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Abstract: IoT devices finds its application in almost all the fields leading to streaming of enormous amount of big and small data. This 

leads to many operational problems in load balancing, energy management, latency in processing and storage methods. Edge and cloud 

computing is leveraged as a potential solution to resolve these problems through its resourceful architectures and on demand services. 

However, achieving optimal energy efficiency and latency in time critical medical applications is still an open-ended research topic, that 

draws the attention of the researchers. This work proposes Energy aware Multi Agent Deep Queue Optimisation (E-MADQ) technique 

that classifies the priorities of the medical tasks using Ensemble Empirical Mode Decomposition (EEMD) smoothened with Extreme 

Gradient Boost (XGBoost) by extracting Intrinsic Mode Functions and averaging their spectrum characteristics. The offloading decision 

is made using the multi-agent deep queue optimization where the rewards are calculated based on the energy level of the IoT devices, 

which is very crucial parameter. By this, the tasks that demands high attention will not be left in starvation and proper resources allocation 

is done for time critical tasks. The experimental simulation of the proposed methodology shows that a good improvement in service 

parameters such as mean delivery time, communication and computing delay, execution time and energy level can be attained. In future, 

the classification of task priorities can be done with powerful deep learning techniques with more focus on dynamism.  
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1. Introduction 

The rapid advancement of mobile communication 

technology, Cloud Computing (CC), and Internet of Things 

(IoT) has led to their widespread adoption across various 

domains. These technologies, alongside others, offer 

convenient services to end-users. The primary aim of IoT is 

to efficiently manage resources based on user demands and 

transform vast amounts of heterogeneous data from IoT 

devices into usable information.  

However, IoT devices face increased computing and energy 

loads due to their time-critical nature and resource 

consumption. Computational offloading, where intensive 

tasks are transferred to other systems for processing, is a 

viable solution. Mobile Cloud Computing (MCC) enables 

IoT devices to offload computing tasks to cloud servers, 

thus reducing power consumption and extending battery 

life. However, offloading tasks to cloud servers may result 

in higher transmission delays and communication 

overheads. Mobile Edge Computing (MEC) emerges as a 

promising paradigm to address these challenges by 

processing tasks closer to end devices, reducing latency and 

improving efficiency.  

Nevertheless, issues arise in distributing and handling sub-

tasks within edge and main clouds. Efficient offloading 

algorithms are crucial for coordinating Edge Clouds (EC) 

and end devices, considering factors like device energy, 

bandwidth, connectivity, application latency, and workload 

distribution. Resolving offloading challenges is critical for 

MEC's success, emphasizing the need for more efficient 

approaches and thoughtful design considerations during EC 

setup. 

1.1.objective 

The " Energy aware Multi Agent Deep Queue Optimization 

for efficient Resource Allocation and Task Offloading in 

Cloud Edge" project is to tackle the operational hurdles 

encountered by Internet of Things (IoT) devices across 

diverse sectors, with a particular emphasis on addressing 

challenges within time-sensitive medical applications. The 

proposed solution, the Energy-aware Multi-Agent Deep 

Queue Optimization (E-MADQO) technique, is devised to 

enhance energy efficiency and diminish latency in 

processing critical medical tasks, critical for healthcare 

professionals striving for optimized patient care. 

The core of the proposed model lies in its ability to leverage 

advanced techniques such as Ensemble Empirical Mode 

Decomposition (EEMD) coupled with Extreme Gradient 

Boost (XGBoost) to classify medical tasks based on their 

priority levels. By considering factors such as the criticality 
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and computational intensity of each task, the model can 

effectively discern between urgent medical procedures and 

less time-sensitive operations. This prioritization enables 

the system to allocate resources dynamically, ensuring that 

high-priority tasks receive the necessary attention while 

mitigating latency and optimizing power consumption. 

Moreover, the model incorporates insights from medical 

professionals, tapping into their expertise to label 

applications and prioritize treatments accurately. By 

integrating domain knowledge into the classification 

process, the model enhances the precision of task 

classification, thereby improving the overall efficiency of 

the system.. 

