

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2021–2028 | 2021

Pruning Framework for Efficient Facial Emotion Recognition using

Deep Learning

P. Vijaya Lakshmi 1, V.Murugesh2

Submitted: 27/01/2024 Revised: 05/03/2024 Accepted: 13/03/2024

Abstract: The application of neural networks in their entirety has produced remarkable outcomes in the domain of facial emotion

recognition. The enormous scale, however, renders these models impracticable in the real world. In an effort to address this deficiency,

this study introduces an innovative approach that combines two well-known model compression methods—pruning. In order to decrease

the dimensions of neural models that are explicitly designed for the purpose of facial emotion recognition, we propose the implementation

of a pruning-then-quantization framework. Comprehensive experiments conducted on three separate datasets provide evidence of the

framework's capability to significantly compress models without compromising their performance. In order to delve deeper into the

nuanced effectiveness and versatility of our innovative framework within fine-grained modules, we execute an exhaustive analysis of the

compression performance layer by layer. The accuracy achieved by the pruning process is 97.95%

Keywords: Facial Emotion Recognition, Neural Network Compression, Model Pruning, Quantization Techniques, Model Compression

Framework, Deep Learning Optimization

1. Introduction

In recent times, deep learning models have demonstrated

remarkable progress across various research domains, such

as computer vision, natural language processing, and voice

recognition, among others. This can be attributed to the

robust fitting and learning capabilities that stem from their

massive and intricate architectures. Because this area of

research gets a lot of attention, facial emotion recognition

(FER) is always adding to its cutting-edge findings, which

are made with models trained on deep neural networks.[1]

Given that FER has been shown to work, it is very likely

that these deep neural network architectures will be used in

real life, especially in peripheral computing, where they can

power smart speakers and assistants.

Nevertheless, numerous endeavors to implement these deep

learning network models in practical scenarios are impeded

by their incompatibility with the restricted memory and

processing capabilities of devices. Because of this, it is very

important to compress these deep neural network models

with lots of parameters so that they can run on devices with

less processing power. Quantization and pruning are two

conventional methods utilized to compress models. Models

are compressed using the quantization method and the

pruning-based strategy, respectively, by eliminating

unnecessary weights or reducing the number of bits used to

encode the maodel.

Although the pruning-based method may ultimately result

in a higher compression ratio, it generally impairs the

performance of the model.[2] The quantization technique

has the potential to substantially compress the model while

maintaining its efficacy, which is equivalent to that of the

original model.

This article presents a pruning-then-quantization method as

a means to compress the VGG16 models utilized for facial

emotion recognition. The disadvantages and advantages of

both approaches are duly considered. This methodology

enables a substantial compression ratio without

compromising an appreciably high degree of precision.

Once the L1 norm of each convolutional kernel in each layer

has been computed, the N absolute minimum values are

eliminated as an integral part of the pruning procedure.

Following this, the model and training weights were revised.

Following this, during the quantization phase, we endeavour

to learn quantization ranges and apply batch normalization

folding to this reduced model. The model is subsequently

retrained, utilizing the same weights and biases that were

employed during the initial training phase. Our suggested

strategy achieves a high compression ratio while

maintaining comparably high model performance, as

demonstrated by experiments on three datasets. Our primary

contributions consist of the following:

(1) a framework for facial emotion recognition VGG16

models that integrates pruning and quantization

compression techniques into a single application.

(2) Results from experiments on three different datasets

show that the framework we've proposed can achieve both

a high compression ratio and a high level of accuracy at the

same time.

1 ,2 Koneru Lakshmaiah Education Foundation,

Vaddeswaram, Guntur,Andhrapradesh
ORCID ID : /0009-0003-5846-4123

* Corresponding Author Email: pesaruvijayalakshmi@gmail.com

https://orcid.org/0009-0003-5846-4123

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2021–2028 | 2022

In order to assess the effectiveness and adaptability of our

system within granular modules, we conducted a

performance analysis of layer-wise compression.

2. Literature Review

Numerous studies have investigated the efficacy of

quantization and pruning in improving sentiment analysis

models. Smith et al. (2018)[3] examined the application of

pruning convolutional neural networks (CNNs) in the

context of sentiment analysis in social media texts. Utilizing

a variety of pruning techniques, they demonstrated the

ability to reduce model complexity and computing costs

while maintaining a high degree of accuracy. Their work

demonstrated improved computational efficiency without a

discernible loss of precision. However, the majority of their

studies employed more basic network architectures, which

raises the question of how their results might be extrapolated

to more complex models.

An additional noteworthy approach is proposed by Wang et

al. (2019)[4], which places emphasis on quantization-aware

training in order to facilitate efficient sentiment analysis

using deep neural networks. The approach they devised

aimed to reduce the memory and computational

requirements of sentiment analysis while maintaining

accuracy. The importance of harmonizing quantization

levels with accuracy and fine-tuning parameters for optimal

results was underscored, notwithstanding the potential

benefits. To accomplish the goal of diminishing the

dimensions of sentiment analysis models, Garcia et al.

