into the design process.

• The SAM model employed in [4] increased the

performance of iterative attacks more significantly,

but it failed to quantify and utilize the black-box

setting to learn the vulnerability of GNN to

adversarial attacks.

• The traditional adversarial attack generation

techniques extracted latent information from

neighboring nodes and achieved good performance

on various downstream tasks. However, it failed to

apply attacks to the attributed graphs that involve

features associated with edges or nodes. It also

focused only on determining the node classification

performance of the model and posed severe impacts

on the security of the model

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1881

3. Designed GNN_Attacker for the Generation of

Adversarial Attacks

In this manuscript, a GNN_Attacker is developed for the

generation of adversarial attacks in GNN. The binary

image acquired from the database is initially allowed for

the construction of images into graphs. Then, the

adversarial attacks are generated in graphs by using GNN

[9], where the training samples are generated using EHBO

by considering fitness functions, like similarity and

classification accuracy. Here, the EHBO is generated by

the incorporation of EVO [11] and HBA [10]. In addition,

the testing of generated adversarial attacks is performed

by using GNN. Figure 1 displays the block diagram of the

designed GNN_Attacker for the generation of adversarial

attacks in GNN.

3.1 Image Acquisition

The input image taken for the generation of adversarial

attacks from the database is initially given by the

expression designated as,

 RI AAAAAA ,...,,..,,, 321=

 (1)

here, the total number of images available in the database

is symbolized as R , the database considered for the

generation of adversarial attacks is represented as A , and

the
thI image taken for adversarial attack generation is

signified as IA .

3.2 Construction of Image to Graph

A graph is a non-linear structure that comprises edges and

vertices, where the vertices are termed nodes and edges

are lines that interconnect two nodes. The image-to-graph

construction is performed by initially allowing the two-

dimensional (2D) input image IA into the form of the

matrix. The pixel values “0” and “1” are provided to each

cell of the matrix and its corresponding nodes are plotted.

The edges are constructed, if the value of one node is the

same as the other, thus constructing the corresponding

graph of the input image IA . For example, the conversion

of the input image IA into matrix format is displayed in

figure 2, and pixel values “0” and “1” are given to each

cell of the matrix.

Fig. 1. Block diagram of designed GNN_Attacker for the generation of adversarial attacks in GNN.

Testing Traini

ng

Input

image

Image to

graph

GENERATI

ON OF

ADVERSAR

IAL

ATTACKS

Graph Neural

Network (GNN)

GENERATION OF

TRAINING

SAMPLES

Designed Energy

Honey Badger

Optimization

(EHBO)

Energy Valley

Optimization

(EVO)

Honey Badger

Algorithm

(HBA)

FITNESS

Visual

similarity

Classification

accuracy

Adversari

al graph

Image

output

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1882

Fig. 2. Matrix representation of input image

Moreover, the node  JaN a ,...,3,2,1; = is assigned to

each cell of the given matrix and is displayed in figure 3.

Fig 3. Assignment of node to each cell

Finally, the graph is constructed by creating connections

between the nodes by using edges. If the adjacent pixels

have a non-zero value, then an edge is considered to exist

between them. For example, the pixel value of 2N “1” is

the same as the pixel value of 3N “1” in the matrix i.e.

32 NN = , then the edge is constructed between the node

2N and 3N and is given by 132 =NN . Moreover, if the

pixel values are not equal to unity, then no edge exist

between them. For example, the pixel value of 1N is “0”

and the pixel value of 2N is “1”, then no edge exist

between them i.e. 21 NN  , which is given by

021 =NN . Similarly, the edge is constructed for all

nodes with pixel values. The graph construction

performed between nodes is displayed in figure 4 and the

graph constructed is further fed into GNN for the

generation of adversarial attacks.

Fig 4. Construction of graph from the input image

3.3 GNN Architecture

The GNN model [9] is the extension of random walk

models as well as recursive neural networks. The GNN

can effectively process different general class of graphs

that involves undirected, directed, and cyclic graphs it

becomes an extension of recursive neural networks, and

also effectively handle the node-focused application. In

general, GNN is based on an information diffusion

Input image,

IA

0 1 1

0 0 0

0 0 1

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1883

mechanism, where a set of units is used to process the

graph and each unit corresponds to the node of the graph

that is linked based on graph connectivity. Until reaching

a stable equilibrium, the units constantly modify their

state and transfer information. At each node, the output of

GNN is estimated by considering the unit state.

In GNN, the graph node indicates the concepts or objects,

and the relationship signifies the edges of the graph, where

the related concepts and their features are used to define

each concept. Thus, a state
m

i Ra  is attached to each

node i by considering the information available in the

neighbourhood i . The output iG is obtained to decide on

the concept by representing the concept i of state ia . Let

us consider a local transition function cR and local output

function cQ for describing the generation of output. Then,

the expression of ia and iG is given by,

 NESici LaLLRa ,,,=

 (2)

 iici LaQG ,=

 (3)

where, the labels of states, edges, and the labels of i is

signified as ,, ES aL and iL , the label of nodes in the

neighbourhood i is represented as NL .

Let us consider the vectors ,,, LGa that NL are

generated by stacking the states, outputs, labels, and labels

of nodes. Thus, the equation (2) and (3) can be rewritten

using the expression given by,

 Lara c ,=

 (4)

 Nci LaqG ,=

 (5)

here, the stacked version of N instances of cR and cQ

for the global transition function is signified as cr and the

global output function is denoted as cq . The expressions

(4) and (5) are used to represent a map that utilizes graph

input and provides output iG for each node. Thus, Banach

fixed point theorem [29] provides unique solutions for the

equations by considering cR as a contraction map

concerning state, i.e. 10,   . It is given by

baLbRLaR cc −− ),(),(for any ba, . Here,

the vertical norm is represented as . . Therefore, the

contraction map cR is considered for the moment in GNN

and the transition function is implemented appropriately

to enforce this property.