To validate the effectiveness of the proposed approach, the 

project employs experimental simulations to assess various 

service parameters. These parameters include mean delivery 

time, communication and computing delay, execution time, 

and energy levels. Through rigorous testing and analysis, 

the project aims to demonstrate tangible improvements in 

these metrics, illustrating the efficacy of the E-MADQO 

technique in enhancing the performance of IoT devices in 

medical settings. 

By addressing the operational challenges faced by IoT 

devices in time-critical medical applications, the project 

contributes to the advancement of more efficient and 

responsive healthcare systems. The reduction in latency and 

enhancement of energy efficiency not only improve patient 

care but also have broader implications for healthcare 

delivery, enabling healthcare professionals to make more 

informed decisions and optimize resource utilization. 

Overall, the project represents a significant step forward in 

harnessing advanced computational techniques to address 

real-world challenges in healthcare. Through its innovative 

approach and rigorous validation, the project aims to pave 

the way for the adoption of cutting-edge technologies in 

medical settings, ultimately leading to improved patient 

outcomes and more efficient healthcare delivery. 

2.Problem Statement 

The problem addressed in this project revolves around the 

operational challenges encountered by Internet of Things 

(IoT) devices, particularly in time-critical medical 

applications. As IoT devices are increasingly deployed 

across various fields, they generate vast amounts of data, 

leading to issues such as load balancing, energy 

management, and latency in processing and storage. While 

edge and cloud computing have been proposed as potential 

solutions, achieving optimal energy efficiency and latency 

in medical applications remains a significant research gap. 

The core issue lies in the computational and energy burdens 

placed on IoT devices, especially in scenarios where timely 

processing of medical data is critical for patient care. 

Current approaches often lack efficiency in resource 

allocation and task prioritization, leading to suboptimal 

performance in terms of both energy consumption and 

latency. Traditional methods do not adequately address the 

dynamic nature of medical tasks, where certain procedures 

require immediate attention while others can afford some 

delay. 

To tackle this problem, the project proposes the Energy-

aware Multi-Agent Deep Queue Optimization (E-MADQO) 

technique. This novel approach aims to classify medical 

tasks based on priority using Ensemble Empirical Mode 

Decomposition (EEMD) smoothed with Extreme Gradient 

Boost (XGBoost). By extracting intrinsic features from 

medical signals, the model can discern critical tasks from 

less urgent ones, allowing for more efficient resource 

allocation. 

3.Existing System 

Existing systems for addressing operational challenges 

faced by IoT devices, particularly in time-critical medical 

applications, often rely on traditional cloud computing and 

basic edge computing solutions. Cloud computing involves 

centralized data processing and storage in remote servers, 

which can lead to latency issues and high communication 

overheads, especially for real-time applications like 

healthcare. On the other hand, basic edge computing 

solutions involve offloading tasks to nearby edge devices, 

which may not always be efficient in terms of resource 

allocation and load balancing. 

In traditional cloud computing, IoT devices typically send 

all data to remote cloud servers for processing and storage. 

While this approach centralizes computational resources, it 

often results in high latency due to the distance between the 

IoT devices and the cloud servers. Moreover, the 

transmission of large amounts of data over the network can 

lead to increased communication overhead and may not be 

suitable for time-critical applications like medical 

diagnostics. 

Basic edge computing solutions involve offloading tasks to 

nearby edge devices, such as routers or gateways, for 

processing. While this approach can reduce latency by 

processing data closer to the source, it may not always be 

efficient in terms of resource allocation and load balancing. 

Moreover, edge devices may have limited computational 

capabilities and storage capacity, which can affect the 

performance of time-critical applications. 

4.Literature Survey 

Increasing the performance of machine learning-based IDSs 

on an imbalanced and up-to-date dataset, (2022), G. 

Karatas, O. Demir, and O. K. Sahingoz, This paper surveys 

the state-of-the-art in programmable networks with an 
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emphasis on SDN. We provide a historic perspective of 

programmable networks from early ideas to recent 

developments. Then we present the SDN architecture and 

the Open Flow standard in particular, discuss current 

alternatives for implementation and testing of SDN-based 

protocols and services, examine current and future SDN 

applications, explore promising research directions based 

on the SDN paradigm. [1]. 

