

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1971–1977 | 1971

File System RPO Snapshots in Near Real-Time with Asynchronous

Replication

Sure Ravindra Reddy1, Dr G Pardha Saradhi Varma2, Prof Peri Srinivasa Rao*3

Submitted: 29/01/2024 Revised: 07/03/2024 Accepted: 15/03/2024

Abstract: In the File System level Disaster Recovery configurations, asynchronous data replication is often used between

the local Primary File System and the remote Recovery File System to avoid latency to the applications running on the local

Primary File System. The individual data updates of the local Primary File System are replicated to the remote Recovery File

System in the background asynchronously after applying some delay called asynchronous delay. During the asynchronous

delay, optimization methods like coalescing smaller contiguous write operations into a more extensive write operation and

eliminating short-lived data updates are applied to the data updates to reduce the network bandwidth requirement for data

replication. However, the asynchronous delay likely causes the delay in taking periodic Recovery Point Objective (RPO)

snapshots on the Recovery File System for data consistency because of the large amount of data pending replication to the

remote Recovery File System before taking RPO snapshots. This delay in taking RPO snapshots could cause more data loss,

causing RPO violations if disaster hits the local Primary File System. Taking RPO snapshots strictly at RPO intervals is

critical. This paper describes a new efficient procedure for taking RPO snapshots close to the RPO interval without delay by

replicating pending data updates to the remote Recovery File System earlier without waiting for the asynchronous delay.

Based on pending data replication, the aggregated network bandwidth between the local primary location and the remote

recovery location, and the aggregated rate of data generated by applications, the early replication time before the next RPO

time without waiting for the asynchronous delay is calculated.

Keywords: RPO snapshots, asynchronous delay, RPO violation, Disaster Recovery, RPO snapshots near real-time

1. Introduction

Computerized data has become critical to companies.

Companies must recover their data should there be a

disaster, such as floods, earthquakes or any other technical

disruption that could destroy the local File System and cause

data loss. To avoid data loss and inaccessibility to data in

case a disaster hits the local File System, a replica of the

local File System is configured at a remote Disaster

Recovery (DR) location. The data changes on the local

Primary File System are replicated to the remote Recovery

File System for high availability. With the emergence of

cloud technologies, the remote Recovery File System can be

configured on a cloud [1][2]. The data replication from the

local Primary File System to the remote Recovery File

System can be synchronous or asynchronous. In the case of

synchronous replication, the applications that are making

updates on the local Primary File System need to wait till

the changes are replicated on the remote Recovery File

System, causing high IO latency and low throughput to the

applications. In the case of asynchronous data replication,

the application's IO latency is less but could cause data

inconsistency [9] in the remote Recovery File System. For

data consistency, the periodic snapshots [4] are taken at

local and remote File Systems, which are called peer

snapshots, to generate peer-consistent points at local and

remote File Systems.

Once the disaster hits the local Primary File System, the

applications fail over to the remote Recovery File System.

The remote Recovery File System must be restored to the

most recent snapshot before being used by applications to

eliminate any inconsistency [9] in the File System.

Restoring the File System to the most recent snapshot causes

data loss (most recent changes). The amount of data loss is

measured with RPO (Recovery Point Objective), which is

defined as the maximum data loss acceptable to applications

measured in time. The RPO defines the local and remote

File Systems to take peer snapshots at the RPO interval;

otherwise, the data loss would be more than acceptable,

causing an RPO violation.

In asynchronous data replication to the remote Recovery

File System from the local Primary File System, the data can

be replicated online continuously as data is modified at the

local Primary File System [8]. An asynchronous delay is

1 Research Scholar, AU College of Engineering, Andhra University,

Vishakhapatnam, India

ORCID ID=: 0009-0009-9913-4829
2 Professor, Computer Science and Engineering, KL University, Green

Fields, Vaddeswaram, Guntur, India

ORCID ID: 0000-0002-4885-1678
3 Professor, Computer Science and Systems Engineering, Andhra University,

Vishakhapatnam India

* Corresponding Author Email:peri.srinivasarao@yahool.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1971–1977 | 1972

applied for data changes before copying them to the remote

Recovery File System. The asynchronous delay helps to

reduce the amount of data replicated by not replicating the

short-lived (example file created and deleted within

asynchronous delay) data [5]. The asynchronous delay is

also helpful for write-intensive applications because, in the

asynchronous delay, multiple smaller contiguous writes are

combined into a single extensive write operation. However,

asynchronous delay causes the RPO violation because there

would be some significant amount of data pending to be

replicated to the remote Recovery File System before taking

the RPO peer snapshot on the remote Recovery File System.

