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Abstract: In recent years, Graph Neural Networks (GNN) has gained considerable attention due to the practical importance of graph 

structure data in graph representation learning. It is most commonly utilized in fraud detection, privacy-inference attacks, completion of 

knowledge graphs, item recommendation, and so on. The GNN is highly vulnerable to adversarial attacks, which affect the reliability of 

the system, reduce the accuracy of prediction on test data, and increase the loss function of training data. However, the existing approaches 

utilized to reduce the impacts of adversarial attacks on GNN focus only on highly linked training process. Thus, a GNN_Attacker model 

is designed in this research for the generation of adversarial attacks in GNN. The binary image is allowed for graph construction and the 

adversarial attacks are generated in the constructed graph using GNN. Here, the Energy Honey Badger Optimization (EHBO) is introduced 

for the generation of training samples and GNN is again utilized for testing the generated adversarial attacks. Moreover, the adversarial 

attack generation performance of GNN_Attacker is validated. It demonstrates that the GNN_Attacker attained superior performance with 

maximum visual similarity, classification accuracy, and attack success rate of 90.77%, 94.68%, and 96.54% respectively. 

Keywords: Energy valley optimization, Honey Badger Optimization Algorithm, Graph Neural Network, Energy Honey Badger 

Optimization 

1. Introduction 

Graphs are considered as a data structure used for general 

purposes that comprises entities represented by edges and 

nodes. In recent years, graph-based machine learning 

techniques have been widely utilized in different 

applications, like graph classification, community 

detection, link prediction, and semi-supervised learning 

[19][8]. The relation among the complex systems and 

entities is characterized by the effective representation of 

graph structure. The real-world complex applications of 

graph theory in technical, semantic, biological, and social 

networks have been analysed by many researchers based 

on network theory over the past several decades. The area 

of graph data mining has gained huge attention among 

researchers due to the generation of huge volumes of 

graph data via graph representation and real-world 

networked systems of independent samples. Moreover, 

more efforts are given to focus on link prediction utilized 

for the detection of spurious links as well as uncovering 

missing links by using intrinsic structural features of the 

graphs. The performance of knowledge-related tasks is 

increased by using link prediction in various applications 

[20][3]. The increasing growth of graph-based machine 

learning techniques, such as graph-based approaches and 

other machine learning approaches makes the models 

vulnerable to adversarial attacks [18][8]. It is necessary to 

simulate adversarial attacks by learning and assessing the 

vulnerability and stability of the models in certain cases 

of deploying the models in a social network environment. 

The main goal of generating adversarial attacks in graphs 

is to perform various learning tasks [8]. 

The modified node embeddings are highly influenced by 

the adversarial perturbations on raw local data, which 

creates threats to the server model by making false 

decisions [2]. GNN and other related modifications are 

becoming mainstream approaches that gained significant 

attention among researchers. The GNN is used to 

understand the representation of graphs in various fields, 

like graph generation, combinatorial optimization, 

knowledge mapping, natural science research, computer 

vision, and natural language processing [17][1]. The wide 

application of GNN encountered different security issues, 

where incorrect predictions may occur due to imposed 

slight deliberate perturbations in the GNN model [24][25]. 

Advanced learning models like graph convolution are 

generally utilized by GNN as compared with other 

conventional models for the extraction of latent 

information from neighbours of node and to record high 

performance while performing downstream tasks that 

includes node classification. The GNN’s deep learning 

nature makes them highly vulnerable to the generation of 

adversarial attacks. The GNN is applied to security-

critical tasks due to the potential increase of security 

concerns of the model and their reasoning capability as 

well as powerful learning ability. Generally, adversarial 
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attacks on graph data are categorized into two distinct 

types, such as structural perturbation-based techniques 

and attribute perturbation-based techniques. The attribute 

perturbation-based attacks techniques misclassify the 

GNN by perturbing the attributes of edges or nodes to 

follow the adversarial attacks on images [16][4].  

The relational knowledge of nodes is highly utilized by 

graph-based methods to effectively change the structure 

of a graph while performing graph tasks by attacking 

conventional graph-based methods [15][4]. The reasoning 

or training efforts of GNN are highly deteriorated due to 

changes that occur in the network topology. Thus, the 

paradigm of structural perturbation-based attacks is 

prompted by a large number of studies [14]. Moreover, the 

perturbations are adopted to increase the robustness of the 

model during the process of adversarial training. The 

graph embeddings are effectively performed by using the 

GNN-based adversarial training approaches. Similarly, a 

robust graph representation learning approach is designed 

directly to effectively generate adversarial attacks [26]. 

The Regional Graph Convolutional Neural Network (R-

GCN) is used for the creation of adversarial attacks 

directly, which also effectively reduces the various 

negative impacts that occur due to adversarial attacks 

[27]. In addition, various databases are utilized to perform 

adversarial training to obtain highly robust models as 

compared with the existing models [5]. The majority of 

traditional adversarial attack generation approaches 

utilize query limitations while generating graph-based 

adversarial attacks. The graph classification carried out by 

executing adversarial attacks generally train the attacking 

agents by accessing a portion of the test set, require high 

computational time, and requires to query the target model 

[8]. Hybrid optimization algorithms are also employed to 

fine-tune the models while providing solutions to various 

adversarial attacks on graph classification.  

This research presents a GNN_Attacker model for 

adversarial attack generation in GNN. The graph is 

constructed from the input binary image taken from the 

database initially. Afterward, the generation of adversarial 

attacks is performed on the constructed graph by using 

GNN. Moreover, the newly designed algorithm approach, 

EHBO is used for the generation of training samples by 

considering fitness functions, such as visual similarity and 

classification accuracy. The generated training samples 

are utilized to fine-tune the GNN model. Also, the 

generated adversarial attacks are tested again by using 

GNN. 

The main research contribution is, 

• Designed GNN_Attacker for adversarial attack 

generation: The GNN_Attacker is designed for the 

generation of adversarial attacks in GNN. The 

training of GNN is performed by using the EHBO 

approach based on fitness functions, like visual 

similarity and classification accuracy. The EHBO is 

designed by integrating Energy Valley Optimization 

(EVO) and Honey Badger Optimization Algorithm 

(HBA) approaches. 

The article is arranged as, the analysis of traditional attack 

generation approaches is elucidated in section 2, and 

section 3 explicates the adversarial attack generation 

performance of GNN_Attacker. Moreover, section 4 

portrays the validation of experimental outcomes with 

discussions and the article is concluded in section 5. 

2. Motivation 

The GNN has gained huge attention in various research 

areas, like traffic, social networking, and e-commerce that 

performs link prediction, node classification, and so on 

with high performance. As compared with other networks, 

the GNN is highly susceptible to adversarial attacks that 

severely influence the practical application of GNN. The 

prevailing techniques used for the generation of 

adversarial attacks in GNN were not successful in 

updating the graph which also affects the robustness of the 

model. Hence, a GNN_Attacker is introduced for the 

adversarial attack generation in GNN. 

2.1. Literature Survey 

Wu, Y., et al. [1] designed Parattack model  Training for 

the creation of adversarial attacks against graph data. This 

model significantly detected model training parameters 

before and after the generation of the attack. It effectively 

verified the hypothesis of parameter discrepancy 

rationality and achieved high accuracy, but it failed to 

differentiate various attack directions by analyzing the 

parameters. Chen, J., et al. [2] developed Graph-Fraudster 

for the creation of adversarial attacks by embedding noise-

added global nodes. It generated attacks by stealing the 

embeddings of the global node and creating the server's 

shallow model. This technique recorded very low network 

complexity, but it encountered severe leakage of 

information while generating adversarial attacks in GNN. 