The work discusses the pros and cons of differ genres of 

approaches such as mathematical models, heuristic 

algorithms, game theory, graph theory, Lyapunov 

optimization, Reinforcement learning and Markov Decision 

Process. A novel Lyapunov optimization-based dynamic 

offloading algorithm is proposed by Kumaran et al. which 

integrates the offloading decision and the CPU-computation 

cycles for the execution of mobile applications [2]. 

The chief contribution of this approach is that the offloading 

decision rely only on current system state without any 

information distribution. However, this algorithm has been 

validated only on mobile device, which lacks genericity. 

Dinh et al. deployed a multi-user and multi-edge-node 

offloading problem, which is formulated as non-cooperative 

exact potential game [3]. 

The MU maximises its processing capacity in selfish 

manner in static channels to achieve Nash equilibrium by 

employing best response-based offloading method. Though 

the method shows superior performance, the user mobility 

was not considered in this work. Ke Zhang et al. formulated 

the offloading of computations and file transfers as an 

optimization problem,  with mitigated energy consumption 

[4]. 

   

This energy efficient system incorporates the multi-access 

characteristics of 5G network during radio resource.  But 

this method does not consider the offloading schemes below 

a certain threshold. To achieve maximum system utility by 

establishing a trade-off between throughput and fairness, 

Ran Bi et al. designed an computationally economical 

scheme [5]. 

This works on the basis of  Karush-Kuhn-Tucker condition 

that deploys gradient-based approach. A holistic survey of 

MEC technology that augments the motivation and 

evolution of remote computing technologies is done by 

Mohammed Maray et al [6].   

This work presents an up-to-date status quo of the concepts 

used in offloading mechanisms, its granularities, along with 

the techniques. A near-end network solution for offloading 

in MEC is proposed by Saranya et al [7]. 

The work primarily focus on reducing the latency and 

energy consumption and hence other QOS parameters takes 

a back seat.  Another important work that deploys 

reinforcement learning is proposed by Miaojiang Chen et al. 

[8] 

Sensing-based spectrum sharing in cognitive radio 

networks, 2022, X. Kang etal, This spectrum sharing model 

can achieve a higher capacity of SU link and improve the 

spectrum utilization. Also achieved the ergodic capacity of 

the SU link considering both transmit and interference 

power constraints [9] 

Optimal wideband spectrum sensing framework for 

cognitive radio systems, 2022, P. Paysarvi-Hoseini and N. 

C. Beaulieu, Provided secondary transmission opportunities 

over multiple non overlapping narrowband channels is 

presented. An efficient iterative algorithm which solves the 

optimization problem with much lower complexity [10]. 

Power, sensing time, and throughput tradeoffs in cognitive 

radio systems: A cross-layer approach,  2018, K. Hamdi and 

K. B. Letaief, A cross-layer optimization problem to design 

the sensing time and optimize the transmit power in order to 

maximize the cognitive system throughput while keeping 

the interference to the primary user under a threshold 

constraint [11].  

5.Proposed System 

The model proposed in this work mitigates latency at 

reduced power consumption of the edge IoT device. These 

devices are generally healthcare sensors, body parameter 

monitoring devices, scanning equipment, or any other 

applications associated with health domain, which demands 

minimum delay in data processing. The MEC servers plays 

two major roles: performs local computation and offloads to 

the core cloud for computation. 

The decision of performing the computations locally or on 

the core cloud is done based on the offloading decision, 

which greatly relies on the type of task. As the application 

is focussed on medical domain, prioritised treatments are of 

primary importance to the healthcare professionals. Hence, 

the work uses the Ensemble Empirical Mode 

Decomposition (EEMD) which is further smoothened by 

XGBoost to classify the tasks with higher priority based on 

the previous experience. 

The critical, computationally intensive  and time sensitive 

medical equipment are given higher priority than the others. 

The labelling of the applications is done using the medical 

expertise of the professionals. After classifying the tasks 

based on its critical nature, the offloading decision is made 

using the novel  based on the two criteria namely latency 

and power consumption is made by the novel Energy aware 

Multi Agent Deep Queue Optimisation  

(E-MADQO).   