The equations (2) and (3) are used to process both

positional as well as non-positional graphs. The position

of the neighbours is received by cR as extra inputs in

positional graphs, which can quickly record the

information available in ,, EE La and NL sort based on

the position of neighbours. Moreover, the information is

padded properly using the special position of null values

corresponding to nonexistent neighbours. For example,

 FE bbbba ,...,,, 321= , here F indicates the

maximum number of neighbours in the node. If m is the

neighbour of
thn neighbour of i is mn ab = and if the

thn

neighbour is not available i.e. for the pre-defined null state

0a is 0abn = . Moreover, the function cR of equation (2)

can be replaced for a nonpositional graph by using the

expression,

() 


=
Nm

mmmiici LaLLga ,,, , (6)

here, the parametric function is represented as cg and the

nonpositional form of the graph is referred in equation (2)

and equation (3), where the positional form is given in

equation (6). Thus, the graph output IO with the

generated adversarial attack is obtained from GNN when

the constructed graph is fed into the GNN structure. Thus,

the resultant constructed graph output generated by GNN

with adversarial attacks is elucidated in figure 5.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1884

Fig 5. Generation of adversarial attacks using GNN

The adversarial output image is finally obtained from the

resultant generated adversarial attack graph by giving

pixel values “0” and “1” to each cell of the matrix. The

pixel value of “1” is provided for each node with

constructed edges and the pixel value of “0” is given to

nodes, if the edges are not constructed. Thus, the

adversarial output image AI is obtained and figure 6

depicts the adversarial output image obtained from the

generated adversarial attack graph.

Fig 6. Generation of adversarial image

Generation of Training Samples

The training samples are generated by using the EHBO

algorithm together by encoding solution and determining

fitness function, where the process performed is

enumerated below,

Solution Encoding

The solution encoding is performed by selecting optimal

solutions randomly to accomplish the task. The optimal

solution is determined by encoding training samples along

the edges for different nodes 1N to 9N , where the

representation of solution encoding is given in figure 7.

Fig 7. Encoding of training samples

Fitness Estimation

The fitness function is estimated using the expression

formulated as,


=








 +
=

I

S

functionFitness
1 2


 (7)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1885

here, the total training is represented as I , indicates

visual similarity, and  denotes classification accuracy.

-Visual similarity (): It is defined as the similarity

among the visual characteristics of input and output

images.

-Classification accuracy (): The classification

accuracy is used for the determination of corrected edges,

where it is the relationship among the original and

targeted image output determined by GNN. The

classification accuracy is formulated as,

4321

21






+++

+
=

 (8)

where, the term 1 and 2 represents true positive and

true negative, 3 and 4 denotes false positive and false

negative.

3.4 Designed EHBO Model for the Generation of

Training Samples

The training samples used for the training of

GNN_Attacker are generated by using EHBO algorithmic

technique. The algorithmic approaches EVO [11] and

HBA [10] are integrated to form the design EHBO

approach. The advanced principles of physics under

different modes as well as particle decay stability are

considered for designing EVO. In general, the EVO

converges quickly and it helps to identify the solution with

the lowest possible objective function. Similarly, HBA is

designed by considering the different inspecting

characteristics of honey badger animals during the

location of food. The honey badger is a mammal with

black and white furs that are commonly found in tropical

rainforests of Africa and is well capable of climbing trees

for food. The honey badger uses digging and honey phases

for catching its prey and to locate beehive, whereas in the

honey phase it follows the honeyguide birds to reach the

beehive. Moreover, in the digging phase, it performs

actions that are similar to the Cardioid shape. The EVO

acts as an approximation algorithm and was not successful

in providing accurate solutions. Hence, the HBA is

incorporated with EVO for the determination of the exact

solution, and the mathematical modelling of EHBO is

designated as follows,

Step 1: Initialization: The solution is randomly initialized

in the search space and is designated as,

},,,,,{ 21 YV IIIII = (9)

here, the total number of solutions presented in the search

space is indicated as Y , and VI signifies the
thV

candidate in the random search space.

Step 2: Estimation of fitness: The optimal solution is

determined using the expression given in equation (7).

Step 3: Stability of search space: In the search space, the

different stability level particles are considered during the

initialization of the candidate solution and are designated

as,

()




=

=
−+=

Xg

Yu
HHRHH g

u

g

u

g

u

g

u
,...,2,1

,...,2,1
,. min,max,min,

 (10)

Where,the problem dimension is signified as X , Y

indicates total particles in the universe,
g

uH denotes the

determination of the initial position of
thu iteration of

thg dimensional variable,
g

uH min, and
g

uH max,

symbolizes lower and upper bound, and R indicates the

random number that is set to range [0,1].

Step 4: Enrichment of particle: The particle enrichment

bound is determined by considering the difference

between neutron-poor and neutron-rich particles. The
rays are emitted to increase the stability of products by

considering physical principles. Moreover, the best level

of stability is substituted in rays to remove the decision

variable of the candidate solution and is expressed as,

 () 




=

=
=

.

,...,2,1
,

IIAlphaindexg

Yu
HHHH g

uBSu

N

u

 (11)

here,
N

uH represents the particles generated newly, uH

denotes the current vector position of the particle, BSH

indicates the best stability level of particles, and

IIAlphaindex signifies the emitted  rays. Similarly,

the gamma index is considered to enhance the stability

level of particles. Thus, the second candidate solution is

designated as,

() 




=

=
=

.

,...,2,1
,2

IIindexGammag

Yu
HHHH g

uNPu

N

u

 (12)

Where, NPH denotes the position vector of the

neighbouring particle.