Using asynchronous delay for better network bandwidth

utilization by not copying short-lived data could cause RPO

violations.

This paper introduces a new procedure in which

asynchronous delay is used for data updates, but when it is

close to taking snapshots, the pending data and new data are

replicated without waiting for asynchronous delay so that no

or little pending data would be present when it is time to

take the RPO snapshot on remote Recovery File System.

Based on the network's aggregated bandwidth and the

aggregated data generation rate by the local Primary File

System applications, early time to replicate data without

asynchronous delay is calculated.

The following are our contributions.

1. We developed a method to start replicating the

pending data and any new data on the local File

System without waiting for the asynchronous

delay.

2. The moving aggregated network bandwidth and

moving aggregated rate of data generation are

maintained.

3. When should data replication start without

asynchronous delay before the next RPO start

time? This is calculated by considering the

aggregated network bandwidth and aggregated

rate of data generated by applications.

In this work, we make the following assumption.

1. The remote Recovery File System is active, so

data is replicated continuously.

This paper is organized as follows: Section 2 describes

some related work. Section 3 briefly describes the IBM

Storage Scale [7] and Asynchronous Disaster Recovery

(ADR) [6]. Section 4 describes the procedure for starting

replicating data without asynchronous delay so that RPO

snapshots are taken at RPO intervals. Section 5 shows the

experiments and results. Section 6 concludes.

2. Related Work

2.1. snapdiff-based replication

H. Patterson et al. [5] propose data replication from the local

File System by replicating the modified data blocks to the

remote File System asynchronously using snapdiff. The

snapdiff-based replication is a mechanism that finds the

differences between two snapshots at the local File System

and replays them to the remote File System. The snapdiff

takes a File System and two snapshots, S1 and S2.

Internally, it runs an inode scan on the S2 and checks for all

the inodes and directory entries created, deleted, and

modified after S1. The output of snapdiff is a list of modified

inode and directory entries. These modified snapshot

difference entries are converted to filesystem operations,

which can be replayed on the remote File System as part of

snapdiff-based replication. The process identifies the

modified blocks, and the data replication is done after the

completion of the RPO interval, which is a violation of

meeting RPO requirements. However, for the data block

modified multiple times within the RPO interval, only the

latest modification is replicated in the remote file system,

thus optimizing the network bandwidth.

Umesh Deshpande et al. [1] propose incremental snapshot

backup where the snapshot captures the changes performed

on the volume from the previous snapshot. The snapshot

changes are transferred to the backup repository for long-

term retention. The incremental snapshots are scheduled

more frequently than the RPO defined to meet the RPO

guarantee. This incremental snapshot replicates more

snapshots diffs to the backup repository, which consumes

more data space on the backup repository.

2.2. Asynchronous Replication

Chao Wang et al. [3] proposed asynchronous data

replication to the backup location, where data updates are

scheduled to replicate to the backup location before the next

RPO interval. Each data update is assigned the latest time

before which they would be replicated to a backup location.

The latest time is calculated from "time stamp of data update

+ RPO time – Travel Time". The travel time is calculated

based on network bandwidth. This proposed method

minimizes the data pending replication to a backup location

just before taking an RPO snapshot. However, the latest

replication times could be just before the next RPO time for

most messages. More data updates could be pending to

replicate before taking the following RPO snapshot. Also,

the new data generated before the next RPO time may cause

network contention, causing violations taking the following

RPO snapshot.

2.3. Async delay in Asynchronous Replication

IBM’s Active File Management [6] based ADR, File

System or fileset level data replication system, uses

Asynchronous Delay to delay the data replication to the

remote Recovery File System for the user configured

Asynchronous Delay time. During the asynchronous delay,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1971–1977 | 1973

multiple writes to the same set of files are replaced with a

single write containing the latest data, which helps optimize

the network bandwidth by not replicating any short-lived

data to a remote File System. However, based on

asynchronous delay, there could be some data pending to be

replicated to the remote Recovery File System just before

the RPO interval, which needs to be replicated before taking

a peer snapshot at the remote site. The replication of the

pending data causes a delay in taking RPO snapshots at

remote sites, causing violations in meeting RPO

requirements.

3. Background

The method introduced in this paper is implemented and

verified in IBM Storage Scale [7] File System and

Asynchronous Disaster Recovery [6]. Hence, this section

reviews the IBM Storage Scale [7] and Asynchronous

Disaster Recovery [6].