Xian, X., et al. [3] established Deep Ensemble Coding 

(DeepEC) for the creation of adversarial examples by 

utilizing a structure enhancement mechanism. In this 

model, an evolutionary perturbation-based link selection 

mechanism was presented to demonstrate the performance 

of adversarial attack generation. It recorded very low 

execution time during the generation of adversarial 

attacks. However, due to the absence of structure 

estimation of input data malicious tasks were also 

generated in this model. Zhang, C., et al. [4] introduced a 

Saturation adversarial Attack with Meta-gradient (SAM) 

to obtain the necessary information on the gradient by 

considering structural perturbations of the graph. The 

attack efficiency of the model was effectively improved 

by flipping multiple edges of the determined meta-
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gradients in one query. This model determined query-

based poisoning attacks and possessed high pooling 

capacity during the generation of global attacks against 

graph node classification. However, it was not successful 

in analyzing the stealthiness of adversarial attacks in 

GNN. 

Qiao, Z., et al. [5] designed a Graph transformation 

mechanism for the transformation of the graph. This 

approach was highly suitable for the generation of 

adversarial attacks under four transformation forms to 

optimize the defense flow against the attacks on graph 

data. It effectively covered the defense effectiveness of 

the model under less computational time. However, 

because of excessive transformation, the model recorded 

high damage to the harmless structures. Wu, X.G., et al. 

[28] developed Calibrated Co-training (C2oG) to identify 

the effects of adversarial perturbations. The structure 

information as well as feature information was effectively 

integrated to design the C2oG model. This model was 

simple to implement and effectively increased its 

robustness against adversarial attacks, but the model 

suffered from high computational complexity issues 

during the defense against adversarial attacks. Alarab, I. 

and Prakoonwit, S., [7] introduced Monte-Carlo based on 

Adversarial Attacks (MC-AA) to capture the uncertainty 

of the model by using the adversarial attack idea. It 

effectively classified binary nodes by estimating the 

uncertainties and examined the viability of the model. 

This model significantly captured the wrong labels in 

overlapping regions, but it failed in multiclass node 

classification. Wan, X., et al. [8] established a Bayesian 

optimization-based attack method for the classification of 

graph models. It linked the vulnerability of graph-based 

machine learning models by analyzing the generated 

adversarial examples. It effectively solved the 

vulnerabilities of graph classification systems that largely 

outweigh the risks. However, it failed to utilize various 

mainstream victim models to verify the robustness of the 

model while generating adversarial examples. Ganesh 

Ingle, et.al. [6,12,13] explores the optimal masking ratio 

presents a significant research gap, as understanding the 

precise balance between model accuracy and robustness 

against adversarial attacks remains unresolved. Further 

investigation into detailed masking ratios and the creation 

of adaptive masking strategies, which adjust according to 

a model's exposure to adversarial threats, is crucial. 

Additionally, the effectiveness of novel adversarial attack 

strategies highlights the potential shortcomings of 

existing Graph Neural Network (GNN) defense 

mechanisms. There's a clear necessity for the 

development of adaptive defense strategies that can 

dynamically evolve in response to the continually 

changing nature of adversarial attacks, particularly 

leveraging internal model insights like Class Activation 

Mapping (CAM). Moreover, the successful application of 

Input Adversarial Training (IAT) in controlled 

experiments prompts the need for research into its 

deployment in real-world power quality management 

systems. The scalability, efficiency, and real-time 

processing capabilities of IAT in environments with 

highly variable data and operational conditions represent 

pivotal areas for future exploration. These gaps 

underscore the ongoing need for advancements in 

defensive techniques to secure neural network models 

against sophisticated adversarial threats. Ingle, G.B., et.al. 

[21] delve into the practical implications of adversarial 

attacks and defenses across various applications, from 

image recognition and autonomous vehicles to 

cybersecurity and fraud detection. These discussions 

highlight the real-world significance of improving model 

resilience, emphasizing the need for ongoing research and 

development in adversarial machine learning. 

2.2. Challenges 

The limitations encountered by classical adversarial attack 

detection techniques are demonstrated below, 

• The Parattack model used in [1] effectively resisted 

adversarial attacks presented in various real-time 

applications, but the model only recorded fuzzy 

attack directions and deviations from the correct 

attack direction due to the optimization of different 

parameters. 

• The Graph-Fraudster developed in [2] was highly 

robust in the generation of attacks. However, this 

model failed to consider node features for 

perturbation and was not successful to reduce the 

impact of data imbalance of attacks. 

• The DeepEC used in [3] achieved high 

computational efficiency during adversarial attack 

generation. However, the generalization of link 

prediction models was affected because the 

corrupted version of inputs and the adversarial 

examples generated by different attacks were not 

incorporated into the design process. 

• The SAM model employed in [4] increased the 

performance of iterative attacks more significantly, 

but it failed to quantify and utilize the black-box 

setting to learn the vulnerability of GNN to 

adversarial attacks. 

• The traditional adversarial attack generation 

techniques extracted latent information from 

neighboring nodes and achieved good performance 

on various downstream tasks. However, it failed to 

apply attacks to the attributed graphs that involve 

features associated with edges or nodes. It also 

focused only on determining the node classification 

performance of the model and posed severe impacts 

on the security of the model
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3. Designed GNN_Attacker for the Generation of 

Adversarial Attacks 

In this manuscript, a GNN_Attacker is developed for the 

generation of adversarial attacks in GNN. The binary 

image acquired from the database is initially allowed for 

the construction of images into graphs. Then, the 

adversarial attacks are generated in graphs by using GNN 

[9], where the training samples are generated using EHBO 

by considering fitness functions, like similarity and 

classification accuracy. Here, the EHBO is generated by 

the incorporation of EVO [11] and HBA [10]. In addition, 

the testing of generated adversarial attacks is performed 

by using GNN. Figure 1 displays the block diagram of the 

designed GNN_Attacker for the generation of adversarial 

attacks in GNN.  

3.1 Image Acquisition 

The input image taken for the generation of adversarial 

attacks from the database is initially given by the 

expression designated as, 

 

 RI AAAAAA ,...,,..,,, 321=    

  (1) 

here, the total number of images available in the database 

is symbolized as R , the database considered for the 

generation of adversarial attacks is represented as A , and 

the 
thI image taken for adversarial attack generation is 

signified as IA . 

3.2 Construction of Image to Graph 

A graph is a non-linear structure that comprises edges and 

vertices, where the vertices are termed nodes and edges 

are lines that interconnect two nodes. The image-to-graph 

construction is performed by initially allowing the two-

dimensional (2D) input image IA into the form of the 

matrix. The pixel values “0” and “1” are provided to each 

cell of the matrix and its corresponding nodes are plotted. 

The edges are constructed, if the value of one node is the 

same as the other, thus constructing the corresponding 

graph of the input image IA . For example, the conversion 

of the input image IA into matrix format is displayed in 

figure 2, and pixel values “0” and “1” are given to each 

cell of the matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Block diagram of designed GNN_Attacker for the generation of adversarial attacks in GNN.
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Fig. 2. Matrix representation of input image 

Moreover, the node  JaN a ,...,3,2,1; = is assigned to 

each cell of the given matrix and is displayed in figure 3. 

 

 

Fig 3. Assignment of node to each cell 

Finally, the graph is constructed by creating connections 

between the nodes by using edges. If the adjacent pixels 

have a non-zero value, then an edge is considered to exist 

between them. For example, the pixel value of 2N  “1” is 

the same as the pixel value of 3N “1” in the matrix i.e.