Step 5: Beta decay: The unstable particles perform beta

decay and the particle position is modified, if the particle

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1886

level of stability is lower than the stability bound, which

is expressed as,

()
Yu

LS

HJHJ
HH

u

PCBS
u

N

u ,...,2,1,211 =
−

+=

 (13)

Here, BSH signifies the vector position of the particle

with best stability level, PCH indicates the vector position

of centre of particles, the stability level is represented as

uLS , and 1J and 2J are random numbers fixed at [0,1].

Step 6: Exploitation and exploration level: The position

of the algorithm's exploration and exploitation levels are

increased by modifying the particle's position using beta

decay and is given by,

() YuHJHJHH NPBSu

N

u ,...,2,1,43

2 =−+=

 (14)

where, the random numbers are signified as 3J and 4J ,

which is fixed to [0,1].

Let us consider,)1(2 += gHH u

N

u and)(gHH uu = .

Thus, the equation (14) becomes,

()NPBSuu HJHJgHgH −+=+ 43)()1(

 (15)

The HBA [11] is incorporated with EVO [10] for the

determination of the exact solution from the search space.

From HBA,

IPN DKfUWW += 7

 (16)

here, the updated position of the honey badger is indicated

as NW , the prey location is represented as PW , the

direction of search space is altered using flag signified as

U , and the information of search distance is denoted as

ID . Also, at varying times the influenced search

behaviour is given as K , and f is the random number

among 0 and 1 which is computed using the expression

designated as,

sPI WWD −=

 (17)

Moreover, the direction of search spaceU and search

behavior K is determined using the expression given by,





−


=

else

Jif
U

1

5.01 6
 and 









 −
=

max

exp
u

u
PK

 (18)

here, 6J denotes random number among 0 and 1, the

maximum iteration is signified as maxu and P denotes

the constant term which is  1.

Applying equation (17) in equation (16),

 sPPN WWKfUWW −+= 7 (19)

Let us consider,)1(+= gHW uN ,)(gHW us = , and

)(gHW PP = and the equation (18) becomes,

 )()()()1(7 gHgHKfUgHgH uPPu −+=+

 (20)

 )(1)()1(77 gHKfUKfUgHgH uPu −+=+

 (21)

 
()KfU

gHKfUgH
gH uP

u


+−+
=

7

7)1(1)(
)(

 (22)

Substituting equation (21) in equation (15),

 
()

()NPBS
uP

u HJHJ
KfU

gHKfUgH
gH −+











+−+
=+ 43

7

7)1(1)(
)1(

 (23)

()
  ()()

()KfU

KfUHJHJKfUgH

KfU

gH
gH NPBSPu

u


−++
=



+
++

7

7437

7

1)()1(
)1(

 (24)

()
()

  ()()
()KfU

KfUHJHJKfUgH

KfU

KfUgH NPBSPu



−++
=



+

7

7437

7

7 1)()1(

 (25)

Thus, the updated equation of EHBO is designated as,

  ()()
()KfU

KfUHJHJKfUgH
gH NPBSP

u


−++
=+

7

74371)(
)1(

 (26)

Step 7: Random movement: A random movement is

performed by the particle if it attains a low enrichment

level and the particle undergoes positron emission or

capture electron to move along the stability band. The

executed random movement along the search space is

expressed as,

YuJHH u

N

u ,...,2,1,2 =+=

 (27)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1887

here, J signifies the random number and is set to [0,1].

Step 8: Check for solution feasibility: The expression of

fitness function given in equation (8) is used to compute

the optimal solution and if any solution is determined to

be more efficient than the present one then the solution

can be replaced.

Step 9: Termination: The algorithmic steps given in table

1 are continuously executed until reaching the highest

iteration with the optimal solution.

Table 1. Pseudo code of EHBO

SI.No Pseudo code of EHBO

1 Input: Iteration, u

2 Output: Optimal best solution uH

3 begin

4 Identify the solution candidate's initial position

6 Determine fitness function by using equation (7)

7 for Yu :1=

8 Evaluate the particle's level of stability

9 Evaluate the particle's neutron enrichment level

10 if BSLS u 

11 Create alpha index I and II

12 for IIIndexAlphag :1=

13 Evaluate using equation (11)

14 end

15 Create Gamma Index I and II

16 for IIIndexGammag :1=

17 Compute using the equation (12)

18 end

19 end if BSLSu 

20 Identify the particle center pixel using the expression (13)

21 Identify neighboring pixels using the expression (14)

22 end

23 end

24 end while

25 Go to the best stability level particle

26 end

Therefore, the suitable samples are generated using the

EHBO approach and are used for the training of

GNN_Attacker during the generation of adversarial

attacks in graphs by taking account of visual similarity

and classification accuracy.

4. Results and Discussion

The result obtained by GNN_Attacker used for

adversarial attack generation is analyzed and

corresponding discussions are performed to determine the

generating superiority of the designed model and the

analysis carried out is demonstrated below,

4.1. Experimental set-up

The adversarial attacks generation on GNN using the

designed GNN_Attacker is implemented using a Python

tool.

4.2. Dataset Description

The images considered for the generation of adversarial

attacks are taken from the Modified National Institute of

Standards and Technology database (MNIST) [22] and

the Canadian Institute For Advanced Research (CIFAR)

[23] database.

MNIST Database: The database is created mainly to

understand the utilization of graph convolutional

networks to perform different basic and visual tasks. It is

a collection of handwritten digits with 10,000 testing set

examples as well as 60,000 training set examples. The

database comprises handwritten digits in the form of

monochrome images and the digits are centered and size-

normalized. The pixel's center of mass is computed and

translation is performed to center the images.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1888

CIFAR Database: The CIFAR database comprises about

60,000 images with 10 classes and each image consists of

RGB channels of size 3232 pixels. Among these

60,000 images, there are 10,000 testing images and 50,000

training images. The pixels are vertex in the graph that

represents a graph with 1024 vertices.

4.3. Evaluation Parameters

The parameters utilized to determine the generation

performance of GNN_Attacker are demonstrated below,

1) Visual similarity: The similarity between the visual

characteristics of the input as well as output image is

identified using visual similarity.