3.1. IBM Storage Scale

IBM Storage Scale, formally known as GPFS (General

Parallel File System) [7], is IBM's high-performance shared

disk cluster Parallel File System. Files are wide-striped

across all disks in the File System for load-balancing. It also

provides higher input or output performance by striping

blocks of data from individual files over multiple disks and

reading and writing these blocks in parallel.

The network that connects File System nodes to disks may

consist of a general-purpose network, storage area network

(SAN), Fiber Channels, or iSCSI using I/O server nodes.

IBM Storage Scale uses a distributed locking mechanism to

synchronize access to shared disks where all nodes share

responsibility for data and meta-data protection and

consistency while simultaneously providing parallel access

to data and meta-data. The individual files of the File

System are accessed in parallel, and different byte ranges of

the same file are also accessed in parallel by different nodes.

The distributed locking mechanism synchronizes the access

to the same byte range of an individual file. By providing

parallel access to files from different nodes, the throughput

of the File System is maximized.

3.2. Asynchronous Disaster Recovery

IBM’s Active File Management [6] based ADR is a scalable

and high-performance clustered File System or fileset level

data replication system Error! Reference source not

found. specially designed for parallel data-intensive

applications. It is implemented and integrated within IBM

Storage Scale to consistently replicate data and meta-data

from the local Primary File System to the remote Recovery

File System. Data updates are copied to the remote

Recovery File System asynchronously in the background

using either pNFS (industry-standard protocol for

transferring data between the local and the remote site) or

NFS or Aspera file transfer (high-speed file transfer

protocol over WAN) or using S3 protocol to a cloud

environment.

The updated data is replicated from the local to the remote

File System asynchronously after some delay

(asynchronous delay) but continuously as updates are made

on the local Primary File System. If the local Primary File

System experiences a site failure, the remote Recovery File

System does not have all changes, nor does the data reflect

any consistent state. However, a DR environment requires

consistency. To provide consistent data replication, the user

can define how often the consistent copies or snapshots

should be taken so that the user can restore to the most recent

consistent point or snapshot on the remote Recovery File

System as required. These requirements are defined in RPO

(Recovery Point Objective) settings. Based on these

requirements, a snapshot (consistent point) is taken at the

local Primary File System. Once all the data in the snapshot

is pushed to the remote Recovery File System, a

corresponding snapshot is created at the remote Recovery

File System. This pair of peer snapshots reflects a consistent

point for Disaster Recovery, which is taken periodically

based on RPO value.

4. Synchronized RPO Snapshots in near real-time

We enhanced IBM's Active File Management [6] based

Asynchronous Disaster Recovery (ADR) by proposing an

early replication of the pending data to the remote Recovery

File System such that at the next RPO time, there would be

close to zero pending data to replicate to the remote

Recovery File System, which helps to take the peer RPO

snapshot at the remote File System close to real RPO time.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1971–1977 | 1974

Fig 1. Disaster Recovery Architecture

In IBM's Active File Management [6] based ADR, a dedicated Gateway node for each fileset runs at the local Primary File

System, as shown in Fig 1. Every node of the local Primary File System has access to storage disks, which enables the parallel

applications to access and update the data from multiple nodes within a File System. The local Primary File System

application nodes connect to a Gateway node. The application nodes send I/O operations executed locally on the local Primary

File System to the Gateway node using a remote procedure call (RPC), as shown in Fig 1. Once the I/O operations are sent

to the Gateway node, the application nodes return to perform the respective applications. However, the Gateway node stores

the asynchronous data replication operations received from the application nodes in a queue. The queue manages the acquired

operations by processing the operations received in a first-in-first-out (FIFO) manner. A single Gateway node can support

multiple filesets for replicating the modified data from the local Primary File System to the remote Recovery File System

asynchronously and continuously as data gets modified. The Gateway node also maintains the moving average rate (bytes

updated or generated per second) of data generated and the bandwidth (sent per second to the remote Recovery File System)

for individual filesets.

Fig 2. Taking peer RPO snapshots at near real-time RPO intervals

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1971–1977 | 1975

The average rate of data generated is calculated as the

average data written or updated per unit of time (second)

from the starting time (T0) of data replication of a fileset or

File System to the current time (T1) using equation (1). The

moving average of data generated is obtained by

continuously recalculating the average data generated.

𝑅𝑥 =
∑ 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

(T1−T0)

 (1)

The bandwidth at which the data is transmitted to the remote

File System is calculated based on the replication times of

individual data updates replicated to the remote File System

using equation (2). The transmission bandwidth is also

periodically recalculated to get a moving average

transmission bandwidth.