Empirical Mode Decomposition (EMD) a data-adaptive 

technique that decomposes the signal into meaningful 
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components. They can analyse and processing non-linear,  

non-stationary signals by isolating them into physical 

components with different resolutions This property of the 

of EMD make is suitable for mission sensitive applications 

like biomedical data analysis, bearing fault detection, 

seismic signal analysis and power signal analysis. 

In EMD, the physical signal x(𝑡) is decomposed into number 

of Intrinsic Mode Functions (IMFs) where the signal is 

expected to meet two criteria: firstly, the total  number of 

extrema must be same as the number of zero crossing or the 

difference can be at most 1 and secondly  the average of the 

upper and lower envelope of the signal must be is zero at all 

points. This empirical EMD signifies true IMF as the 

average of the corresponding IMF that is obtained by EMD 

through ensemble of trials with varied realizations of white 

noise added to the signal x(t). 

The XGBoost algorithm is integrated with the EEMD of the 

non-stationary signal to prioritize the tasks based on their 

nature. The energy spectrum characteristics of the medical 

signals are decomposed into individual IMF components. 

An extended feature vector is formed by EEMD. The 

XGBoost feature selection is done by reducing the 

dimensions of the heterogeneous physical signals. 

6.Software Components 

6.1 Keras 

Keras, a popularly known python library, operates atop 

either TensorFlow or Theano. While alternative high-level 

Python neural networks libraries like TF-Slim can be 

applied aboveTensorFlow, they are less developed. Keras 

simplifies TensorFlow code by utilizing a more concise 

code base, ensuring reduced code length and smoother 

processing. Keras is used for a graphical representation of 

the models which helps to understand the structure of the 

model. Auto Keras, a library based on keras, has also gained 

popularity and can be used to make it quicker to get results. 

6.2 Pandas  

Pandas is a powerful open-source data manipulation and 

analysis library in Python, widely used for handling 

structured data. It provides high-performance, easy-to-use 

data structures and tools for working with structured data, 

making it an essential tool for data scientists, analysts, and 

developers. The primary data structures in Pandas are Series 

and DataFrame. Series is a one-dimensional labeled array 

capable of holding data of any type, while DataFrame is a 

two-dimensional labeled data structure resembling a 

spreadsheet or SQL table. Pandas offers a wide range of 

functions and methods for data manipulation, including 

filtering, sorting, grouping, merging, and reshaping data. It 

also supports handling missing data and time-series data 

efficiently. Moreover, Pandas integrates seamlessly with 

other Python libraries, such as NumPy, Matplotlib, and 

scikit-learn, making it a valuable tool for data analysis, 

visualization, and machine learning tasks. Overall, Pandas 

simplifies the process of data manipulation and analysis in 

Python, enabling users to perform complex data tasks with 

ease and efficiency. 

6.3 NumPy 

NumPy is a fundamental library in Python for numerical 

computing that provides support for large, multi-

dimensional arrays and matrices, along with a collection of 

mathematical functions to operate on these arrays 

efficiently. It is an essential tool for data scientists, 

engineers, and researchers working with numerical data and 

mathematical computations. NumPy's main object is the 

ndarray (N-dimensional array), which is a flexible container 

for homogeneous data, allowing for fast operations on large 

datasets. The ndarray enables vectorized operations, which 

perform mathematical operations on entire arrays without 

the need for explicit looping, making computations faster 

and more concise.  

6.2.1 Flow of system 

 

                    Fig 1. Flow Diagram 
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6.2.2 Block Diagram 

                     

                    Fig 2. Block Diagram 

7. Implementation Methodology 

7.1 Ensemble Empirical Mode Decomposition 

smoothened  

Empirical Mode Decomposition (EMD) a data-adaptive 

technique that decomposes the signal into meaningful 

components. They can analyze and processing non-linear, 

non-stationary signals by isolating them into physical 

components with different resolutions. This property of the 

of EMD make is suitable for mission sensitive applications 

like biomedical data analysis, bearing fault detection, 

seismic signal analysis and power signal analysis. In EMD, 

the physical signal x(𝑡) is decomposed into number of 

Intrinsic Mode Functions (IMFs) where the signal is 

expected to meet two criteria: firstly, the total number of 

extrema must be same as the number of zero crossing or the 

difference can be at most 1 and secondly the average of the 

upper and lower envelope of the signal must be is zero at all 

points. 

