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Abstract: In today's busy world, stress is common because people must think about many things simultaneously. To effectively deal with 

the harmful effects of worry on your health, a person needs to notice them as soon as they appear. This study supports recognizing stress 

as a helpful method. It shows how critical physiological signs are as a reliable way to detect stress, mainly because these signals cannot be 

changed purposefully. Heart Rate Variability (HRV), a physiological signal, is used in this study to investigate how stress can be detected 

using the SWELL knowledge work (SWELL-KW) dataset of 25 Subjects. PCA (Principal Component Analysis) and IQR (Interquartile 

Range) Preprocessing techniques are applied to select 26 features and detect outliers. The proposed model used a long short-term memory 

(LSTM) model to sort stress levels from biosensors in real-time and gives 98% accuracy. This study goes even further by using explainable 

artificial intelligence (XAI) models to explain their performance by pointing out the factors the model thought were important when making 

a decision. The SHAP (SHapley Additive Explanations) model is used to understand results by making them easier to interpret. It also 

promotes acknowledging stress as a beneficial method for managing mental health, highlighting the significance of early identification and 

intervention for a proactive and comprehensive approach to mental well-being. The contributions provide significant insights and 

techniques for resolving stress-related difficulties and developing mental health awareness and resilience. 
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1. Introduction 

An individual's mental well-being reflects their overall 

state of mind and temperament. It encompasses various 

emotions, including positive, negative, inspired, and 

stressful feelings. Positive psychological well-being leads 

to a more positive outlook on life. Several factors 

contribute to psychological health, such as depression, 

personality disorders, and more. Therefore, detecting 

high-level stress and conducting laboratory tests is 

essential. Stress management methods are essential for 

determining how much stress affects our social and 

economic lives. According to the World Health 

Organization (WHO), about one in four people in the 

world deal with stress [1]. Stress in people causes 

emotional and social problems, as well as confusion at 

work and bad work. A relationship, sadness, and finally, 

committing suicide in the worst cases. This means that 

people who are stressed need to get counselling to help 

them deal with their worries. It's impossible to avoid 

worry, but taking steps to stop it can help you deal with it 

[2]. At the moment, only medical and physiological 

professionals can tell if a person is depressed or worried. 

Questionnaires [3] are one of the old ways to find out if 

someone is stressed. It will be hard for people to say 

whether they are stressed or not with this method because 

it depends on their answers. Automatically detecting stress 

lowers the chance of health problems and makes society 

better off. This makes it clear that we need a scientific tool 

that uses physiological signs to figure out how stressed 

and automatically.  

Person is. For professional growth [4], research 

emphasizes stress management as a crucial soft skill 

because of its impact on health and well-being. 

Additionally, stress negatively impacts working memory 

and cognitive flexibility, thereby decreasing the 

performance of students and professionals. Measuring 

stress is challenging, and validated questionnaires need 

users to provide direct feedback on their stress levels over 

time. Social Safety Theory appears to be a framework [5] 

that integrates knowledge from stress biology with social 

experiences to understand their impact on human health 

and well-being. The goal seems to be leveraging our 

understanding of stress biology to identify which social 

experiences are most crucial to focus on, considering the 

sophisticated regulatory mechanisms of the human brain 

and immune system.  

This process is inconvenient due to self-bias and the time 

commitment involved. Affective computing is a 

developing solution that creates machine systems that 

identify emotions, such as stress. A prevalent method for 

automatically detecting stress involves affective 

computing using biometric data, as some biometric data 

are closely associated with stress [6] and can be derived 

from a photoplethysmography (PPG) sensor commonly 
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used in smartwatches and wristbands. A new dataset was 

created during the presented research, and machine 

learning techniques were used to assess whether the two 

chosen bio-signals are strong indicators of human 

emotions [7]. Yet, some biometric data cannot be obtained 

without expensive, intrusive research-focused equipment. 

HRV-based features are elaborated on below. 

1.1. Heart Rate Variability 

HRV Heart rate variability (HRV) is calculated by the 

time interval(R-R Interval) between consecutive 

heartbeats in milliseconds, known as heart rate variability. 