32 NN = , then the edge is constructed between the node 

2N and 3N and is given by 132 =NN . Moreover, if the 

pixel values are not equal to unity, then no edge exist 

between them. For example, the pixel value of 1N is “0” 

and the pixel value of 2N is “1”, then no edge exist 

between them i.e. 21 NN  , which is given by

021 =NN . Similarly, the edge is constructed for all 

nodes with pixel values. The graph construction 

performed between nodes is displayed in figure 4 and the 

graph constructed is further fed into GNN for the 

generation of adversarial attacks. 

 

 

Fig 4. Construction of graph from the input image 

3.3 GNN Architecture 

The GNN model [9] is the extension of random walk 

models as well as recursive neural networks. The GNN 

can effectively process different general class of graphs 

that involves undirected, directed, and cyclic graphs it 

becomes an extension of recursive neural networks, and 

also effectively handle the node-focused application. In 

general, GNN is based on an information diffusion 
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mechanism, where a set of units is used to process the 

graph and each unit corresponds to the node of the graph 

that is linked based on graph connectivity. Until reaching 

a stable equilibrium, the units constantly modify their 

state and transfer information. At each node, the output of 

GNN is estimated by considering the unit state.  

In GNN, the graph node indicates the concepts or objects, 

and the relationship signifies the edges of the graph, where 

the related concepts and their features are used to define 

each concept. Thus, a state 
m

i Ra  is attached to each 

node i by considering the information available in the 

neighbourhood i . The output iG is obtained to decide on 

the concept by representing the concept i of state ia . Let 

us consider a local transition function cR and local output 

function cQ for describing the generation of output. Then, 

the expression of ia and iG is given by, 

 NESici LaLLRa ,,,=     

 (2) 

 iici LaQG ,=      

 (3) 

where, the labels of states, edges, and the labels of i is 

signified as ,, ES aL and iL , the label of nodes in the 

neighbourhood i is represented as NL . 

Let us consider the vectors ,,, LGa that NL are 

generated by stacking the states, outputs, labels, and labels 

of nodes. Thus, the equation (2) and (3) can be rewritten 

using the expression given by, 

 Lara c ,=       

 (4) 

 Nci LaqG ,=      

 (5) 

here, the stacked version of N  instances of cR and cQ

for the global transition function is signified as cr and the 

global output function is denoted as cq . The expressions 

(4) and (5) are used to represent a map that utilizes graph 

input and provides output iG for each node. Thus, Banach 

fixed point theorem [29] provides unique solutions for the 

equations by considering cR as a contraction map 

concerning state, i.e. 10,   . It is given by 

baLbRLaR cc −− ),(),( for any ba, . Here, 

the vertical norm is represented as . . Therefore, the 

contraction map cR is considered for the moment in GNN 

and the transition function is implemented appropriately 

to enforce this property. 

The equations (2) and (3) are used to process both 

positional as well as non-positional graphs. The position 

of the neighbours is received by cR as extra inputs in 

positional graphs, which can quickly record the 

information available in ,, EE La and NL  sort based on 

the position of neighbours. Moreover, the information is 

padded properly using the special position of null values 

corresponding to nonexistent neighbours. For example,

 FE bbbba ,...,,, 321= , here F  indicates the 

maximum number of neighbours in the node. If m is the 

neighbour of 
thn neighbour of i  is mn ab = and if the 

thn

neighbour is not available i.e. for the pre-defined null state 

0a is 0abn = . Moreover, the function cR of equation (2) 

can be replaced for a nonpositional graph by using the 

expression, 

( ) 


=
Nm

mmmiici LaLLga ,,, ,    (6) 

here, the parametric function is represented as cg and the 

nonpositional form of the graph is referred in equation (2) 

and equation (3), where the positional form is given in 

equation (6). Thus, the graph output IO with the 

generated adversarial attack is obtained from GNN when 

the constructed graph is fed into the GNN structure. Thus, 

the resultant constructed graph output generated by GNN 

with adversarial attacks is elucidated in figure 5. 
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Fig 5. Generation of adversarial attacks using GNN 

The adversarial output image is finally obtained from the 

resultant generated adversarial attack graph by giving 

pixel values “0” and “1” to each cell of the matrix. The 

pixel value of “1” is provided for each node with 

constructed edges and the pixel value of “0” is given to 

nodes, if the edges are not constructed. Thus, the 

adversarial output image AI is obtained and figure 6 

depicts the adversarial output image obtained from the 

generated adversarial attack graph. 

 

Fig 6. Generation of adversarial image 

Generation of Training Samples  

The training samples are generated by using the EHBO 

algorithm together by encoding solution and determining 

fitness function, where the process performed is 

enumerated below, 

Solution Encoding 

The solution encoding is performed by selecting optimal 

solutions randomly to accomplish the task. The optimal 

solution is determined by encoding training samples along 

the edges for different nodes 1N to 9N , where the 

representation of solution encoding is given in figure 7. 

 

Fig 7. Encoding of training samples 

Fitness Estimation 

The fitness function is estimated using the expression 

formulated as, 


=








 +
=

I

S

functionFitness
1 2


 (7) 
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here, the total training is represented as I , indicates 

visual similarity, and  denotes classification accuracy.  

-Visual similarity ( ): It is defined as the similarity 

among the visual characteristics of input and output 

images.  

-Classification accuracy (  ): The classification 

accuracy is used for the determination of corrected edges, 

where it is the relationship among the original and 

targeted image output determined by GNN. The 

classification accuracy is formulated as, 

4321

21






+++

+
=    

 (8) 

where, the term 1 and 2 represents true positive and 

true negative, 3 and 4 denotes false positive and false 

negative.  

3.4 Designed EHBO Model for the Generation of 

Training Samples 

The training samples used for the training of 

GNN_Attacker are generated by using EHBO algorithmic 

technique. The algorithmic approaches EVO [11] and 

HBA [10] are integrated to form the design EHBO 

approach. The advanced principles of physics under 

different modes as well as particle decay stability are 

considered for designing EVO. In general, the EVO 

converges quickly and it helps to identify the solution with 

the lowest possible objective function. Similarly, HBA is 

designed by considering the different inspecting 

characteristics of honey badger animals during the 

location of food. The honey badger is a mammal with 

black and white furs that are commonly found in tropical 

rainforests of Africa and is well capable of climbing trees 

for food. The honey badger uses digging and honey phases 

for catching its prey and to locate beehive, whereas in the 

honey phase it follows the honeyguide birds to reach the 

beehive. Moreover, in the digging phase, it performs 

actions that are similar to the Cardioid shape. The EVO 

acts as an approximation algorithm and was not successful 

in providing accurate solutions. Hence, the HBA is 

incorporated with EVO for the determination of the exact 

solution, and the mathematical modelling of EHBO is 

designated as follows, 

Step 1: Initialization: The solution is randomly initialized 

in the search space and is designated as, 

},,,,,{ 21 YV IIIII =          (9) 

here, the total number of solutions presented in the search 

space is indicated as Y , and VI signifies the 
thV  

candidate in the random search space. 

Step 2: Estimation of fitness: The optimal solution is 

determined using the expression given in equation (7). 