7.2 EEMD smoothened with XGBoost for prioritizing 

the tasks  

Input: Signals from various medical devices (x(t)) 

Output: Prioritized tasks 

EEMD 

Generate white noise 𝑥𝑖ሺ𝑡ሻ = 𝑥ሺ𝑡ሻ + 𝑤𝑖ሺ𝑡ሻ.   

For each signal extract their IMFs for k number of modes 

The mean IMF is estimated as 

𝐼𝑀𝐹𝑘
⬚ሾ𝑡ሿ =  

σ ⬚𝐼
𝑖=1 𝐼𝑀𝐹𝑖

𝑖ሾ𝑡ሿ

𝐼
 

For i=1 to N do: 

   Train a weak base learner bt : X🡪R, where X is the 

𝐼𝑀𝐹𝑘ሾ𝑡ሿ   

    initialized as Di (t)= (1/k), where k is the number of 

modes. 

    Determine the weight αi of bt. 

    Model is trained by using by Zt is the normalization factor 

: 

𝐷ሺ𝑡+1ሻሺ𝑖ሻ =
𝐷𝑡ሺ𝑖ሻ𝑒−𝛼𝑡 𝑦𝑖 𝑏𝑡 ሺ𝑥𝑖ሻ   

𝑍𝑡

 

End for 

Task priority (f(x)) = σ ⬚𝑇
𝑡=0 𝛼𝑡ℎ𝑡 

The XGBoost algorithm is integrated with the EEMD of the 

non-stationary signal to prioritize the tasks based on their 

nature. The energy spectrum characteristics of the medical 

signals are decomposed into individual IMF components. 

An extended feature vector is formed by EEMD. The 

XGBoost feature selection is done by reducing the 

dimensions of the heterogeneous physical signals. The input 

to the XGBoost classifier determines the various types of 

tasks from the medical devices. The primary objective of the 

EEMD-XGBoost is used to schedule the offloading tasks in 

edge cloud system. In this, the resource manager aids the 

process of scheduling the offloading tasks to decrease the 

entire service period. In addition to this, this improves the 

edge-cloud resource efficiency.                  

7.3 Energy aware Multi agent deep Queue Optimisation  

The Energy-aware Multi-agent Deep Queue Optimization 

(E-MADQ) algorithm introduces a reinforcement learning 

(RL) approach to optimize offloading decisions in IoT 

environments. It employs multiple agents placed in the 

environment, each making decisions based on its observed 

energy level without prior initialization of dynamics. The 

Markov Decision Process (MDP) framework guides the 

agents through states and actions, with rewards determined 

by energy levels and offloading decisions. The algorithm 

evaluates the energy level of each device and compares it to 

operational thresholds, determining whether to offload tasks 

or not. This decision-making process iterates for each agent, 

ensuring that no device remains underutilized. By 

considering energy levels and task requirements, E-MADQ 

efficiently allocates tasks, maximizing system performance 

in energy-constrained IoT environments. 

Input: Task t, Energy level of the device of task t en(t), le, fe 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1940–1948 |  1945 

Output: Offloading decision 0-do not offload, 1-offload 

t🡪current task  

en(t)  🡪energy level of the tasks 

if en(t)   ≤ le then  

  set  𝑅𝑡 ሺ𝑒𝑛ሺ𝑡ሻ , 𝑎𝑡ሻ = 1 

  return 0 

break 

else if 𝑙𝑒 ≤   𝑒𝑛ሺ𝑡ሻ ⬚ ≤
𝑓𝑒−𝑙𝑒

𝑓𝑒+𝑙𝑒
  or t is not high priority 

   set 𝑅𝑡 ሺ𝑒𝑛ሺ𝑡ሻ , 𝑎𝑡ሻ = 2 

   return1 

break 

else 

   return1  

break 

This algorithm is done repeatedly for all the agents in the 

state space. As multiple agents spawn in the state space, they 

will not be left starving. Thus the proposed E-MADQ 

algorithm is employed to make final offloading decisions by 

considering the energy levels and energy requirements of 

the  offloading task. 