The supportive branch of the autonomic nervous system 

(ANS) controls the stress or reaction, preparing us to act, 

respond, and conduct in rebuttal to life's diverse needs. 

The time between heartbeats (R-R interval) varies from 

beat to beat, and this variation in HRV can reveal a lot 

about the body's physiological state. HRV should 

naturally rise during relaxing activities and fall during 

stressful situations when the body can take advantage of 

increased sympathetic action. Heart rate variability is 

higher when the heart beats slowly; when the heart rate 

increases, such as during stress or exercise, it decreases 

during relaxing activities. Heart rate and HRV are in the 

inverse relation.  

 

Fig 1. Distribution in the Time Domain 

Heart rate variability level intuitively varies daily 

depending on activity, anxiety, and work-related stress. 

The duration between heartbeats (R-R interval) fluctuates 

from beat to beat and can give information about the 

body's physiological reaction [8]. The Time Domain 

defines how many beats are in the R-R interval. It is 

depicted in Figure 1 with a sampling Rate of 100. 

Some basic time domain features are mentioned below,  

• R-R interval: The time elapsed between two successive 

R-waves of the QRS signal on the electrocardiogram (and 

its reciprocal, Heart Rate)  

• MEAN_REL_RR: Mean of all relative RR intervals  

• SDRR: Standard deviation of R-R intervals.  

• Min HR: lowest heart rate.  

• Max HR: highest heart rate.  

• NN50: The number of pairs of successive R-R intervals 

that differ by more than 50 ms. (regular R-R intervals are 

often called NN intervals). 

• PNN25: Percentage of adjacent RR intervals differing 

by more than 25 ms. 

• PNN50: The proportion of NN50 divided by the total 

number of R-R intervals. 

• SDSD: The standard deviation of all intervals of 

differences between adjacent RR Intervals. 

• RMSSD: Root mean square of successive RR Interval's 

differences.  

Frequency Domain Features define the power distribution 

of signal and its ranges and also describe how the R-R 

interval is modulated. It is illustrated in Figure 2 with a 

sampling rate of 100 of the SWELL dataset. 

 

Fig 2. Distribution in the Frequency Domain 

Some basic frequency domain features are mentioned 

below,  

 • High (HF.) Frequencies Between 0.15–0.40 Hz Are 

Associated With Parasympathetic Activity (Recovery).  

• Lower Frequencies (LF.) Between 0.04–0.15 Hz Are 

Linked To Both Sympathetic And Parasympathetic 

Activity.  

• The Ratio Of LF/HF Is To Measure the Autonomic 

Nervous System Balance. A Higher HF And A Lower 

LF/HF Ratio Indicate An Increased HRV, Which Means 

Your Body Is Recovering. Nonlinear Domain Features 

These features analyze the geometric shape formed by 

plotting each RR interval against its successive interval. In 

Poincaré, each RR interval is plotted against the next RR 

interval, as mentioned in Figure 3. The resulting shape of 

the plot is the essential feature and can be used to identify 

a person's stress level. 
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Fig 3. Poincaré Plot of SD1 and SD2 

•Descriptors SD1 and SD2 represent this fitted ellipse's 

minor and significant semi-axes [9]. It described SD1 and 

SD2 in linear statistics. SD1 is the standard deviation of 

the distances of points. 

From axis one. It determines the width of the ellipse 

(short-term variability), and SD2 equals the standard 

deviations from axis two and the length of the ellipse 

(long-term variability) 

• The SD1/SD2 ratio represents the randomness in the 

heart rate variability time series. In one study [10], HRV 

signals obtained from a wristband-type wearable device 

with a photoplethysmography (PPG) sensor were used to 

predict daily mental stress levels. The study employed an 

autoregressive (AR) model to extract low-frequency 

(0.04Hz - 0.15Hz) and high-frequency (0.15Hz - 0.4Hz) 