Step 3: Stability of search space: In the search space, the 

different stability level particles are considered during the 

initialization of the candidate solution and are designated 

as, 

( )




=

=
−+=

Xg

Yu
HHRHH g

u

g

u

g

u

g

u
,...,2,1

,...,2,1
,. min,max,min,

  (10) 

Where,the problem dimension is signified as X , Y

indicates total particles in the universe, 
g

uH denotes the 

determination of the initial position of 
thu iteration of 

thg dimensional variable, 
g

uH min, and 
g

uH max,

symbolizes lower and upper bound, and R indicates the 

random number that is set to range [0,1]. 

Step 4: Enrichment of particle: The particle enrichment 

bound is determined by considering the difference 

between neutron-poor and neutron-rich particles. The
rays are emitted to increase the stability of products by 

considering physical principles. Moreover, the best level 

of stability is substituted in rays to remove the decision 

variable of the candidate solution and is expressed as, 

 ( ) 




=

=
=

.

,...,2,1
,

IIAlphaindexg

Yu
HHHH g

uBSu

N

u

  (11) 

here, 
N

uH represents the particles generated newly, uH

denotes the current vector position of the particle, BSH

indicates the best stability level of particles, and 

IIAlphaindex signifies the emitted  rays. Similarly, 

the gamma index is considered to enhance the stability 

level of particles. Thus, the second candidate solution is 

designated as, 

( ) 




=

=
=

.

,...,2,1
,2

IIindexGammag

Yu
HHHH g

uNPu

N

u

  (12) 

Where, NPH denotes the position vector of the 

neighbouring particle. 

Step 5: Beta decay: The unstable particles perform beta 

decay and the particle position is modified, if the particle 
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level of stability is lower than the stability bound, which 

is expressed as, 

( )
Yu

LS

HJHJ
HH

u

PCBS
u

N

u ,...,2,1,211 =
−

+=

  (13) 

Here, BSH signifies the vector position of the particle 

with best stability level, PCH indicates the vector position 

of centre of particles, the stability level is represented as 

uLS , and 1J  and 2J are random numbers fixed at [0,1]. 

Step 6: Exploitation and exploration level: The position 

of the algorithm's exploration and exploitation levels are 

increased by modifying the particle's position using beta 

decay and is given by, 

 

( ) YuHJHJHH NPBSu

N

u ,...,2,1,43

2 =−+=

  (14) 

where, the random numbers are signified as 3J and 4J , 

which is fixed to [0,1]. 

Let us consider, )1(2 += gHH u

N

u and )(gHH uu = . 

Thus, the equation (14) becomes, 

( )NPBSuu HJHJgHgH −+=+ 43)()1(  

 (15) 

The HBA [11] is incorporated with EVO [10] for the 

determination of the exact solution from the search space. 

From HBA,  

IPN DKfUWW += 7    

 (16) 

here, the updated position of the honey badger is indicated 

as NW , the prey location is represented as PW , the 

direction of search space is altered using flag signified as 

U , and the information of search distance is denoted as 

ID . Also, at varying times the influenced search 

behaviour is given as K , and f is the random number 

among 0 and 1 which is computed using the expression 

designated as, 

sPI WWD −=     

 (17) 

Moreover, the direction of search spaceU and search 

behavior K is determined using the expression given by, 
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  (18) 

here, 6J  denotes random number among 0 and 1, the 

maximum iteration is signified as maxu  and P denotes 

the constant term which is  1. 

Applying equation (17) in equation (16), 

 sPPN WWKfUWW −+= 7  (19) 

Let us consider, )1( += gHW uN , )(gHW us = , and 

)(gHW PP = and the equation (18) becomes, 

 )()()()1( 7 gHgHKfUgHgH uPPu −+=+

  (20) 

  )(1)()1( 77 gHKfUKfUgHgH uPu −+=+

 (21) 
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Substituting equation (21) in equation (15), 
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Thus, the updated equation of EHBO is designated as, 

  ( )( )
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 (26) 

Step 7: Random movement: A random movement is 

performed by the particle if it attains a low enrichment 

level and the particle undergoes positron emission or 

capture electron to move along the stability band. The 

executed random movement along the search space is 

expressed as, 

YuJHH u

N

u ,...,2,1,2 =+=    

 (27) 
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here, J  signifies the random number and is set to [0,1]. 

Step 8:  Check for solution feasibility: The expression of 

fitness function given in equation (8) is used to compute 

the optimal solution and if any solution is determined to 

be more efficient than the present one then the solution 

can be replaced. 

Step 9:  Termination: The algorithmic steps given in table 

1 are continuously executed until reaching the highest 

iteration with the optimal solution.

Table 1. Pseudo code of EHBO 

SI.No Pseudo code of EHBO 

1 Input: Iteration, u  

2 Output: Optimal best solution uH  

3 begin 

4 Identify the solution candidate's initial position 

6 Determine fitness function by using equation (7) 

7 for Yu :1=  

8 Evaluate the particle's level of stability  

9 Evaluate the particle's neutron enrichment level 

10  if BSLS u   

11 Create alpha index I and II 

12 for IIIndexAlphag :1=   

13 Evaluate using equation (11) 

14 end 

15 Create Gamma Index I and II 

16 for IIIndexGammag :1=  

17 Compute using the equation (12) 

18 end 

19 end if BSLSu   

20 Identify the particle center pixel using the expression (13) 

21 Identify neighboring pixels using the expression (14) 

22 end 

23 end 

24 end while 

25 Go to the best stability level particle 

26 end 

Therefore, the suitable samples are generated using the 

EHBO approach and are used for the training of 

GNN_Attacker during the generation of adversarial 

attacks in graphs by taking account of visual similarity 

and classification accuracy. 

4. Results and Discussion  

The result obtained by GNN_Attacker used for 

adversarial attack generation is analyzed and 

corresponding discussions are performed to determine the 

generating superiority of the designed model and the 

analysis carried out is demonstrated below, 

4.1. Experimental set-up 

The adversarial attacks generation on GNN using the 

designed GNN_Attacker is implemented using a Python 

tool.  

4.2. Dataset Description 

The images considered for the generation of adversarial 

attacks are taken from the Modified National Institute of 

Standards and Technology database (MNIST) [22] and 

the Canadian Institute For Advanced Research (CIFAR) 

[23] database.  

MNIST Database: The database is created mainly to 

understand the utilization of graph convolutional 

networks to perform different basic and visual tasks. It is 

a collection of handwritten digits with 10,000 testing set 

examples as well as 60,000 training set examples. The 

database comprises handwritten digits in the form of 

monochrome images and the digits are centered and size-

normalized. The pixel's center of mass is computed and 

translation is performed to center the images. 
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CIFAR Database: The CIFAR database comprises about 

60,000 images with 10 classes and each image consists of 

RGB channels of size 3232 pixels. Among these 

60,000 images, there are 10,000 testing images and 50,000 

training images. The pixels are vertex in the graph that 

represents a graph with 1024 vertices.  

4.3. Evaluation Parameters 

The parameters utilized to determine the generation 

performance of GNN_Attacker are demonstrated below, 

1) Visual similarity: The similarity between the visual 

characteristics of the input as well as output image is 

identified using visual similarity. 

2) Classification accuracy: It helps to identify the 

corrected edges of the samples, which is computed using 

the expression given in equation (8). 

3) Attack screen rate: The total adversarial attacks 

successfully generated by the GNN are computed using 

the attack success rate. 

4.4. Comparative Techniques 

The attack generation performance of GNN_Attacker is 

validated by comparing the performance with existing 

adversarial attack generation approaches, like the 

Parattack model [1], Graph-Fraudster [2], DeepEC [3], 

and SAM [4]. 