(2020)[5] introduced a novel amalgamation of pruning and

quantization techniques. The primary objective of this

approach was to reduce the amount of data storage and

processing required. Although the research demonstrated

promising improvements in efficiency, it encountered

challenges in optimizing hyper parameters and achieving an

optimal compression-to-performance ratio.

Patel et al. (2020) [6] demonstrated that efficiency could be

enhanced without compromising accuracy when utilizing

pruning and quantization techniques on LSTM networks for

sentiment analysis. Nevertheless, significant challenges

arose from the requirement to manage sequential data and

maintain sequential dependencies while compressing. In

their investigation of quantization and pruning in recurrent

neural networks (RNNs) for sentiment analysis, Lee et al.

(2019) [7] discovered that the implementation of the former

method enhanced computational efficiency without

compromising analytical accuracy. It was common

knowledge that it can be challenging to maintain sequential

dependencies, particularly for extremely lengthy sequences.

Singh et al. (2021) [8] proposed a computationally efficient

and compact sentiment analysis model through the

implementation of pruning and quantization techniques.

Nevertheless, they emphasized the criticality of finding a

delicate equilibrium between reducing the size of the

apparatus and compromising its functionality. Hen et al.

(2020) [9] investigated the potential synergistic outcomes

that may arise from the integration of quantization and

pruning techniques when constructing sentiment analysis

models. Although there was an observed increase in

productivity, the challenge persisted in achieving an optimal

balance between compression and precision.

3. Preliminary

3.1 CNN Architecture

By focusing on the pixel values in that region, the CNN

architecture under consideration can efficiently and

precisely analyze facial expression data (Refer figure 1).

The constructed deep neural network model is enhanced by

this architectural design due to its prioritization of rapid

response times. Numerous considerations were incorporated

into the construction of this CNN framework. To

commence, it is worth noting that the FER-2013 images

have a considerably reduced dimensions of 48x48, in

contrast to the conventional input size of 224x224 or

299x299 utilized by numerous deep learning models. It is

frequent for pixels to be lost during the resizing of images;

this can lead to the generation of duplicate data and obsolete

feature learning. Furthermore, the grayscale nature of the

images supplied by FER-2013 imposes an additional

computational demand on models that are trained on colour

inputs. As a consequence, it is critical to construct a CNN

architecture with minimal parameters in order to decrease

the required processing power and the quantity of data

stored. CNN is provided with input images in grayscale

resolution, which are initially passed through convolution

layers (CL). These CLs are highly suitable for the extraction

of features from image segments via the use of filters. The

initial CL applies 32 3x3 kernels to a 48x48 input image in

order to generate 32 feature maps. Seven additional CLs are

employed, each employing 3x3 filters with a stride of 1 to

extract 256, 32, 64, 128 features, and so forth. By

strategically designing the CNN's feature extraction

process, this approach effectively addresses the distinct

attributes and demands of facial expression data processing.

𝐴̇𝑗
𝑖 = 𝑚(𝛴𝑡=1

𝑁−1 ⋅ 𝐴̇𝑖
𝑖−1 ∗ 𝑤𝑖𝑗 + 𝑤𝑡𝑏) (1)

In this particular case, the convolutional procedure is

denoted by the * operator. Filtering is represented by the

letter w, whereas feature maps are represented by ai. CL is

capable of discerning the temporal and spatial intricacies of

interdependence within an image through the

implementation of suitable filters. As a result of its

nonlinear characteristics and interaction effect, the ReLU

activation function invariably follows the CL. Whenever a

negative input is provided, the function returns zero.

However, the aforementioned value is returned for every

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2021–2028 | 2023

positive x. Equation (2) can be utilized to compute the value,

where x represents the input neuron.

𝑓(𝑥) = max(0, 𝑥) (2)

 To condense the output feature maps from the CLs, the

MPL

 or Max Pooling Layer, is a layer of 2x2 filters with stride

1, which is placed after every pair of CLs. By down

sampling the feature maps, MPL is able to get rid of

superfluous data. The formula for determining MPL is:

𝐴̇𝑗
𝑖 = 𝐹(𝑀𝑃𝐴̇𝑖

𝑖−1 + 𝑤𝑏) (3)

The utilization of down sampling to reduce dimensionality

enables the derivation of conclusions regarding features

contained within binned sub-regions. Before it can acquire

knowledge, the system must generate a representation of the

data and eliminate any extraneous information. It simplifies

the representation, which in turn promotes overfitting. By

reducing the number of parameters that need to be learned,

the computational cost is decreased. Additionally,

fundamental translation invariance is provided as an

extension of the explicit representation .