features from HRV Data were collected from eight 

university students who self-evaluated their stress levels 

using the Perceived Stress Scale (PSS) three times a day 

for a week. Linear regression achieved an accuracy of 

86.35%, but the use of additional machine learning 

algorithms and established PPG analytic tools could yield 

better results. Another study [11] aimed to identify 

physiological changes during a stressful task by recording 

ECGs and inter-second heart rates using a Fitbit device 

during resting and stress phases. However, further 

investigation with a larger sample size and stratified 

anxiety scores based on the Depression Anxiety Stress 

Scale is required to analyze the association with HRV in 

more detail. The study provides insights into the latest 

advancements in this field. Stress is commonly 

intertwined with a negative connotation, often regarded as 

a subjective sensation experienced by individuals that can 

potentially impact both emotional and physical well-being 

[12]. This phenomenon is a psychological and biological 

response to various internal or external stressors. The 

authors present a global stress detection 

framework combining a reduced HRV feature set with 

a Random Forest model [13].   

Much research work is done to detect stress using HRV 

signals. Different authors applied various algorithms to 

achieve good accuracy using models. However, we have 

achieved good accuracy using the LSTM Model as well, 

and Explainable AI is used to interpret the visibility of the 

model achieved for better understanding. 

1.2. Research Gap  

Numerous research efforts have been dedicated to 

detecting stress using heart rate variability (HRV) 

signals. Various authors have applied diverse algorithms 

to achieve high accuracy in modelling stress levels. 

Among these approaches, the LSTM (Long Short-Term 

Memory) model has emerged as particularly influential. 

LSTM models, a type of recurrent neural network (RNN), 

excel in capturing temporal dependencies within time-

series data. They are well-suited for analyzing HRV 

signals, which exhibit dynamic fluctuations over time. 

Furthermore, recent studies have integrated explainable 

artificial intelligence (XAI) techniques to enhance model 

interpretability and facilitate a deeper understanding of 

the 

Factors contributing to stress detection. By employing 

XAI methodologies such as SHAP (SHapley Additive 

Explanations), researchers can elucidate the decision-

making process of the LSTM model, making the 

predictions more transparent and interpretable. 

This combined approach of leveraging LSTM models for 

accurate stress detection and employing XAI techniques 

for model interpretability represents a significant 

advancement in the field. Not only does it enable the 

achievement of high accuracy in stress detection, but it 

also provides insights into the underlying mechanisms 

driving the model's decisions. Ultimately, this enhances 

the usability and trustworthiness of stress detection 

systems, paving the way for more effective interventions 

and management strategies in various contexts. 

This study explores the generalizability of HRV-based 

machine learning models for stress detection. The 

contribution of this paper is threefold: 

• The application of preprocessing techniques such 

as PCA and IQR. 

• The utilization of an LSTM model. 

• Implementing an explainable approach (SHAP) 

facilitates a deeper understanding of the model. 

        This study advocates acknowledging stress as a crucial 

Component of mental health management, emphasizing 

the significance of early detection and intervention. By 

offering Insights and techniques for addressing stress-

related challenges, our research enhances mental health 

awareness and resilience. The integration of novel 

methodologies and Emphasis on interpretability 

distinguishes our work, paving the way for more 

comprehensive stress detection and management 

approaches.  

https://doi.org/10.1007/s42979-022-01605-z
https://doi.org/10.1007/s42979-022-01605-z
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This paper consists of several sections. Section 2 covers 

the data and methods used, including the extraction 

methods for features, outlining the purpose of the study. 

Section 3 presents the results and discussions derived from 

the experimental work. Finally, Section 4 concludes the 

paper and outlines potential avenues for future research. 

2.  Methodology 

The SWELL (Smart Reasoning for Well-being at Home 

and Work) dataset from [14] was collected at Radboud 

University. The authors requested participants not to 

smoke or drink caffeine 3 hours before the experiment, as 

these are possible confounders. Before the investigation 

started, the experiment and recordings were explained, 

and all participants signed a consent form to confirm that 

the recorded data may be used for research purposes. Body 

sensors were applied, and while the experimenter checked 

the recordings, the participant read the experiment 

instructions and filled in a general questionnaire. This 

research project included 25 people doing office tasks 

(such as writing reports, giving a presentation, reading 

emails, and seeking information) and were exposed to it 

daily. Work stress (e.g., being unexpectedly interrupted by 

an urgent email and pressure to complete work in a limited 

time). The researcher observed the subjects' computer 

usage patterns, facial expressions, body movements, 

electrocardiogram (ECG) signal, and Electrodermal 

activity (EDA) signal during the experiment. 