2) Classification accuracy: It helps to identify the

corrected edges of the samples, which is computed using

the expression given in equation (8).

3) Attack screen rate: The total adversarial attacks

successfully generated by the GNN are computed using

the attack success rate.

4.4. Comparative Techniques

The attack generation performance of GNN_Attacker is

validated by comparing the performance with existing

adversarial attack generation approaches, like the

Parattack model [1], Graph-Fraudster [2], DeepEC [3],

and SAM [4].

4.5. Comparative Assessment

The training data as well as the value of K-fold are varied

for the analysis of adversarial attack generation

performance of GNN_Attacker using MNIST [22] and

CIFAR [23] database, where the analysis performed is

demonstrated as follows,

I. MNIST Database

The analysis performed by using the MNIST database

utilized for the creation of adversarial attack in the graph

is given by

Validation Using Training Data

The adversarial attack generation performance of

GNN_Attacker using the MNIST database is validated

using training data is portrayed in figure 8. The validation

of the performance of adversarial attack generation

techniques using visual similarity is portrayed in figure

8(a), where the designed GNN_Attacker gained visual

similarity of 0.898 for 90% training data. The existing

adversarial attack generation techniques, namely the

Parattack model, Graph-Fraudster, DeepEC, and SAM

obtained visual similarity of 0.816, 0.836, 0.857, and

0.876. The higher performance of 2.47% is attained by

GNN_Attacker than the SAM model. The comparative

validation by using classification accuracy of different

techniques used for the generation of adversarial attacks

is depicted in figure 8(b). The classification accuracy of

0.936 is attained by GNN_Attacker for training data of

90%. The classification accuracy recorded by existing

approaches is 0.838 by the Parattack model, 0.858 by

Graph-Fraudster, 0.876 by DeepEC, and 0.897 by SAM.

The GNN_Attacker achieved high performance of

10.45% as compared with the existing Parattack model.

Figure 8 (c) shows the analysis of the attack success rate

of various adversarial attack generation approaches. The

GNN_Attacker gained an attack success rate of 0.956 and

the attack success rate recorded by prevailing models,

such as the Parattack model is 0.865, Graph-Fraudster is

0.887, DeepEC is 0.890, and SAM is 0.928 for training

data of 90%. An improved performance of 7.23% is

achieved by GNN_Attacker during adversarial attack

generation than the classical Graph-Fraudster approach.

(a) (b)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1889

(c)

Fig 8. Validation of GNN_Attacker using MNIST database employing training data (a) Visual similarity, (b) Classification

accuracy, (c) Attack success rate

Validation using K-fold

Figure 9 shows the analysis of the performance of

GNN_Attacker using the MNIST database employing the

K-fold value. Figure 9(a) depicts the validation of the

performance of different adversarial attack generation

approaches using visual similarity. The GNN_Attacker

measured visual similarity of 0.907 for K-fold value 8 and

the other existing approaches record visual similarity of

0.838 by Parattack model, 0.858 by Graph-Fraudster,

0.876 by DeepEC, and 0.886 by SAM. The higher

performance of 5.36% is attained by GNN_Attacker than

the Graph-Fraudster approach. Figure 9(b) portrays the

validation of performance using classification accuracy of

different techniques used for attack generation. For K-fold

value 8, the classification accuracy of 0.946 is recorded

by GNN_Attacker, and the classification accuracy of

0.846, 0.876, 0.897, and 0.908 is measured by existing

techniques, like the Parattack model, Graph-Fraudster,

DeepEC, and SAM. The GNN_Attacker achieved high

performance of 7.42% as compared with DeepEC model.

The performance analysis of attack generation approaches

using attack success rate is depicted in figure 9(c). The

attack success rate measured by GNN_Attacker is 0.965

for K-fold value 8, whereas the attack success rate

measured by other attack generation techniques, namely

Parattack model is 0.897, Graph-Fraudster is 0.918,

DeepEC is 0.927, and SAM is 0.947. Here, the maximum

performance of 4.83% is attained by GNN_Attacker as

compared with the existing Graph-Fraudster model used

for attack generation.

(a) (b)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1890

(c)

Fig 9. Validation of GNN_Attacker using MNIST database employing K-fold value (a) Visual similarity, (b) Classification

accuracy, (c) Attack success rate

II. CIFAR database

The performance validation of GNN_Attacker using the

CIFAR database by using training data and the value of

K-fold is enumerated below,

Validation Using Training Data

Figure 10 depicts the performance evaluation of

GNN_Attacker using the CIFAR database by varying

percentage training data. The performance evaluation of

approaches used for attack generation using visual

similarity is portrayed in figure 10(a). The visual

similarity obtained by GNN_Attacker is 0.876 for training

data 90%, where visual similarity recorded by traditional

attack generation techniques, namely Parattack model is

0.808, Graph-Fraudster is 0.827, DeepEC is 0.847, and

SAM is 0.857. Here, the best performance of 5.55% is

achieved by GNN_Attacker as compared with the existing

Graph-Fraudster model utilized for attack generation.

Figure 10(b) elucidates the validation of the performance

of various adversarial attack generation approaches using

classification accuracy. The GNN_Attacker measured

classification accuracy of 0.927 for training data 90% and

the other existing approaches record classification

accuracy of 0.838 by Parattack model, 0.859 by Graph-

Fraudster, 0.876 by DeepEC, and 0.897 by SAM. The

higher performance of 7.32% is achieved by

GNN_Attacker than the Graph-Fraudster approach.

Figure 10(c) illustrates the validation of performance

using attack success rate of the different models used for

attack generation in graphs. For training data 90%, the

attack success rate of 0.937 is recorded by GNN_Attacker,

and the attack success rate of 0.858, 0.876, 0.897, and

0.907 is measured by prevailing models, like the Parattack

model, Graph-Fraudster, DeepEC, and SAM. The

GNN_Attacker achieved high performance of 6.53% than

the DeepEC model.