 𝐵𝑤 =
∑ 𝐷𝑎𝑡𝑎 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑢𝑝𝑑𝑎𝑡𝑒𝑠

∑ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑢𝑝𝑑𝑎𝑡𝑒𝑠
 (2)

The Gateway node keeps the data update or written

operations in the queue for Asynchronous delay time. It

applies the Asynchronous delay optimized techniques to

reduce the network bandwidth requirements before

replicating them to the remote Recovery File System at the

end of the Asynchronous delay. The flow chart in Fig.2

shows that the Gateway node runs an RPO Snapshot

Manager, which reads the Recovery Point Objective as a

configuration parameter for filesets. It monitors the data size

pending in the queue for individual filesets. It also calculates

the data that can be replicated to the remote File Recovery

System before the next RPO time based on bandwidth and

time to the next RPO. Similarly, the potential data needs to

be replicated to the remote Recovery File System before the

next RPO time is calculated based on the moving average of

data generated. The sum of the data pending in the queue

and the data that applications could generate before the next

RPO time is calculated. As shown in Fig.2, for any fileset at

any time, if the sum of data pending in the queue to be sent

and the potential data could be generated by applications

before taking the next RPO snapshot is greater than the data

that can be replicated to remote Recovery File System

before next RPO time, the queue is flushed by over-writing

the asynchronous delay to ensure that the next RPO peer

snapshot is taken close to real-time on remote Recovery File

System without delay in taking peer snapshot at remote

Recovery File System to meet the RPO time.

For example, the next RPO time is known and stored as the

variable Tn and the current time is identified and stored as

the variable Tl. In this case, the prediction for data generated

is calculated using the formula "Rx * (Tn - Tl)”, where Rx is

the moving average rate of data generated by applications.

If the amount of data pending in the queue is D, then the

amount of data needed to be replicated before the next RPO

time is calculated using the formula "D + Rx * (Tn - Tl)”.

The combined amount of data from the prediction and the

pending data updates in the queue are compared to the

amount of data that the Gateway can replicate before the

next RPO time. The amount of data that could be replicated

prior to the next RPO time is calculated using the formula

"BW * (Tn – Tl)", where Bw is the calculated moving

average transmission bandwidth. This value is compared

with the [D + Rx * (Tn - Tl)] value referenced above to

determine if the transmission bandwidth is sufficient to

move all the data pending and generated before the next

RPO time, as shown in Fig 2. If not, the queue is flushed by

overwriting the asynchronous delay to ensure that the

following RPO peer snapshot is taken close to real-time on

the remote Recovery File System without delay in taking a

peer snapshot at the remote Recovery File System to meet

the RPO time.

5. Experiments and Results

We performed some experiments to find the delay or lag in

taking peer RPO snapshots at the remote Recovery File

System after the corresponding local RPO snapshots at the

local Primary File System. The experiments are done in two

scenarios: the first time using asynchronous delay in data

replication and waiting for pending data to be replicated

before taking an RPO snapshot at the remote Recovery File

System, and the second time with early flushing of the

pending data in the queue by overwriting asynchronous

delay before taking RPO snapshots.

We set up a local Primary File System and a remote

Recovery File System, each having one node with IBM

Storage Scale running. Both systems run the same RedHat

OS level; the storage drives are HDD drives directly

connected to the IO servers. The two nodes are connected

over LAN using TCP/IP protocol. We created a fileset on

the local Primary File System and another fileset on the

remote Recovery File System. Then, an ADR

(Asynchronous Disaster Recovery) relationship is

established between them. We set the RPO interval to 5

minutes and the asynchronous delay to 1 minute. The NFS

protocol is configured to replicate the modified data

between local and remote File Systems.

In one experiment, we started creating files of size 1 MB on

the local Primary File System for every 0.1 seconds. We

noted the RPO start time on the local Primary File System

and the RPO start time on the remote Recovery File System

once RPO peer snapshots were taken. The time delay

between these two is considered a delay or lag between RPO

peer snapshots. As shown in Fig.3, we can see that with

Asynchronous delay, the delay between peer snapshots is

more than 25s. We repeated the same tests with our

proposed solution by early flushing to flush any pending

data to the remote Recovery File System. This time, the

delay between peer snapshots on the local Primary File

System and remote Recovery File systems is around 5

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1971–1977 | 1976

seconds. We repeated these tests a few times.

Fig 1. The delay or lag in taking peer RPO snapshots with 1BM data writes.