 The people involved participated in various 

environmental conditions:  

 No stress condition: The participants performed the 

assigned tasks for 45 minutes.  

 Time pressure condition: The time to complete each 

participant's job has been reduced to two-thirds of the time 

in a stress-free state.  

 Interruption condition: The participant received a 

suspension email during the assigned task. Some emails 

were related to their task, and participants were asked to 

take specific actions. The other emails were irrelevant, and 

the participants didn't have to do anything. 

 At the end of each experimental condition, each 

participant's perceived stress was assessed using various 

self-assessment questionnaires, including the NASA Task 

Load Index (NASATLX) by the author [15] S. G. Hart et 

al. The participants' body postures were recorded with a 

Kinect (for Windows, model 1517) depth camera. The 

body sensors, the lab's ceiling camera, and microphones 

were used to make lab records during the experiment. The 

ECG was recorded using a Mobi device (TMSI) with self-

adhesive electrodes. The electrodes were placed across the 

heart, one below the participant's right collarbone, the 

other left below the chest, with a grounding electrode 

below the left collarbone. In addition, some preprocessing 

was programmed into the recording software Portilab2. 

Mobi was used with finger electrodes to record skin 

conductance. These were fixed with Velcro tape around 

the lower part of the thumb and ring finger of the 

participant's non-dominant hand. The recording frequency 

was 2048 Hz. All signals (raw and preprocessed ECG and 

skin conductance) were stored in an S00 file. Feature 

Extraction Figure 4 depicts a heatmap that shows the 

relationship between HRV time and frequency domain 

features. 

 

Fig 4. Heatmap of HRV Features 

        Author [16] extracted the Dataset's HRV features using 

statistical methods. They computed the HRV feature 

according to the standards and algorithms proposed by 

the Task Force of the European Society. [17] Each HRV 

feature was calculated on a five-minute moving window 

as follows: The author extracted an Inter-Beat Interval 

(IBI) signal from the peaks of the Electrocardiogram 

(ECG) signal of each subject. Each HRV index was then 

computed on a 5-minute IBI array. Different sample 

features were utilized in this work, including the mean of 

the R-R interval, the median of the R-R interval, and the 

standard deviation of the interval differences between R-

R intervals that differ by more than 50 ms (known as 

pNN50).
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Fig 5. A framework of the proposed stress Prediction model

The proposed workflow in Figure 5 for stress prediction 

using wearable devices involves a systematic approach to 

harness physiological data for accurate stress level 

assessments. The summary of the workflow is as follows: 

Step 1: Data Collection The initial phase of our workflow 

focuses on gathering data through wearable devices like 

smart watches or fitness trackers. These devices come 

equipped with sensors capable of capturing physiological 

signals, notably Heart Rate Variability (HRV) for stress 

prediction. Users wear these devices during their daily 

activities, enabling continuous monitoring and collection 

of relevant biometric data, which forms the foundation for 

subsequent analysis. 

Step 2: Data Extraction HRV analysis involves extracting 

features from the time, frequency, and nonlinear domains 

to gain insights into the activity of the autonomic nervous 

system and overall cardiovascular health. 

Step 3: Preprocessing Techniques Following the data 

collection phase, the next step involves applying various 

preprocessing techniques to enhance the data's quality and 

relevance. This stage comprises two crucial processes: 

Feature Selection: The Interquartile Range (IQR) method 

selects the most informative features.  

IQR=Q3−Q1 (1) 

Where: 

Q1 is the first quartile (25th percentile) 

Q3 is the third quartile (75th percentile) 

Data points that fall above Q3 + 1.5 * IQR or below Q1 - 

1.5 * IQR are considered outliers. Additionally, Principal 

Component Analysis (PCA) is employed for feature 

selection, aiming to reduce dimensionality and 

computational complexity while retaining essential 

information for stress prediction. 26 HRV features were 

selected using preprocessing methods. 