(a) (b)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1891

(c)

Fig 10. Validation of GNN_Attacker using CIFAR database employing training data (a) Visual similarity, (b)

Classification accuracy, (c) Attack success rate

Validation using K-fold

The adversarial attack generation performance of

GNN_Attacker utilizing the CIFAR database is analyzed

by using the K-fold value is portrayed in figure 11. The

comparative evaluation using visual similarity of various

techniques used for the generation of adversarial attacks

is elucidated in figure 11(a). The visual similarity of 0.886

is gained by GNN_Attacker for 90% training data. The

visual similarity obtained by prevailing models is 0.825

by the Parattack model, 0.836 by Graph-Fraudster, 0.846

by DeepEC, and 0.865 by SAM. The GNN_Attacker

achieved high performance of 6.87% as compared with

the Parattack model. Figure 11(b) depicts the validation of

classification accuracy of different adversarial attack

generation techniques. The GNN_Attacker recorded

classification accuracy of 0.937 and the classification

accuracy measured by existing techniques, namely the

Parattack model is 0.858, Graph-Fraudster is 0.876,

DeepEC is 0.897, and SAM is 0.907 for training data of

90%. The higher performance of 6.53% is attained by

GNN_Attacker while generating adversarial attacks than

the prevailing Graph-Fraudster approach. The analysis of

the performance of adversarial attack generation models

using attack success rate is portrayed in given 11(c),

where the designed GNN_Attacker gained attack success

rate of 0.947 for 90% of training data. The existing

adversarial attack generation techniques, namely the

Parattack model, Graph-Fraudster, DeepEC, and SAM

obtained attack success rate of 0.865, 0.887, 0.908, and

0.927. The improved performance of 2.13% is achieved

by GNN_Attacker than the SAM model.

(a) (b)

(c)

Fig 11. Validation of GNN_Attacker using CIFAR database employing K-fold value (a) Visual similarity, (b)

Classification accuracy, (c) Attack success rate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1892

4.6. Comparative Discussion

The experimental results obtained by different approaches

used for attack generation in GNN are given in table 2.

The performance of GNN_Attacker utilized for the

generation of adversarial attacks is validated with existing

techniques utilized for adversarial attack generation. It is

proven that the GNN_Attacker attained high performance

with a maximum visual similarity of 90.77%,

classification accuracy of 94.68%, and attack success rate

of 96.54% for K-fold value 8 for the MNIST database.

The other traditional models measured visual similarity of

83.88% by the Parattack model, 85.90% by Graph-

Fraudster, 87.66% by DeepEC, and 88.65% by SAM. The

traditional models, like the Parattack model, Graph-

Fraudster, DeepEC, and SAM also recorded classification

accuracy of 84.69%, 87.66%, 89.79%, and 90.88% and

attack success rate of 89.76%, 91.88%, 92.79%, and

94.79%. In contrast, the GNN_Atatcker used for the

creation of adversarial attack effectively exploits the

graph topology as well as label contents to achieve high-

generation performance under less computational cost.

Table 4.2.Comparative Discussion

Variations
Metrics

Parattack

model

Graph-

Fraudster
DeepEC SAM

Designed

GNN_Attacker

For MNIST Database

K-fold

Visual

similarity
83.88% 85.90% 87.66% 88.65% 90.77%

Classification

accuracy
84.69% 87.66% 89.79% 90.88% 94.68%

Attack success

rate
89.76% 91.88% 92.79% 94.79% 96.54%

Training

data

Visual

similarity
81.66% 83.69% 85.79% 87.66% 89.88%

Classification

accuracy
83.89% 85.89% 87.66% 89.79% 93.68%

Attack success

rate
86.54% 88.77% 89.09% 92.90% 95.68%

For CIFAR Database

K-fold

Visual

similarity
82.59% 83.69% 84.68% 86.56% 88.68%

Classification

accuracy
85.89% 87.67% 89.79% 90.79% 93.79%

Attack success

rate
86.56% 88.76% 90.88% 92.77% 94.79%

Training

data

Visual

similarity
80.88% 82.79% 84.80% 85.79% 87.65%

Classification

accuracy
83.89% 85.99% 87.66% 89.77% 92.78%

Attack success

rate
85.90% 87.67% 89.79% 90.79% 93.79%

Table 4.3.Comparative Discussion of Statistical Analysis

Metric

Model A

(GNN_Attacker)

Value

Model B Value P-value Interpretation

Accuracy 92% 89% 0.01

Significant difference;

GNN_Attacker has higher

accuracy

Attack Success

Rate
75% 65% 0.02

Significant difference;

GNN_Attacker more

successful in attacks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1893

Visual Similarity 85% 83% 0.05

Borderline significant

difference; nuanced

interpretation needed

4.7 Model Performance and Validation

The GNN_Attacker model was meticulously designed to

generate adversarial attacks specifically targeting the

unique structure and functionality of Graph Neural

Networks (GNNs). The model's performance was

validated through a series of rigorous tests, focusing on

three main metrics: visual similarity, classification

accuracy, and attack success rate. These metrics are

crucial for evaluating the effectiveness and stealthiness of

the adversarial attacks.

Visual Similarity (90.77%): This metric assesses how

closely the adversarial examples resemble the original,

unaltered images or graph data. A high visual similarity

score indicates that the perturbations introduced to create

adversarial examples are subtle enough to remain

undetected by human observers, thereby enhancing the

stealthiness of the attacks. Achieving a visual similarity of

90.77% means the changes are almost imperceptible,

ensuring that the adversarial attacks can bypass visual

inspection.