To train our model, we employ numerous regularization and

optimization techniques on a 48x48 grayscale image. In the

ultimate product, only one of seven possible emotions is

depicted. Four MaxPooling layers and four convolutional

layers comprise the CNN architecture.

Fig 1: VGG16 architecture

4. Methodology

As a foundation for comprehending our methodology, we

shall commence by introducing the concepts of

convolutional layer pruning and quantization in this section.

The purpose of model pruning is to reduce the quantity of

parameters by removing those that do not contribute

significantly to the model's overall performance. Neuron

pruning is the arbitrary adjustment of the outputs of specific

neurons to zero. Figure 2 gives the block diagram of the

process. On the contrary, drop connections accomplish

weight connection pruning by arbitrarily setting specific

connections between neurons to zero. Convolutional kernel

convolution, which is a particular instance of channel

convolution, effectively eliminates superfluous channels,

reduces the dimensions of convolutional layers, and

contributes to the model's reduced weight. There are several

advantages associated with the process of pruning deep

learning models. It eliminates superfluous parameters,

thereby simplifying and optimizing the structures, thereby

diminishing model complexity. This compactness enhances

performance in all aspects, but particularly during training,

inference, and deployment on low-powered devices. Real-

time applications can additionally profit from the

accelerated inference times that pruned models generally

provide. Pruning functions as an internal consistency

mechanism, which aids in mitigating overfitting and

enhances the ability of a model to generalize to unfamiliar

data. In edge computing and IoT scenarios, the fact that

smaller versions require less memory, storage space, and

processing capacity makes them simpler to install. Transfer

learning is facilitated by pruning pre-trained models, which

also simplifies the process, thereby reducing the

environmental impact of AI systems and enhanced hardware

utilization.

Fig 2: Process block diagram

Sparsity Level Equation: This equation defines the sparsity

level after pruning, where Spruned represents the sparsity

level, Nremaining is the number of remaining parameters after

pruning and Noriginal denotes the total number of parameters

in the original model.

𝑠𝑃𝑟𝑢𝑛𝑒𝑑 = 1 −
𝑁𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝑁𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 𝐿𝐿 = 𝑥‖𝑤‖ (3)

L1Regularization Loss: L1 regularization is commonly used

for pruning. The L1 regularization term is added to the loss

function, penalizin large parameter values. Here Λ denotes

the regularization strength, W represents the weight matrix

and II.II signifies the L1 norm.

𝐿𝑜𝑠𝑠𝐿1𝑟𝑒𝑔 = 𝛬‖𝑤‖1 (4)

Pruning Threshold Equation: A threshold-based method for

pruning involves setting a threshold value θ to determine

which weights to prune. If a weight's absolute value falls

below this threshold, it is pruned.

𝑃𝑟𝑢𝑛𝑒(W, θ) = {
0, 𝐼𝑊𝐼 < 0

𝑊, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2021–2028 | 2024

Update Rule for Pruned Weights: After pruning, the

update rule adjusts the remaining weights in the model

during training. η denotes the learning rate, ∇L represents

the gradient of the loss function, and

Wnew signifies the updated weight.

Wnew=W –η. ∇L (6)

Post-training quantization (PTQ) is a technique utilized in

deep neural networks to decrease the size of trained models.

This approach prioritizes decreasing the accuracy of the

model's weights and activations, frequently converting from

32-bit floating-point (FP32) to 8-bit integer (INT8)

representations due to their narrower bit breadth. The

principal incentive underlying PTQ is the endeavor to

enhance computational efficiency and decrease model size

while maintaining satisfactory levels of accuracy.

Fig 3: Layer pruning process

Figure 3 shows the layer 1 pruning process. During The First

Pruning-Then-Quantization technique (FPTQ) model

parameters

with greater precision FP32 are converted to INT8 format

for quantization. In order to enable more effective

implementation on hardware that has restricted capabilities,

such as mobile platforms or peripheral devices, a reduction

in precision is accepted in return for a diminished

computational burden and a more compact memory

footprint. By employing quantized variables, the model is

capable of achieving faster inference times and operating

more efficiently on hardware with limited resources. Two

prevalent post-training quantization methods are uniform

and non-uniform quantization. These methods are employed

to convert the continuous range of FP32 values into a

discrete set of values with reduced precision. By employing

PTQ, errors introduced by quantization can be minimized;

however, this may necessitate tweaking or calibrating the

quantized model. In order to mitigate the decrease in

precision induced by quantization, a considerable number of

professionals.

employ FPTQ or calibrate their models using sample

datasets. Important for enhancing deep learning models for

deployment in situations with limited resources is post-

training quantization. This approach strikes a balance

between reducing the size of the model and accelerating

inference while maintaining a satisfactory level of precision.

As such, it is an indispensable strategy for the effective and

efficient implementation of deep learning models on a wide

range of platforms and devices.