Normalization: Standard Scalar Normalization ensures 

consistency and comparability across diverse features. 

This process scales the selected features to a standardized 

range, preventing certain features from dominating solely 

based on their more significant scale. Normalization 

enhances fair contributions from all relevant variables. 

Step 4: Deep Learning Techniques The final stage 

involves applying advanced deep learning techniques, 

explicitly leveraging Long Short-Term Memory (LSTM) 

networks for stress prediction. This phase is designed to 

capture temporal dependencies within time-series data. 

The processed and normalized features serve as inputs to 

the LSTM model, enabling it to learn intricate patterns and 

relationships embedded within the data. 

LSTM Model: Long Short-Term Memory Networks are 

highly  

Effective in handling sequential data, making them 

particularly  

Suitable for analyzing time-series information like HRV, 

The LSTM model's unique ability to retain and selectively 

update information over extended sequences enhances its 

capacity to capture nuanced patterns indicative of stress 

conditions. 

Step 5: Stress Prediction The ultimate output of the deep 

learning model is a prediction of the individual's stress 

condition based on the input features. This prediction 

provides valuable insights into an individual's stress 

levels, facilitating early detection and proactive 

management of stress-related issues. Overall, this 

comprehensive workflow integrates wearable device data, 

preprocessing techniques, and advanced deep-learning 

methodologies to enhance the accuracy and effectiveness 

of stress assessment, ultimately contributing to improved 

well-being and proactive stress management. 
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3. Results and Discussion 

This section provides a background on the deep learning 

algorithm utilizing two key components: (a) RNN 

(Recurrent Neural Network) and (b) LSTM (Long Short-

Term Memory) cell. RNN was initially developed to 

detect and categorize temporal data. It is designed to 

process sequential data, retaining and utilizing 

information from previous steps to influence subsequent 

steps. RNNs find applications in various fields, including 

speech recognition [18]. However, a significant limitation 

of RNNs is the difficulty in handling long sequences, as 

highlighted by [19]. To address the challenges associated 

with prolonged sequences, the author [20] proposed 

LSTM as an alternative type of RNN. The LSTM network 

incorporates a specific internal structure to mitigate the 

problem of vanishing and exploding gradients during 

training. This enables the LSTM to effectively capture and 

utilize information over long sequences, thus overcoming 

the limitations of traditional RNNs. 

Researchers [21] focus on stress detection in automobile 

drivers using Long Short-Term Memory (LSTM) 

networks based on ECG data. LSTM networks are a type 

of recurrent neural network (RNN) suitable for sequence 

data like ECG signals. 

We designed a sequential LSTM network with one hidden 

layer using Python Libraries [22]. 75% of data are 

allocated to the training set, and 25% of data are given in 

the 

    

 

Table 1. Comparison of the results with other state-of-the-art models 

 

References Dataset  No. of features Model  

Accura

cy  

Precisio

n  Recall  

F1-

score 

[25] SWELL−KW 17 SVM 92.75% NA NA NA 

[26]  

SWELL−KW,AMIGO

S [5]  NA.  CNN 98.30% 96.00% 96.30% 95.80% 

[27]  SWELL−KW  NA.  SVM  90.00% N.A N.A N.A 

[28] SWELL−KW 34 MLP 88.64% 93.01% 92.68% 82.75% 

[29] 

SWELL-KW+ 

WESAD 64 

ANN+N

B 95.75% 95.75% 95.75% 95.75% 

This Study SWELL-KW 26 LSTM 98% 98% 97.33% 97.66% 

Testing set. Relu activation function is used. Depending on 

how many stress and baseline samples each subject has, we 

are setting different batch sizes of 4,8,16, and 32 one at a 

time. 

The algorithm uses the training. The network is then trained 

again with a set of 32 samples. Furthermore, the epoch sizes 

chosen are 4, 8, 16, and 32. The exact procedure is repeated 

until each model has spread throughout our network. It helps 

to prevent the blending of samples from different subjects. 

Early stopping is used to avoid over-training the model. 

After some time, the number of epochs is limited based on 

specific criteria. They minimize the validation loss while 

training in each epoch, the criterion used to determine when 

to stop training a model early. 