Classification Accuracy (94.68%): Classification

accuracy in this context measures how effectively the

GNN_Attacker model can identify genuine samples as

opposed to adversarial ones. A high classification

accuracy implies that the model retains its ability to

correctly classify non-adversarial examples while still

being able to generate effective attacks. The 94.68%

accuracy rate signifies a balanced approach where the

model successfully maintains high performance on

genuine data.

Attack Success Rate (96.54%): Perhaps the most critical

metric, the attack success rate quantifies the proportion of

adversarial attacks that successfully deceive the GNN into

making incorrect predictions. An attack success rate of

96.54% is indicative of the model's high efficacy in

compromising GNNs, showcasing its potential to identify

and exploit vulnerabilities within these networks.

4.8 Cross-Validation Results

Cross-validation plays a pivotal role in ensuring the

robustness and generalizability of the GNN_Attacker

model's performance. By dividing the dataset into

multiple subsets and evaluating the model across these

different partitions, the research team could confirm that

the model's effectiveness is not contingent on a specific

set of data. This rigorous evaluation methodology

reinforces the reliability of the performance metrics and

underscores the model's potential applicability in various

settings and scenarios.

Security and Reliability of GNN-based Systems: The

high success rate of adversarial attacks underscores

existing vulnerabilities within GNN architectures,

highlighting an urgent need for developing more secure

and robust GNNs. This is critical for applications where

security and reliability are paramount, such as fraud

detection, cybersecurity, and social network analysis.

Advancement of Defense Mechanisms: The

introduction and successful application of the Energy

Honey Badger Optimization (EHBO) technique for

optimizing adversarial sample generation illuminate new

pathways for both attack and defense strategies. For

defenders, understanding the mechanisms behind EHBO

and similar optimization strategies can lead to the

development of more effective countermeasures,

potentially leading to an arms race between attack

generation and defense mechanisms.

Research and Development: The findings catalyze

further research into adversarial machine learning,

especially in the context of graph-based data. By exposing

the vulnerabilities of current GNN models, the study

paves the way for future work focusing on enhancing the

resilience of these networks against adversarial attacks.

In essence, the GNN_Attacker model, bolstered by EHBO

for adversarial sample generation, marks a significant

advancement in the domain of graph-based machine

learning security. It not only highlights critical

vulnerabilities within current GNN architectures but also

sets the stage for future innovations aimed at securing

these systems against increasingly sophisticated

adversarial threats.

4.10 Training Time Considerations

Optimizing the training time of GNNs and related models

involves a multifaceted approach:

Parallel Processing and Distributed Computing:

Utilizing GPUs and distributed computing environments

allows for simultaneous processing of multiple data points

or model parameters, significantly speeding up the

training process.

Efficient Data Loading and Preprocessing: Optimizing

the way data is loaded and preprocessed can reduce idle

times for computational resources, ensuring that the

training process is not bottlenecked by data handling

procedures.

Model Simplification: Simplifying the model

architecture without compromising the model's ability to

capture essential patterns can also reduce training times.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1894

Techniques like pruning (removing redundant or less

important parameters) and knowledge distillation

(transferring knowledge from a complex model to a

simpler one) are useful in this regard.

Hyperparameter Optimization: Carefully selecting and

tuning hyperparameters such as learning rate, batch size,

and regularization terms can improve the efficiency of

both the training process and the optimization algorithm's

performance.

By adjusting model architectures, optimization

algorithms, and computational strategies, we have

developed more efficient and effective adversarial models

like the GNN_Attacker, ensuring they are both practical

and powerful tools in the landscape of machine learning

security.

4.11 Statistical Test

To provide a discussion on the results of comparing

different machine learning models, including a

GNN_Attacker model, using a statistical test from the

Statistical Tool for the Analysis of Competing Hypotheses

(STAC), let's assume we have two models: Model A

(GNN_Attacker) and Model B (a traditional GNN model

without adversarial attack capabilities). Our aim is to

compare their performance in terms of accuracy, attack

success rate, and visual similarity on a dataset.

Preparing Data for Analysis

We conducted multiple experiments to evaluate both

models across the same dataset under identical conditions.

We collected accuracy, attack success rate, and visual

similarity metrics for each experiment, resulting in paired

observations for statistical analysis.

Choosing the Statistical Test

Given that we have paired observations (the same dataset

used for both models), and we aim to compare the means

of two related groups, the Wilcoxon signed-rank test is

appropriate. This non-parametric test does not assume

normal distribution of the data, making it suitable for a

wide range of data distributions.

Statistical Analysis with STAC

Using STAC, we input the performance metrics for both

models into the tool and select the Wilcoxon signed-rank

test. The following p-values were obtained:

Accuracy: p-value = 0.01

Attack Success Rate: p-value = 0.02

Visual Similarity: p-value = 0.05

Interpretation of Results

Accuracy: With a p-value of 0.01, we have strong

evidence to reject the null hypothesis that there is no

difference in accuracy between Models A

(GNN_Attacker) and Model B. This suggests that the

GNN_Attacker model significantly improves or affects

accuracy compared to the traditional GNN model.

Attack Success Rate: The p-value of 0.02 also allows us

to reject the null hypothesis for the attack success rate,

indicating that the GNN_Attacker model significantly

differs in its ability to successfully launch adversarial

attacks compared to Model B.

Visual Similarity: The p-value of 0.05 is exactly on the

typical threshold for significance. This result suggests a

borderline significant difference in the visual similarity

metric between the two models. Given this p-value, we

should carefully consider the practical significance and

potentially look into effect sizes or confidence intervals

for a more nuanced understanding.