8.Architecture 

             

Fig 5. Architecture 

9. Acquired Results 

9.1 Parameter setup for the proposed methodology 

Their environment has three edge network layers for cloud, 

terminal and heterogeneous edge layer. The experimental 

simulation is done with 1–4 wired edge servers along with 

2–8 wireless edge servers all distributed in the edge layer. 

The parameter setup for the proposed methodology is given 

in Table 1. 

Table 1: Parameter setup 

Technique Parameter Range 

EEMD  
Number 

of iterations 
10 

Smoothened 

with 

XGBoost 

Number of 

trees 
100 

  Number of 

cores 
5 

  Depth 4 

  Number of 

bootstraps 
50 

  K for IMF 5 

E-MADQ 

Number of 

iterations 
5000 

Learning rate 

for the agent 
0.001 

Size of the 

minibatch 
32 

Rate of reward 

attenuation  
0.7 

9.2 Setting up of simulation environment 

The provided system specifications offer a comprehensive 

comparison between two distinct software options: 

CloudSim and Azure Stack Edge. CloudSim emerges as the 

frontrunner, boasting superior performance metrics across 

multiple parameters. With a MIPS rating of 1000, CloudSim 

sets a high standard for computational power, ensuring 

efficient execution of complex tasks. Moreover, its 

substantial RAM allocation of 2048 MB facilitates smooth 

multitasking and enhances overall system responsiveness. 

The generous storage capacity of 1,000,000 MB further 

solidifies CloudSim's position as a robust solution for data-

intensive applications, allowing ample room for storing 

large datasets and files. However, CloudSim's limitation lies 

in its supported bandwidth, capped at 1000 MBPS. While 

sufficient for most typical workloads, this may pose a 

constraint for scenarios requiring ultra-high-speed data 

transfer. In contrast, Azure Stack Edge offers a more modest 

set of resource allocations. With a MIPS rating of 300 and 
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512 MB of RAM, it provides adequate computing power for 

basic tasks and applications. The storage capacity of 10,000 

MB, though notably smaller than CloudSim's, still offers 

ample space for storing essential data and applications. 

Where Azure Stack Edge truly shines is in its supported 

bandwidth, which is significantly higher at 10,000 MBPS. 

This substantial bandwidth allocation ensures swift data 

transfer and seamless connectivity, making Azure Stack 

Edge an attractive option for applications that prioritize 

network speed and reliability. 

Table 2: simulation environment 

Software/ 

System 
Parameter 

Range/ 

Value 

CloudSim 

MIPS 1000 

RAM 2048 MB 

Storage 
1,00,000 

MB 

Supported 

bandwidth 

1000 

MBPS 

Azure Stack 

Edge 

MIPS 300 

RAM 512 MB 

Storage 
10,000 

MB 

Supported 

bandwidth 

10,000 

MB 

System 

Specifications 

OS 
Windows 

11 

RAM 16 GB 

Processor  Core i10 

Hard disk 

capacity 
256 GB 

 

10.Performance Metrics 

The performance metrics for evaluating the efficiency of the 

proposed system are defined as follows: 

- True Positive (TP): Legs correctly categorized as 

positive. 

- False Positive (FP): Legs incorrectly categorized as 

positive. 

- False Negative (FN): Legs correctly categorized as 

negative but identified as positive. 

- True Negative (TN): Legs correctly categorized as 

negative. 

Accuracy: A computation metric reflecting the system's 

error, calculated as the difference between potential and 

actual outcomes. Low accuracy arises when the machine 

consistently evaluates input variables with the same 

procedure, yielding consistent but incorrect results. The 

ratio of correct outcomes to the total is known as accuracy. 

 

Precision:  

It is a measure of random error in algebraic terms.   

 

Precision is a statistical metric used to gauge the accuracy 

of a classification or prediction model, particularly in binary 

classification scenarios. It measures the proportion of 

correctly predicted positive cases (true positives, TP) 

relative to all cases that were predicted as positive, including 

both true positives and false positives. 