 

Fig 6. Accuracy vs. epoch of training and testing 

Figure 6 visually represents the relationship between the 

accuracy of a machine learning model on both the training 

set and testing set across different epochs. The x-axis 

corresponds to the number of epochs, which are iterations 

over the entire dataset during the training process. The y-

axis denotes the accuracy achieved by the model on both the 

https://link.springer.com/article/10.1007/s42979-022-01605-z
https://link.springer.com/article/10.1007/s42979-022-01605-z
https://link.springer.com/article/10.1007/s42979-022-01605-z
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training and testing datasets and shows the confusion matrix 

of the predicated and actual stress labels. Overall, 98% 

accuracy was gained using the LSTM Model. 

The performance of the LSTM model for multiclass stress 

classification has been evaluated through Classifier 

Evaluation Measures based on the SWELL−KW dataset. 

(eq. (2)), Recall (eq. (3)), Accuracy (eq. (4), F1-score (eq. 

(5)), classification report, and confusion matrix. It is a 2-

dimensional table (actual versus predicted), and both 

dimensions have four options, namely, true positives (TP), 

false positives (FP), true negatives (TN), and false negatives 

(FN).TP is an outcome where the model estimates the 

positive class accurately; TN is an outcome in which the 

model correctly predicts the negative class. FP is an 

outcome where the model estimates the positive class 

inaccurately; and FN is an outcome in which the model 

forecasts the negative class incorrectly. Accordingly, the 

performance metrics for a given class are expressed as 

follows [23] [24]. 

Precision = TP/TP + FP (2) 

Recall = TP/ TP + FN    (3) 

Accuracy = TP + TN / TP + TN + FP + FN (4) 

F1-score = 2 × Recall * Precision /Recall+ Precision (5) 

This study demonstrates promising results compared to 

previous studies that have utilized the SWELL-KW dataset. 

A comparative analysis mentioned in Table 1 reveals the 

strengths of the LSTM model employed in this study: The 

LSTM model achieved an accuracy of 98.00%, which 

outperforms several other models such as SVM, MLP, CNN 

and ANN+NB. 

4. Explainable AI- SHAP Model 

Interpretability is a critical part of the machine-learning 

workflow. However, a machine learning model can no 

longer be maintained in a "black box".Stress levels are 

explained based on their HRV by using explainable machine 

learning (XML) [30]. ML systems are sometimes called 

"black boxes." ML models, like XML, help end users 

understand their goals, decisions, and thinking. 

Stress detection was achieved by obtaining physiological 

sensor data from 32 participants during Baseline, Stress, 

Recovery, and cycling sessions. The outcomes of every 

wearable device were compared by classifying four stress 

classes with machine learning algorithms. Subsequently, an 

advanced explainable artificial intelligence technique was 

implemented to elucidate the predictions made by our 

models and examine the impact that various features exert 

on the outputs of the models [31].To implement XAI 

analysis in Multiclass classification difficulties and use it to 

improve the model, we described how to apply SHAP via a 

deep learning approach. A method for explaining individual 

predictions based on the optimal Shapley values for games 

was developed by [32] and is known as SHAP (Shapley 

Additive Explanations). However, the Shapley value 

calculation required to determine feature contributions is 

computationally intensive. KernelSHAP, TreeSHAP, and 

DeepSHAP are the primary techniques for approximating 

SHAP values to increase computation efficiency. Adapting 

the Deep SHAP equation for the LSTM model involves 

considering the sequential nature of the data. The adapted 

Deep SHAP equation (6) for LSTM models can be 

expressed as follows: 

𝜙𝑗, 𝑡(𝑥) =  ∑ ∣𝑆∣!( 𝑝 −∣∣𝑆∣∣−1 )!

𝑝!
 [𝑓(𝑥𝑆,𝑡 ∪ {𝑗}) −𝑆⊆{1,…,𝑝}∖{𝑗}

𝑓(𝑥
𝑆,𝑡

)](6) 

 

Where 

ϕj,t(x) is the SHAP value of feature j at time step t. 