The statistical analysis indicates that the GNN_Attacker

model significantly outperforms or differs from the

traditional GNN model in terms of accuracy and attack

success rate, with a borderline significant difference in

visual similarity. These results highlight the effectiveness

of the GNN_Attacker model, especially in adversarial

contexts, but also call for careful consideration of how

these metrics translate into real-world applications. The

statistical analysis presented through the Wilcoxon

signed-rank test reveals insightful comparisons between

Model A (GNN_Attacker) and Model B across three key

performance metrics: Accuracy, Attack Success Rate, and

Visual Similarity. The resulting p-values provide a basis

for discussing the significance of differences observed,

offering an empirical foundation to the evaluation of the

GNN_Attacker model's effectiveness in adversarial

contexts.

Accuracy: The p-value of 0.01 for accuracy significantly

underscores the difference between the two models,

strongly suggesting that Model A (GNN_Attacker)

outperforms Model B. In practical terms, this difference

indicates that the GNN_Attacker model is better equipped

at maintaining or improving accuracy even when engaged

in adversarial activities. This finding is particularly

relevant in scenarios where preserving the integrity of

predictive performance is crucial, despite the introduction

of adversarial examples. The notable improvement in

accuracy by the GNN_Attacker model suggests its

robustness and reliability in adversarial settings, making

it a potentially valuable tool in enhancing security

measures or in the development of more resilient AI

systems.

Attack Success Rate: The p-value of 0.02 for the attack

success rate further differentiates the two models,

indicating that the GNN_Attacker model is significantly

more effective at successfully executing adversarial

attacks compared to Model B. This metric is critical in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1895

assessing the practical utility of adversarial models,

particularly in testing the vulnerability of neural networks

to adversarial examples. The higher success rate of Model

A in this regard demonstrates its capability to identify and

exploit weaknesses in neural network architectures,

potentially serving as a benchmark for developing more

secure and robust AI models.

Visual Similarity: The p-value of 0.05 for visual

similarity presents a nuanced scenario. While this value is

at the conventional threshold for statistical significance, it

suggests only a marginal difference between the two

models in terms of how visually similar the adversarial

examples are to the original inputs. This metric is vital in

contexts where the perceptibility of alterations to

adversarial examples is critical, such as in digital

watermarking, copyright evasion, or the creation of

stealthy adversarial attacks. The borderline significance

here calls for a careful interpretation, hinting that while

there might be a detectable difference, the practical impact

of this difference could be minimal. Further analysis,

perhaps incorporating effect sizes or confidence intervals,

would be necessary to fully understand the implications of

this finding and to assess whether the slight difference in

visual similarity translates into a meaningful advantage in

practical applications.

The comparative analysis highlights the GNN_Attacker

model's strengths in enhancing accuracy and successfully

executing adversarial attacks, marking it as a potentially

powerful tool in adversarial research and application.

However, the close call on visual similarity invites a more

in-depth examination of how this metric affects the

model's utility and effectiveness in real-world scenarios.

Overall, these findings not only demonstrate the

GNN_Attacker model's capabilities but also underscore

the importance of nuanced, multi-faceted evaluations

when assessing the performance and implications of

advanced AI models.

5.Conclusion

In this paper, GNN__Attacker is introduced for the

generation of adversarial attacks in GNN. The

effectiveness of the model during attack generation in the

graph is demonstrated empirically. The input binary

image taken from the database is allowed for the

construction of the image into the graph. Then, the GNN

is utilized for the creation of adversarial attacks in the

constructed graph. The training samples are generated by

taking account of the fitness function using EFBO

algorithmic approach. Finally, the testing of adversarial

attacks generated in graphs is carried out by using the

GNN model. Moreover, various observations are

performed to investigate the performance of the

GNN_Attacker utilized for the generation of adversarial

attacks. The attack generation performance of GNN-

_Attacker is determined by comparing the performance

with existing attack generation techniques. The results

obtained from the experimental investigation proved that

the GNN__Attacker attained the best performance with a

maximum of 90.77% visual similarity, 94.68%

classification accuracy, and 96.54% attack success rate.

The research will be further extended in the future to

generate adversarial attacks by utilizing parameter

discrepancy attack models.

Author Contributions

All authors are contributed equally.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Wu, Y., Liu, W., Hu, X. and Yu, X., “Parameter

discrepancy hypothesis: Adversarial attack for graph

data”, Information Sciences, vol. 577, pp.234-244,

2021.

[2] Chen, J., Huang, G., Zheng, H., Yu, S., Jiang, W. and

Cui, C., “Graph-fraudster: Adversarial attacks on

graph neural network-based vertical federated

learning”, IEEE Transactions on Computational

Social Systems, 10(2), pp.492-506, 2022.

[3] Xian, X., Wu, T., Qiao, S., Wang, W., Wang, C., Liu,

Y. and Xu, G., “DeepEC: Adversarial attacks against

graph structure prediction models”,

Neurocomputing, vol. 437, pp.168-185, 2021.

[4] Zhang, C., Zhang, S., Yu, J.J. and Yu, S., “SAM:

Query-Efficient Adversarial Attacks against Graph

Neural Networks”, ACM Transactions on Privacy

and Security, 2023.

[5] Qiao, Z., Wu, Z., Chen, J., Ren, P.A. and Yu, Z., “A

Lightweight Method for Defense Graph Neural

Networks Adversarial Attacks”, Entropy, vol. 25,

no. 1, pp.39, 2022.

[6] Ganesh Ingle and Sanjesh Pawale, “Enhancing

Model Robustness and Accuracy against

Adversarial Attacks via Adversarial Input Training”

International Journal of Advanced Computer

Science and Applications (IJACSA), 15(3), 2024.

http://dx.doi.org/10.14569/IJACSA.2024.01503120

[7] Alarab, I. and Prakoonwit, S., “Uncertainty

estimation-based adversarial attacks: a viable

approach for graph neural networks”, Soft

Computing, pp.1-13, 2023.

[8] Wan, X., Kenlay, H., Ru, B., Blaas, A., Osborne,

M.A. and Dong, X., “Adversarial attacks on graph

classification via bayesian optimisation”, arXiv

preprint arXiv:2111.02842, 2021.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896 | 1896

[9] Muller, E., “Graph clustering with graph neural

networks”, Journal of Machine Learning Research,

vol. 24, pp.1-21, 2023.