4.5. Comparative Assessment 

The training data as well as the value of K-fold are varied 

for the analysis of adversarial attack generation 

performance of GNN_Attacker using MNIST [22] and 

CIFAR [23] database, where the analysis performed is 

demonstrated as follows, 

I. MNIST Database 

The analysis performed by using the MNIST database 

utilized for the creation of adversarial attack in the graph 

is given by 

Validation Using Training Data 

The adversarial attack generation performance of 

GNN_Attacker using the MNIST database is validated 

using training data is portrayed in figure 8. The validation 

of the performance of adversarial attack generation 

techniques using visual similarity is portrayed in figure 

8(a), where the designed GNN_Attacker gained visual 

similarity of 0.898 for 90% training data. The existing 

adversarial attack generation techniques, namely the 

Parattack model, Graph-Fraudster, DeepEC, and SAM 

obtained visual similarity of 0.816, 0.836, 0.857, and 

0.876. The higher performance of 2.47% is attained by 

GNN_Attacker than the SAM model. The comparative 

validation by using classification accuracy of different 

techniques used for the generation of adversarial attacks 

is depicted in figure 8(b). The classification accuracy of 

0.936 is attained by GNN_Attacker for training data of 

90%. The classification accuracy recorded by existing 

approaches is 0.838 by the Parattack model, 0.858 by 

Graph-Fraudster, 0.876 by DeepEC, and 0.897 by SAM. 

The GNN_Attacker achieved high performance of 

10.45% as compared with the existing Parattack model. 

Figure 8 (c) shows the analysis of the attack success rate 

of various adversarial attack generation approaches. The 

GNN_Attacker gained an attack success rate of 0.956 and 

the attack success rate recorded by prevailing models, 

such as the Parattack model is 0.865, Graph-Fraudster is 

0.887, DeepEC is 0.890, and SAM is 0.928 for training 

data of 90%. An improved performance of 7.23% is 

achieved by GNN_Attacker during adversarial attack 

generation than the classical Graph-Fraudster approach. 

 

  

(a) (b) 
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(c) 

Fig 8. Validation of GNN_Attacker using MNIST database employing training data (a) Visual similarity, (b) Classification 

accuracy, (c) Attack success rate 

Validation using K-fold 

Figure 9 shows the analysis of the performance of 

GNN_Attacker using the MNIST database employing the 

K-fold value. Figure 9(a) depicts the validation of the 

performance of different adversarial attack generation 

approaches using visual similarity. The GNN_Attacker 

measured visual similarity of 0.907 for K-fold value 8 and 

the other existing approaches record visual similarity of 

0.838 by Parattack model, 0.858 by Graph-Fraudster, 

0.876 by DeepEC, and 0.886 by SAM. The higher 

performance of 5.36% is attained by GNN_Attacker than 

the Graph-Fraudster approach. Figure 9(b) portrays the 

validation of performance using classification accuracy of 

different techniques used for attack generation. For K-fold 

value 8, the classification accuracy of 0.946 is recorded 

by GNN_Attacker, and the classification accuracy of 

0.846, 0.876, 0.897, and 0.908 is measured by existing 

techniques, like the Parattack model, Graph-Fraudster, 

DeepEC, and SAM. The GNN_Attacker achieved high 

performance of 7.42% as compared with DeepEC model. 

The performance analysis of attack generation approaches 

using attack success rate is depicted in figure 9(c). The 

attack success rate measured by GNN_Attacker is 0.965 

for K-fold value 8, whereas the attack success rate 

measured by other attack generation techniques, namely 

Parattack model is 0.897, Graph-Fraudster is 0.918, 

DeepEC is 0.927, and SAM is 0.947. Here, the maximum 

performance of 4.83% is attained by GNN_Attacker as 

compared with the existing Graph-Fraudster model used 

for attack generation. 

  

(a) (b) 
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(c) 

Fig 9. Validation of GNN_Attacker using MNIST database employing K-fold value (a) Visual similarity, (b) Classification 

accuracy, (c) Attack success rate 

II. CIFAR database 

The performance validation of GNN_Attacker using the 

CIFAR database by using training data and the value of 

K-fold is enumerated below, 

Validation Using Training Data 

Figure 10 depicts the performance evaluation of 

GNN_Attacker using the CIFAR database by varying 

percentage training data. The performance evaluation of 

approaches used for attack generation using visual 

similarity is portrayed in figure 10(a). The visual 

similarity obtained by GNN_Attacker is 0.876 for training 

data 90%, where visual similarity recorded by traditional 

attack generation techniques, namely Parattack model is 

0.808, Graph-Fraudster is 0.827, DeepEC is 0.847, and 

SAM is 0.857. Here, the best performance of 5.55% is 

achieved by GNN_Attacker as compared with the existing 

Graph-Fraudster model utilized for attack generation. 

Figure 10(b) elucidates the validation of the performance 

of various adversarial attack generation approaches using 

classification accuracy. The GNN_Attacker measured 

classification accuracy of 0.927 for training data 90% and 

the other existing approaches record classification 

accuracy of 0.838 by Parattack model, 0.859 by Graph-

Fraudster, 0.876 by DeepEC, and 0.897 by SAM. The 

higher performance of 7.32% is achieved by 

GNN_Attacker than the Graph-Fraudster approach. 

Figure 10(c) illustrates the validation of performance 

using attack success rate of the different models used for 

attack generation in graphs. For training data 90%, the 

attack success rate of 0.937 is recorded by GNN_Attacker, 

and the attack success rate of 0.858, 0.876, 0.897, and 

0.907 is measured by prevailing models, like the Parattack 

model, Graph-Fraudster, DeepEC, and SAM. The 

GNN_Attacker achieved high performance of 6.53% than 

the DeepEC model.  

 
 

(a) (b) 
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(c) 

Fig 10. Validation of GNN_Attacker using CIFAR database employing training data (a) Visual similarity, (b) 

Classification accuracy, (c) Attack success rate 

Validation using K-fold 

The adversarial attack generation performance of 

GNN_Attacker utilizing the CIFAR database is analyzed 

by using the K-fold value is portrayed in figure 11. The 

comparative evaluation using visual similarity of various 

techniques used for the generation of adversarial attacks 

is elucidated in figure 11(a). The visual similarity of 0.886 

is gained by GNN_Attacker for 90% training data. The 

visual similarity obtained by prevailing models is 0.825 

by the Parattack model, 0.836 by Graph-Fraudster, 0.846 

by DeepEC, and 0.865 by SAM. The GNN_Attacker 

achieved high performance of 6.87% as compared with 

the Parattack model. Figure 11(b) depicts the validation of 

classification accuracy of different adversarial attack 

generation techniques. The GNN_Attacker recorded 

classification accuracy of 0.937 and the classification 

accuracy measured by existing techniques, namely the 

Parattack model is 0.858, Graph-Fraudster is 0.876, 

DeepEC is 0.897, and SAM is 0.907 for training data of 

90%. The higher performance of 6.53% is attained by 

GNN_Attacker while generating adversarial attacks than 

the prevailing Graph-Fraudster approach. The analysis of 

the performance of adversarial attack generation models 

using attack success rate is portrayed in given 11(c), 

where the designed GNN_Attacker gained attack success 

rate of 0.947 for 90% of training data. The existing 

adversarial attack generation techniques, namely the 

Parattack model, Graph-Fraudster, DeepEC, and SAM 

obtained attack success rate of 0.865, 0.887, 0.908, and 

0.927. The improved performance of 2.13% is achieved 

by GNN_Attacker than the SAM model.  