In the second experiment, we repeated the same experiment

by creating files of size 10 MB on the local Primary File

System every 0.1 seconds. We noted the RPO start time on

the local Primary File System and the RPO start time on the

remote Recovery File System. As shown in Fig.4, we can

see that with an asynchronous delay, the delay between peer

snapshots is more than 18 seconds. With our proposed

solution, where early flush is used for flushing any pending

data to the remote File System, the delay between peer

snapshots is around 3 seconds.

Fig 2. The delay or lag in taking peer RPO snapshots with 10BM data writes.

6. Conclusion

We observed that without our proposed solution, the peer

snapshots at the remote Recovery File System are taken

after flushing the pending data into the remote Recovery

File System. That caused some significant delay in taking

peer snapshots at the remote Recovery File System, causing

RPO miss, which might cause consequential data loss if a

disaster happens on the local Primary File System after

taking the RPO snapshot on the local Primary File System

but before taking the corresponding RPO snapshot on the

remote Recovery File System. That is a violation of RPO.

With our proposed solution, the RPO snapshot at the remote

Recovery File System occurred close to the RPO snapshot

at the local Primary File System. However, there is still a

few seconds of delay between the snapshot taken at the local

Primary File System and the snapshot taken at the remote

Recovery File System. That is due to ignoring the time

required for replicating meta-data operations into the remote

Recovery File System. Because of that, there could be a

0

5

10

15

20

25

30

0 1 2 3 4 5

Ti
m

e
in

 S
ec

o
n

d
s

sequence number of peer snapshot

Snapshot delay at Remote File System with 1MB data updates

No Early Flush

Early Flush

0

5

10

15

20

25

0 1 2 3 4 5

Ti
m

e
in

 S
e

co
n

d
s

sequnce number of peer snapshot

Snapshot delay at Remote File System with 10MB data updates

No Early Flush

Early Flush

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1971–1977 | 1977

delay in starting the flushing of data updates or writing

operations to the remote Recovery File System.

 References

[1] Umesh Deshpande, Nick Linck and Sangeetha

Seshadri. 2021. Self-service Data Protection for

Stateful Containers. In 13th ACM Workshop on Hot

Topics in Storage and File Systems (HotStorage ’21),

July 27–28, 2021, Virtual, USA. ACM, New York,

NY, USA, six pages.

[2] J. Mendoca, R.Lima, E. Queiroz, E. Andrade and D. S.

Kim, "Evaluation of a Backup-as-a-Service

Environment for Disaster Recovery," 2019 IEEE

Symposium on Computers and Communications

(ISCC), Barcelona, Spain, 2019, pp. 1-6, doi:

10.1109/ISCC47284.2019.8969658.

[3] Chao Wang, Zhanhuai Li, and Kun Ren. 2010.

ARPRG: An asynchronous replication protocol with

RPO guarantee. International Conference on

Computer Engineering and Technology 1 (2010), V1–

611–V1–615.

[4] W. Xiao, Q. Yang, J. Ren, C. Xie and H. Li, "Design

and Analysis of Block-Level Snapshots for Data

Protection and Recovery," in IEEE Transactions on

Computers, vol. 58, no. 12, pp. 1615-1625, Dec. 2009,

doi: 10.1109/TC.2009.107.

[5] H. Patterson, S. Manley, M. Federwisch, D. Hitz,

S. Kleinman, and S. Owara. SnapMirror: File System

Based Asynchronous Mirroring for Disaster Recovery.

In Proceedings of the First USENIX Conference on

File and Storage Technologies (FAST 2002), pages

117-129, 2002.

[6] Marc Eshel, Roger Haskin, Dean Hildebrand, Manoj

Naik and Frank Schmuck. Panache: A Parallel File

System Cache for Global File Access. In FAST'10

Proceedings of the 8th USENIX conference on File

and Storage technologies

[7] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File

System for Large Computing Clusters. In Proc. of the

First Conference on File and Storage Technologies

2000

[8] Ann Chervenak, Vivekenand Vellanki, and Zachary

Kurmas. Protecting File Systems: A survey of backup

techniques. In Proceedings Joint NASA and IEEE

Mass Storage Conference, March 1998.

[9] S. Shumway. Issues in Online Backup. In USENIX

Proceedings of the 5th Conference on Large

Installation Systems Administration, pages 81–88,

September 1991.

[10] Ananthanarayanan, R., et al. "Panache: a parallel

WAN cache for clustered filesystems." ACM SIGOPS

Operating Systems Review 2008:48—53.

[11] Manoj P. Naik and Ravindra R. Sure, “SNAPSHOTS

AT REAL TIME INTERVALS ON

ASYNCHRONOUS DATA REPLICATION

SYSTEM,” US Patent 9 983 947, May 29, 2018.S