S represents a subset of features excluding feature j. 

p is the total number of features. 

xS,t denotes the input sequence with only the features in 

subset S at time step t. 

f is the LSTM model's prediction function. 

The summation is performed over all subsets S of features 

excluding feature j. The difference in model predictions 

between the input sequence with and without feature j at 

time step t is computed for each subset. The weighted 

average of these differences is then calculated to obtain the 

SHAP value for feature j at time step t. 

SHAP offers global and local interpretation methods based 

on aggregations of Shapley values. SHAP gives each feature 

a relevance value for a specific prediction. It discovers a 

new class of additive feature importance measures. shap. 

The shap.DeepExplainer is used in the SHAP library to 

compute SHAP values. 

Summary of the steps involved in using the 

shap.DeepExplainer. 

• Initialize the DeepExplainer with your trained 

model and a background dataset. 

• Compute SHAP values for specific input 

sequences using the initialized explainer object. 

• Interpret the SHAP values to understand the 

importance of each feature in the model's 

predictions. 

4.1. The dependency plot  

The dependency plot, as defined in  Figure 7, is a 

visualization tool within the SHAP (Shapley Additive 

exPlanations) framework that helps understand the 
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relationship between a feature and its corresponding SHAP 

values. It illustrates how changes in the value of a specific 

feature influence the prediction made by a machine learning 

model. The vital plot in this plot is created by stacking the 

effects of a feature on the classes. Therefore, that is the plot 

where you can see if you created features to set a particular 

class apart. In other words, you can see what the Computer 

learned from the characteristics by looking at the multiclass 

classification summary in a graphical Way.  

 

Fig 7. Feature Importance Plot using SHAP a) 

 a) https://shap.readthedocs.io/ 

B. The waterfall model  

The waterfall model in SHAP is a visualization technique 

that displays the contribution of each feature to the final 

prediction in a step-by-step manner. It provides a clear and 

intuitive representation of how each feature affects the 

prediction and the cumulative effect of adding or subtracting 

features. The waterfall model starts with a baseline value, 

which represents the expected average prediction of the 

model. Then, each feature's contribution is shown as a series 

of bars, with positive or negative values indicating whether 

the feature increases or decreases in Figure 8. Each plot 

provides a unique perspective on feature importance,  

 

Fig 8. Water Fall Plot using SHAPa) 

a) https://shap.readthedocs.io 

relationships, interactions, and contributions, aiding in the 

interpretability and explainability of machine learning 

models. The plot choice depends on the 

Specific requirements and characteristics of the model and 

the insights sought by the user. 

5. Conclusion  

This study demonstrated the potential of using physiological 

HRV signals for stress detection in human physiological 

sensing. By incorporating different time domain features, 

frequency domain features, and nonlinear features, we have 

developed an LSTM-based stress prediction model. The 

model was trained and tested on the SWELL-KW dataset, 

consisting of physiological signals from 25 subjects. The 

results have been promising, with the LSTM model 

achieving a testing accuracy of 98% using stress level 

classification states. Furthermore, we have employed the 

Explainable AI technique SHAP to gain insights into the 

model's decision-making process and attribute importance. 

The SHAP analysis has contributed to the interpretability 

and transparency of our model, enhancing our 

understanding of the underlying factors driving stress 

predictions. In future work, we aim to investigate the 

evolution of stress patterns over time by focusing on various 

emotional transition states and try to incorporate time-series 

analysis techniques and advanced modelling approaches to 

achieve this. These methods will enable us to capture and 

predict emotional transitions, allowing for a deeper 

understanding of stress dynamics. In addition, we will 

develop real-time stress monitoring systems to make our 

research more practical and applicable. It will involve 

integrating the LSTM model, known for its effectiveness in 

handling time-series data, with wearable devices or mobile 

applications. Doing so allows us to continuously monitor 

and assess an individual's stress levels in real time. 

Furthermore, the real-time stress monitoring systems will 

provide immediate feedback and interventions for effective 

stress management. For instance, if the system detects high-

stress levels, it can deliver personalized recommendations 

for stress reduction techniques or suggest calming activities. 

By providing real-time support, individuals can manage 

their stress levels and promote overall well-being. 
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