10.1Performance Comparison: 

The performance of the  proposed methodology is assessed 

on the metrics as discussed above ad its performance is 

compared with Collaborative Task Offloading and Resource 

Allocation Algorithm (CTORAA), Dynamic Energy-

Efficient Load Balancing (DEELB), supervised learning-

based computational offloading (DSLO) , and  Dynamic 

Task Offloading in Mobile Edge  (DTOME). The analysis 

of the Mean  Delivery Time (MDT) of the proposed method 

in comparison with other methods as mentioned below is 

shown in Figure 6 

 

Fig 6. Comparative analysis of Mean Delivery Time 

11. Existing System Performance 

The comparative analysis of the proposed E-MADQ 

methodology highlights its superior Mean Delivery Time 

(MDT) performance across various nodes compared to 

alternative techniques. Specifically, the E-MADQ method 

demonstrates notable efficiency in delivering messages 

promptly, as evidenced by its consistently lower MDT 

across different node configurations. Particularly 

impressive is the average MDT of 16.33ms achieved by the 

proposed methodology, significantly outperforming 

competing techniques. Furthermore, as the number of nodes 

increases, although there is a slight decrease in delivery 

time, this reduction is significantly less pronounced 

compared to other methods. This suggests that the 
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scalability of the E-MADQ approach is well-maintained, 

with delivery times remaining consistently low even under 

increased node loads. Such efficiency in message delivery 

is crucial for real-time systems where timely 

communication is imperative.  

 

Fig7. Comparative analysis of Computational Delay 

11.1 Proposed system Performance: 

 

 

Fig 8. Communication Delay and execution time 

12. Conclusion 

The primary focus of this research endeavor revolves 

around the development and implementation of an energy-

conscious offloading scheduling model tailored specifically 

for distributed edge-IoT environments, with a particular 

emphasis on time-critical applications such as medical 

devices. Termed as the Energy-aware Multi-Agent Deep Q-

learning (E-MADQ) method, the proposed approach 

unfolds in two distinct phases, each contributing to its 

overall efficacy and functionality. Initially, the 

methodology undertakes the pivotal task of task 

classification originating from diverse IoT devices. This 

classification is facilitated by employing an Ensemble 

Empirical Mode Decomposition (EEMD) technique, further 

refined through the application of XGBoost, a machine 

learning algorithm known for its prowess in classification 

tasks. The aim here is to effectively segregate tasks based 

on their inherent characteristics and requirements, laying the 

groundwork for subsequent decision-making processes. 

The second phase of the E-MADQ methodology involves 

the actual offloading decision-making process. This critical 

aspect leverages the power of Reinforcement Learning 

(RL), a paradigm well-suited for dynamic decision-making 

in uncertain environments. By integrating RL techniques 

within the offloading framework, the methodology 

endeavors to optimize offloading decisions based on the 

prevailing energy levels of the respective IoT devices. This 

adaptive approach ensures that offloading decisions are not 

only timely but also considerate of the energy constraints 

imposed by the devices, thereby mitigating potential 

resource wastage and optimizing overall system efficiency.. 

To delve deeper into the task classification phase, the 

methodology adopts a multifaceted approach. Signal 

processing techniques are employed to extract Intrinsic 

Mode Functions (IMFs) from the input signals originating 

from IoT devices. These IMFs, subjected to varying noise 

levels, undergo a process of averaging to derive meaningful 

features that facilitate task classification. This meticulous 

preprocessing step is instrumental in ensuring the 

robustness and accuracy of the subsequent classification 

process, laying the foundation for effective decision-making 

in the offloading phase. Accessibility is a pivotal focus, 

catering to farmers and agricultural practitioners with 

varying technical backgrounds. The system's real-time 

processing capability and automated tool for early detection 

address the urgent need for timely interventions, minimizing 

crop losses, and improving overall agricultural productivity. 

Looking ahead, the proposed methodology presents 

promising avenues for future extensions and refinements. 

One potential area of exploration involves the 

implementation of separate queues for classified tasks, 

thereby enhancing task management and allocation 

efficiency. Additionally, incorporating additional feature 

extraction techniques and smoothening algorithms could 

further augment the accuracy and reliability of the task 

classification process, thereby enhancing the overall 

robustness of the offloading framework. Through 

continuous iteration and refinement, the proposed 

methodology stands poised to catalyze advancements in 

energy-aware offloading scheduling for distributed edge-

IoT environments, with far-reaching implications for 

diverse application domains, including healthcare, 
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manufacturing, and smart infrastructure. 
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