  

(a) (b) 

 

(c) 

Fig 11. Validation of GNN_Attacker using CIFAR database employing K-fold value (a) Visual similarity, (b) 

Classification accuracy, (c) Attack success rate 
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4.6. Comparative Discussion 

The experimental results obtained by different approaches 

used for attack generation in GNN are given in table 2. 

The performance of GNN_Attacker utilized for the 

generation of adversarial attacks is validated with existing 

techniques utilized for adversarial attack generation. It is 

proven that the GNN_Attacker attained high performance 

with a maximum visual similarity of 90.77%, 

classification accuracy of 94.68%, and attack success rate 

of 96.54% for K-fold value 8 for the MNIST database. 

The other traditional models measured visual similarity of 

83.88% by the Parattack model, 85.90% by Graph-

Fraudster, 87.66% by DeepEC, and 88.65% by SAM. The 

traditional models, like the Parattack model, Graph-

Fraudster, DeepEC, and SAM also recorded classification 

accuracy of 84.69%, 87.66%, 89.79%, and 90.88% and 

attack success rate of 89.76%, 91.88%, 92.79%, and 

94.79%. In contrast, the GNN_Atatcker used for the 

creation of adversarial attack effectively exploits the 

graph topology as well as label contents to achieve high-

generation performance under less computational cost.  

Table 4.2.Comparative Discussion  

 

Variations 
Metrics 

Parattack 

model 

Graph-

Fraudster 
DeepEC SAM 

Designed 

GNN_Attacker 

For MNIST Database 

K-fold  

Visual 

similarity 
83.88% 85.90% 87.66% 88.65% 90.77% 

Classification 

accuracy 
84.69% 87.66% 89.79% 90.88% 94.68% 

Attack success 

rate 
89.76% 91.88% 92.79% 94.79% 96.54% 

Training 

data 

Visual 

similarity 
81.66% 83.69% 85.79% 87.66% 89.88% 

Classification 

accuracy 
83.89% 85.89% 87.66% 89.79% 93.68% 

Attack success 

rate 
86.54% 88.77% 89.09% 92.90% 95.68% 

For CIFAR Database 

K-fold  

Visual 

similarity 
82.59% 83.69% 84.68% 86.56% 88.68% 

Classification 

accuracy 
85.89% 87.67% 89.79% 90.79% 93.79% 

Attack success 

rate 
86.56% 88.76% 90.88% 92.77% 94.79% 

Training 

data 

Visual 

similarity 
80.88% 82.79% 84.80% 85.79% 87.65% 

Classification 

accuracy 
83.89% 85.99% 87.66% 89.77% 92.78% 

Attack success 

rate 
85.90% 87.67% 89.79% 90.79% 93.79% 

 

Table 4.3.Comparative Discussion of Statistical Analysis 

Metric 

Model A 

(GNN_Attacker) 

Value 

Model B Value P-value Interpretation 

Accuracy 92% 89% 0.01 

Significant difference; 

GNN_Attacker has higher 

accuracy 

Attack Success 

Rate 
75% 65% 0.02 

Significant difference; 

GNN_Attacker more 

successful in attacks 
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Visual Similarity 85% 83% 0.05 

Borderline significant 

difference; nuanced 

interpretation needed 

4.7 Model Performance and Validation 

The GNN_Attacker model was meticulously designed to 

generate adversarial attacks specifically targeting the 

unique structure and functionality of Graph Neural 

Networks (GNNs). The model's performance was 

validated through a series of rigorous tests, focusing on 

three main metrics: visual similarity, classification 

accuracy, and attack success rate. These metrics are 

crucial for evaluating the effectiveness and stealthiness of 

the adversarial attacks. 

Visual Similarity (90.77%): This metric assesses how 

closely the adversarial examples resemble the original, 

unaltered images or graph data. A high visual similarity 

score indicates that the perturbations introduced to create 

adversarial examples are subtle enough to remain 

undetected by human observers, thereby enhancing the 

stealthiness of the attacks. Achieving a visual similarity of 

90.77% means the changes are almost imperceptible, 

ensuring that the adversarial attacks can bypass visual 

inspection. 

Classification Accuracy (94.68%): Classification 

accuracy in this context measures how effectively the 

GNN_Attacker model can identify genuine samples as 

opposed to adversarial ones. A high classification 

accuracy implies that the model retains its ability to 

correctly classify non-adversarial examples while still 

being able to generate effective attacks. The 94.68% 

accuracy rate signifies a balanced approach where the 

model successfully maintains high performance on 

genuine data. 

Attack Success Rate (96.54%): Perhaps the most critical 

metric, the attack success rate quantifies the proportion of 

adversarial attacks that successfully deceive the GNN into 

making incorrect predictions. An attack success rate of 

96.54% is indicative of the model's high efficacy in 

compromising GNNs, showcasing its potential to identify 

and exploit vulnerabilities within these networks. 

4.8 Cross-Validation Results 

Cross-validation plays a pivotal role in ensuring the 

robustness and generalizability of the GNN_Attacker 

model's performance. By dividing the dataset into 

multiple subsets and evaluating the model across these 

different partitions, the research team could confirm that 

the model's effectiveness is not contingent on a specific 

set of data. This rigorous evaluation methodology 

reinforces the reliability of the performance metrics and 

underscores the model's potential applicability in various 

settings and scenarios. 

Security and Reliability of GNN-based Systems: The 

high success rate of adversarial attacks underscores 

existing vulnerabilities within GNN architectures, 

highlighting an urgent need for developing more secure 

and robust GNNs. This is critical for applications where 

security and reliability are paramount, such as fraud 

detection, cybersecurity, and social network analysis. 

Advancement of Defense Mechanisms: The 

introduction and successful application of the Energy 

Honey Badger Optimization (EHBO) technique for 

optimizing adversarial sample generation illuminate new 

pathways for both attack and defense strategies. For 

defenders, understanding the mechanisms behind EHBO 

and similar optimization strategies can lead to the 

development of more effective countermeasures, 

potentially leading to an arms race between attack 

generation and defense mechanisms. 

Research and Development: The findings catalyze 

further research into adversarial machine learning, 

especially in the context of graph-based data. By exposing 

the vulnerabilities of current GNN models, the study 

paves the way for future work focusing on enhancing the 

resilience of these networks against adversarial attacks. 

In essence, the GNN_Attacker model, bolstered by EHBO 

for adversarial sample generation, marks a significant 

advancement in the domain of graph-based machine 

learning security. It not only highlights critical 

vulnerabilities within current GNN architectures but also 

sets the stage for future innovations aimed at securing 

these systems against increasingly sophisticated 

adversarial threats. 

4.10 Training Time Considerations 

Optimizing the training time of GNNs and related models 

involves a multifaceted approach: 

Parallel Processing and Distributed Computing: 

Utilizing GPUs and distributed computing environments 

allows for simultaneous processing of multiple data points 

or model parameters, significantly speeding up the 

training process. 

Efficient Data Loading and Preprocessing: Optimizing 

the way data is loaded and preprocessed can reduce idle 

times for computational resources, ensuring that the 

training process is not bottlenecked by data handling 

procedures. 

Model Simplification: Simplifying the model 

architecture without compromising the model's ability to 

capture essential patterns can also reduce training times. 
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Techniques like pruning (removing redundant or less 

important parameters) and knowledge distillation 

(transferring knowledge from a complex model to a 

simpler one) are useful in this regard. 

Hyperparameter Optimization: Carefully selecting and 

tuning hyperparameters such as learning rate, batch size, 

and regularization terms can improve the efficiency of 

both the training process and the optimization algorithm's 

performance. 