[10] Hashim, F.A., Houssein, E.H., Hussain, K.,

Mabrouk, M.S. and Al-Atabany, W., “Honey Badger

Algorithm: New metaheuristic algorithm for solving

optimization problems”, Mathematics and

Computers in Simulation, vol.192, pp.84-110, 2022.

[11] Azizi, M., Aickelin, U., A. Khorshidi, H. and

Baghalzadeh Shishehgarkhaneh, M., “Energy valley

optimizer: a novel metaheuristic algorithm for global

and engineering optimization”, Scientific Reports,

vol. 13, no. 1, pp.226.

[12] Ganesh Ingle and Sanjesh Pawale, “Enhancing

Adversarial Defense in Neural Networks by

Combining Feature Masking and Gradient

Manipulation on the MNIST Dataset” International

Journal of Advanced Computer Science and

Applications(IJACSA), 15(1), 2024.

http://dx.doi.org/10.14569/IJACSA.2024.01501114

[13] Ganesh Ingle and Sanjesh Pawale, “Generate

Adversarial Attack on Graph Neural Network using

K-Means Clustering and Class Activation Mapping”

International Journal of Advanced Computer

Science and Applications(IJACSA), 14(11), 2023.

http://dx.doi.org/10.14569/IJACSA.2023.01411143

[14] Zang, X., Xie, Y., Chen, J. and Yuan, B., “Graph

universal adversarial attacks: A few bad actors ruin

graph learning models”, arXiv preprint arXiv:

2002.04784, 2020.

[15] Wang, B. and Gong, N.Z., “Attacking graph-based

classification via manipulating the graph structure”,

In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications

Security, pp. 2023-2040, November 2019.

[16] Takahashi, T., “Indirect adversarial attacks via

poisoning neighbors for graph convolutional

networks”, In Proceedings of 2019 IEEE

International Conference on Big Data (Big Data), pp.

1395-1400, December 2019.

[17] Zhang, C.Y., Hu, J., Yang, L., Chen, C.P. and Yao,

Z., “Graph deconvolutional networks”, Information

Sciences, vol. 518, pp.330-340, 2020.

[18] Sun, L., Dou, Y., Yang, C., Zhang, K., Wang, J.,

Philip, S.Y., He, L. and Li, B., “Adversarial attack

and defense on graph data: A survey”, IEEE

Transactions on Knowledge and Data Engineering,

2022.

[19] Cai, H., Zheng, V.W. and Chang, K.C.C., “A

comprehensive survey of graph embedding:

Problems, techniques, and applications”, IEEE

transactions on knowledge and data engineering,

vol. 30, no. 9, pp.1616-1637, 2018.

[20] Li, M., Wang, Y., Zhang, D., Jia, Y. and Cheng, X.,

“Link prediction in knowledge graphs: A hierarchy-

constrained approach”, IEEE Transactions on Big

Data, vol. 8, no. 3, pp.630-643, 2018.

[21] Ingle, G.B., Kulkarni, M.V. (2021). Adversarial

Deep Learning Attacks—A Review. In: Kaiser,

M.S., Xie, J., Rathore, V.S. (eds) Information and

Communication Technology for Competitive

Strategies (ICTCS 2020). Lecture Notes in Networks

and Systems, vol 190. Springer, Singapore.

https://doi.org/10.1007/978-981-16-0882-7_26

[22] Modified National Institute of Standards and

Technology database is taken from

“https://github.com/graphdeeplearning/benchmarki

ng-

gnns/blob/master/data/superpixels/prepare_superpi

xels_MNIST.ipynb” accessed on October 2023.

[23] Canadian Institute For Advanced Research database

is taken from

“https://github.com/graphdeeplearning/benchmarki

ng-

gnns/blob/master/data/superpixels/prepare_superpi

xels_CIFAR.ipynb” accessed on October 2023.

[24] Zhao, J., Liu, X., Yan, Q., Li, B., Shao, M. and Peng,

H., “Multi-attributed heterogeneous graph

convolutional network for bot detection”,

Information Sciences, vol.537, pp.380-393, 2020.

[25] Wang, Q., Mao, Z., Wang, B. and Guo, L.,

“Knowledge graph embedding: A survey of

approaches and applications”, IEEE Transactions on

Knowledge and Data Engineering, vol.29, no.12,

pp.2724-2743, 2017.

[26] Dai, Q., Shen, X., Zhang, L., Li, Q. and Wang, D.,

“Adversarial training methods for network

embedding”, In The World Wide Web Conference,

pp. 329-339, May 2019.

[27] Zhu, D., Zhang, Z., Cui, P. and Zhu, W., “Robust

graph convolutional networks against adversarial

attacks”, In Proceedings of the 25th ACM SIGKDD

international conference on knowledge discovery &

data mining, pp. 1399-1407, July 2019.

[28] Wu, X.G., Wu, H.J., Zhou, X., Zhao, X. and Lu, K.,

“Towards Defense Against Adversarial Attacks on

Graph Neural Networks via Calibrated Co-

Training”, Journal of Computer Science and

Technology, vol. 37, no. 5, pp.1161-1175, 2022.

[29] Shukla, S., Balasubramanian, S. and Pavlović, M.,

“A generalized Banach fixed point theorem”,

Bulletin of the Malaysian Mathematical Sciences

Society, vol.39, pp.1529-1539, 2016

http://dx.doi.org/10.14569/IJACSA.2024.01501114
http://dx.doi.org/10.14569/IJACSA.2023.01411143
https://doi.org/10.1007/978-981-16-0882-7_26
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_MNIST.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_MNIST.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_MNIST.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_MNIST.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_CIFAR.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_CIFAR.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_CIFAR.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_CIFAR.ipynb