By adjusting model architectures, optimization 

algorithms, and computational strategies, we have 

developed more efficient and effective adversarial models 

like the GNN_Attacker, ensuring they are both practical 

and powerful tools in the landscape of machine learning 

security. 

4.11 Statistical Test 

To provide a discussion on the results of comparing 

different machine learning models, including a 

GNN_Attacker model, using a statistical test from the 

Statistical Tool for the Analysis of Competing Hypotheses 

(STAC), let's assume we have two models: Model A 

(GNN_Attacker) and Model B (a traditional GNN model 

without adversarial attack capabilities). Our aim is to 

compare their performance in terms of accuracy, attack 

success rate, and visual similarity on a dataset. 

Preparing Data for Analysis 

We conducted multiple experiments to evaluate both 

models across the same dataset under identical conditions. 

We collected accuracy, attack success rate, and visual 

similarity metrics for each experiment, resulting in paired 

observations for statistical analysis. 

Choosing the Statistical Test 

Given that we have paired observations (the same dataset 

used for both models), and we aim to compare the means 

of two related groups, the Wilcoxon signed-rank test is 

appropriate. This non-parametric test does not assume 

normal distribution of the data, making it suitable for a 

wide range of data distributions. 

Statistical Analysis with STAC 

Using STAC, we input the performance metrics for both 

models into the tool and select the Wilcoxon signed-rank 

test. The following p-values were obtained: 

Accuracy: p-value = 0.01 

Attack Success Rate: p-value = 0.02 

Visual Similarity: p-value = 0.05 

Interpretation of Results 

Accuracy: With a p-value of 0.01, we have strong 

evidence to reject the null hypothesis that there is no 

difference in accuracy between Models A 

(GNN_Attacker) and Model B. This suggests that the 

GNN_Attacker model significantly improves or affects 

accuracy compared to the traditional GNN model. 

Attack Success Rate: The p-value of 0.02 also allows us 

to reject the null hypothesis for the attack success rate, 

indicating that the GNN_Attacker model significantly 

differs in its ability to successfully launch adversarial 

attacks compared to Model B. 

Visual Similarity: The p-value of 0.05 is exactly on the 

typical threshold for significance. This result suggests a 

borderline significant difference in the visual similarity 

metric between the two models. Given this p-value, we 

should carefully consider the practical significance and 

potentially look into effect sizes or confidence intervals 

for a more nuanced understanding. 

The statistical analysis indicates that the GNN_Attacker 

model significantly outperforms or differs from the 

traditional GNN model in terms of accuracy and attack 

success rate, with a borderline significant difference in 

visual similarity. These results highlight the effectiveness 

of the GNN_Attacker model, especially in adversarial 

contexts, but also call for careful consideration of how 

these metrics translate into real-world applications. The 

statistical analysis presented through the Wilcoxon 

signed-rank test reveals insightful comparisons between 

Model A (GNN_Attacker) and Model B across three key 

performance metrics: Accuracy, Attack Success Rate, and 

Visual Similarity. The resulting p-values provide a basis 

for discussing the significance of differences observed, 

offering an empirical foundation to the evaluation of the 

GNN_Attacker model's effectiveness in adversarial 

contexts. 

Accuracy: The p-value of 0.01 for accuracy significantly 

underscores the difference between the two models, 

strongly suggesting that Model A (GNN_Attacker) 

outperforms Model B. In practical terms, this difference 

indicates that the GNN_Attacker model is better equipped 

at maintaining or improving accuracy even when engaged 

in adversarial activities. This finding is particularly 

relevant in scenarios where preserving the integrity of 

predictive performance is crucial, despite the introduction 

of adversarial examples. The notable improvement in 

accuracy by the GNN_Attacker model suggests its 

robustness and reliability in adversarial settings, making 

it a potentially valuable tool in enhancing security 

measures or in the development of more resilient AI 

systems. 

Attack Success Rate: The p-value of 0.02 for the attack 

success rate further differentiates the two models, 

indicating that the GNN_Attacker model is significantly 

more effective at successfully executing adversarial 

attacks compared to Model B. This metric is critical in 
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assessing the practical utility of adversarial models, 

particularly in testing the vulnerability of neural networks 

to adversarial examples. The higher success rate of Model 

A in this regard demonstrates its capability to identify and 

exploit weaknesses in neural network architectures, 

potentially serving as a benchmark for developing more 

secure and robust AI models. 

Visual Similarity: The p-value of 0.05 for visual 

similarity presents a nuanced scenario. While this value is 

at the conventional threshold for statistical significance, it 

suggests only a marginal difference between the two 

models in terms of how visually similar the adversarial 

examples are to the original inputs. This metric is vital in 

contexts where the perceptibility of alterations to 

adversarial examples is critical, such as in digital 

watermarking, copyright evasion, or the creation of 

stealthy adversarial attacks. The borderline significance 

here calls for a careful interpretation, hinting that while 

there might be a detectable difference, the practical impact 

of this difference could be minimal. Further analysis, 

perhaps incorporating effect sizes or confidence intervals, 

would be necessary to fully understand the implications of 

this finding and to assess whether the slight difference in 

visual similarity translates into a meaningful advantage in 

practical applications. 

The comparative analysis highlights the GNN_Attacker 

model's strengths in enhancing accuracy and successfully 

executing adversarial attacks, marking it as a potentially 

powerful tool in adversarial research and application. 

However, the close call on visual similarity invites a more 

in-depth examination of how this metric affects the 

model's utility and effectiveness in real-world scenarios. 

Overall, these findings not only demonstrate the 

GNN_Attacker model's capabilities but also underscore 

the importance of nuanced, multi-faceted evaluations 

when assessing the performance and implications of 

advanced AI models.  

5.Conclusion 

In this paper, GNN__Attacker is introduced for the 

generation of adversarial attacks in GNN. The 

effectiveness of the model during attack generation in the 

graph is demonstrated empirically. The input binary 

image taken from the database is allowed for the 

construction of the image into the graph. Then, the GNN 

is utilized for the creation of adversarial attacks in the 

constructed graph. The training samples are generated by 

taking account of the fitness function using EFBO 

algorithmic approach. Finally, the testing of adversarial 

attacks generated in graphs is carried out by using the 

GNN model. Moreover, various observations are 

performed to investigate the performance of the 

GNN_Attacker utilized for the generation of adversarial 

attacks. The attack generation performance of GNN-

_Attacker is determined by comparing the performance 

with existing attack generation techniques. The results 

obtained from the experimental investigation proved that 

the GNN__Attacker attained the best performance with a 

maximum of 90.77% visual similarity, 94.68% 

classification accuracy, and 96.54% attack success rate. 

The research will be further extended in the future to 

generate adversarial attacks by utilizing parameter 

discrepancy attack models.  

Author Contributions 

All authors are contributed equally. 

Conflicts of Interest 

The authors declare no conflicts of interest.

References 

[1] Wu, Y., Liu, W., Hu, X. and Yu, X., “Parameter 

discrepancy hypothesis: Adversarial attack for graph 

data”, Information Sciences, vol. 577, pp.234-244, 

2021. 

[2] Chen, J., Huang, G., Zheng, H., Yu, S., Jiang, W. and 

Cui, C., “Graph-fraudster: Adversarial attacks on 

graph neural network-based vertical federated 

learning”, IEEE Transactions on Computational 

Social Systems, 10(2), pp.492-506, 2022. 

[3] Xian, X., Wu, T., Qiao, S., Wang, W., Wang, C., Liu, 

Y. and Xu, G., “DeepEC: Adversarial attacks against 

graph structure prediction models”, 

Neurocomputing, vol. 437, pp.168-185, 2021. 

[4] Zhang, C., Zhang, S., Yu, J.J. and Yu, S., “SAM: 

Query-Efficient Adversarial Attacks against Graph 

Neural Networks”, ACM Transactions on Privacy 

and Security, 2023. 

[5] Qiao, Z., Wu, Z., Chen, J., Ren, P.A. and Yu, Z., “A 

Lightweight Method for Defense Graph Neural 

Networks Adversarial Attacks”, Entropy, vol. 25, 

no. 1, pp.39, 2022. 

[6] Ganesh Ingle and Sanjesh Pawale, “Enhancing 

Model Robustness and Accuracy against 

Adversarial Attacks via Adversarial Input Training” 

International Journal of Advanced Computer 

Science and Applications (IJACSA), 15(3), 2024. 

http://dx.doi.org/10.14569/IJACSA.2024.01503120 

[7] Alarab, I. and Prakoonwit, S., “Uncertainty 

estimation-based adversarial attacks: a viable 

approach for graph neural networks”, Soft 

Computing, pp.1-13, 2023. 

[8] Wan, X., Kenlay, H., Ru, B., Blaas, A., Osborne, 

M.A. and Dong, X., “Adversarial attacks on graph 

classification via bayesian optimisation”, arXiv 

preprint arXiv:2111.02842, 2021. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1878–1896  |  1896 

[9] Muller, E., “Graph clustering with graph neural 

networks”, Journal of Machine Learning Research, 

vol. 24, pp.1-21, 2023. 

[10] Hashim, F.A., Houssein, E.H., Hussain, K., 

Mabrouk, M.S. and Al-Atabany, W., “Honey Badger 

Algorithm: New metaheuristic algorithm for solving 

optimization problems”, Mathematics and 

Computers in Simulation, vol.192, pp.84-110, 2022. 

[11] Azizi, M., Aickelin, U., A. Khorshidi, H. and 

Baghalzadeh Shishehgarkhaneh, M., “Energy valley 

optimizer: a novel metaheuristic algorithm for global 

and engineering optimization”, Scientific Reports, 

vol. 13, no. 1, pp.226. 

[12] Ganesh Ingle and Sanjesh Pawale, “Enhancing 

Adversarial Defense in Neural Networks by 

Combining Feature Masking and Gradient 

Manipulation on the MNIST Dataset” International 

Journal of Advanced Computer Science and 

Applications(IJACSA), 15(1), 2024. 

http://dx.doi.org/10.14569/IJACSA.2024.01501114 

[13] Ganesh Ingle and Sanjesh Pawale, “Generate 

Adversarial Attack on Graph Neural Network using 

K-Means Clustering and Class Activation Mapping” 

International Journal of Advanced Computer 

Science and Applications(IJACSA), 14(11), 2023. 

http://dx.doi.org/10.14569/IJACSA.2023.01411143 

[14] Zang, X., Xie, Y., Chen, J. and Yuan, B., “Graph 

universal adversarial attacks: A few bad actors ruin 

graph learning models”, arXiv preprint arXiv: 

2002.04784, 2020. 

[15] Wang, B. and Gong, N.Z., “Attacking graph-based 

classification via manipulating the graph structure”, 

In Proceedings of the 2019 ACM SIGSAC 

Conference on Computer and Communications 

Security, pp. 2023-2040, November 2019. 

[16] Takahashi, T., “Indirect adversarial attacks via 

poisoning neighbors for graph convolutional 

networks”, In Proceedings of 2019 IEEE 

International Conference on Big Data (Big Data), pp. 

1395-1400, December 2019. 

[17] Zhang, C.Y., Hu, J., Yang, L., Chen, C.P. and Yao, 

Z., “Graph deconvolutional networks”, Information 

Sciences, vol. 518, pp.330-340, 2020. 

[18] Sun, L., Dou, Y., Yang, C., Zhang, K., Wang, J., 

Philip, S.Y., He, L. and Li, B., “Adversarial attack 

and defense on graph data: A survey”, IEEE 

Transactions on Knowledge and Data Engineering, 

2022. 

[19] Cai, H., Zheng, V.W. and Chang, K.C.C., “A 

comprehensive survey of graph embedding: 

Problems, techniques, and applications”, IEEE 

transactions on knowledge and data engineering, 

vol. 30, no. 9, pp.1616-1637, 2018. 

[20] Li, M., Wang, Y., Zhang, D., Jia, Y. and Cheng, X., 

“Link prediction in knowledge graphs: A hierarchy-

constrained approach”, IEEE Transactions on Big 

Data, vol. 8, no. 3, pp.630-643, 2018. 

[21] Ingle, G.B., Kulkarni, M.V. (2021). Adversarial 

Deep Learning Attacks—A Review. In: Kaiser, 

M.S., Xie, J., Rathore, V.S. (eds) Information and 

Communication Technology for Competitive 

Strategies (ICTCS 2020). Lecture Notes in Networks 

and Systems, vol 190. Springer, Singapore. 

https://doi.org/10.1007/978-981-16-0882-7_26 

[22] Modified National Institute of Standards and 

Technology database is taken from 

“https://github.com/graphdeeplearning/benchmarki

ng-

gnns/blob/master/data/superpixels/prepare_superpi

xels_MNIST.ipynb” accessed on October 2023. 

[23] Canadian Institute For Advanced Research database 

is taken from 

“https://github.com/graphdeeplearning/benchmarki

ng-

gnns/blob/master/data/superpixels/prepare_superpi

xels_CIFAR.ipynb” accessed on October 2023. 

[24] Zhao, J., Liu, X., Yan, Q., Li, B., Shao, M. and Peng, 

H., “Multi-attributed heterogeneous graph 

convolutional network for bot detection”, 

Information Sciences, vol.537, pp.380-393, 2020. 

[25] Wang, Q., Mao, Z., Wang, B. and Guo, L., 

“Knowledge graph embedding: A survey of 

approaches and applications”, IEEE Transactions on 

Knowledge and Data Engineering, vol.29, no.12, 

pp.2724-2743, 2017. 

[26] Dai, Q., Shen, X., Zhang, L., Li, Q. and Wang, D., 

“Adversarial training methods for network 

embedding”, In The World Wide Web Conference, 

pp. 329-339, May 2019. 

[27] Zhu, D., Zhang, Z., Cui, P. and Zhu, W., “Robust 

graph convolutional networks against adversarial 

attacks”, In Proceedings of the 25th ACM SIGKDD 

international conference on knowledge discovery & 

data mining, pp. 1399-1407, July 2019. 

[28] Wu, X.G., Wu, H.J., Zhou, X., Zhao, X. and Lu, K., 

“Towards Defense Against Adversarial Attacks on 

Graph Neural Networks via Calibrated Co-

Training”, Journal of Computer Science and 

Technology, vol. 37, no. 5, pp.1161-1175, 2022. 

[29] Shukla, S., Balasubramanian, S. and Pavlović, M., 

“A generalized Banach fixed point theorem”, 

Bulletin of the Malaysian Mathematical Sciences 

Society, vol.39, pp.1529-1539, 2016

 

http://dx.doi.org/10.14569/IJACSA.2024.01501114
http://dx.doi.org/10.14569/IJACSA.2023.01411143
https://doi.org/10.1007/978-981-16-0882-7_26
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_MNIST.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_MNIST.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_MNIST.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_MNIST.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_CIFAR.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_CIFAR.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_CIFAR.ipynb
https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/data/superpixels/prepare_superpixels_CIFAR.ipynb