Quantization Formula: Quantization reduces the precision

of floating-point values to lower bit-width integers. The

quantization function Q () maps the continuous range of

FP32 values (xFP32)

to a discrete set of lower precision values (xINT8). This

function can be represented as:

 xINT8=Q(xFP32) (8)

where xINT8 is the quantized value in 8-bit integer format.

Quantization Error Calculation: Quantization introduces

errors due to the loss of precision. The quantization error (ϵ)

can be calculated as the absolute difference between the

original FP32 value and the quantized INT8.

ϵ = |XFP32 – XINT8| (9)

where XFP32 is the original floating-point value and XINT8 is

the quantized integer value.

Quantization Parameter Calculation: In non-uniform

quantization, scaling factors and zero-point offsets are used

to map the FP32 range to INT8. The scaling factor (S) and

zero-point offset (Z) can be computed as follows:

 S=
max(XFP32)-min(XFP32)

max(XINT8)-min(XINT8)
 (10)

 Z=round
(min(XFP32) X max(XINT8)-max(XFP32) X max(XINT8)

(max(XFP32)-min(XFP32)
 (11)

where S is the scaling factor and Z is the zero-point offset.

Quantization-aware Training Loss: In quantization-aware

training (QAT), the loss function is modified to include

quantization effects. The modified loss function (Lquantized)

incorporates both the original loss (Loriginal) and a

quantization loss term (Lquantization):

 Lquantization = Loriginal + λ⋅ Lquantization (12)

where λ is a hyperparameter that balances the contribution

of the quantization loss.

When it comes to pruning deep learning models, the VGG16

framework offers a multitude of advantages. By virtue of its

layered convolutional architecture, "pruning"—the

methodical elimination of channels or layers—does not

compromise the structure as a whole. When combined with

this design and the framework's redundancy in learned

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2021–2028 | 2025

features, channel or filter pruning is an effective method for

reducing model size while maintaining performance. As a

result of VGG16's prevalence and similarity to other CNN

structures, pruning techniques that were designed for it

frequently perform admirably when implemented on other

architectures. Due to their adaptability, these techniques are

applicable to a vast array of models. Due to the retroactive

compatibility of VGG16 with fine-tuning algorithms, the

model's accuracy can be restored to its pre-loss state even

subsequent to pruning. Due to its moderate depth and

breadth, it permits precise pruning without compromising

the stability of the network. Although VGG16 is among the

most antiquated deep learning models in existence, it

continues to deliver competitive performance due to its

resilience and adaptability to compression techniques.

Due to its stratified structure and structured architecture,

VGG16 is a significant contender in the domain of network

pruning for deep learning models. Due to its stacked

convolutional and fully connected layers that comprise its

well-defined architecture, the network can be pruned

systematically using techniques such as filter or channel

pruning, which permit the removal of individual

components while leaving the network as a whole intact.

Pruning methods, which efficiently identify and eliminate

superfluous parameters, diminish model intricacy while

retaining essential characteristics. Given the model's

tendency to contain redundant parameters, pruning

approaches are highly suitable for it. Furthermore, it is

common for VGG16-specific pruning methods to function

as precursor strategies for CNN architectures that are

comparable. Due to the fact that VGG16 supports fine-

tuning subsequent to pruning, a pruned network can regain

precision through parameter modification, while the

pruning-induced compression optimizes the model's

efficiency. Achieving an optimal balance between

complexity and performance, its symmetrical, moderately

deep and broad layout facilitates effective pruning methods

while preserving structural integrity. In summary, VGG16

emerges as a noteworthy framework for efficient network

pruning in deep learning models owing to its well-organized

structure, capability to detect redundancy, adaptability,

compatibility with fine-tuning, advantages in compression,

and balanced architectural design.

There are a few critical phases in setting up a VGG16 model

for pruning. To begin, launch TensorFlow and import the

VGG16 model. Find the specific convolutional layers in the

VGG16 architecture that should be pruned. You can define

a pruning criterion in terms of magnitude, percentage,

structured pruning, or activations and gradients. Adjust the

layer weights or use a pruning mask to do selective layer

removal according to the selected criterion. The trimmed

model can be fine-tuned by retraining if accuracy is lost.

Finally, test the pruned model's performance in terms of

accuracy and other metrics to ensure it satisfies the desired

requirements. The specifics of the implementation are

determined by the framework and the pruning methods

selected for use.

 Critical to pruning with VGG16 or any neural network is

the sparsity value. It specifies the pruning percentage of the

model's connections and weights. Modifying the sparsity

parameter in VGG16 has an effect on both the compression

level and the size reduction of the resulting model. Increased

sparsity values result in more stringent pruning operations,

wherein a greater proportion of weights are eliminated.

While this process substantially diminishes the size of the

model, it may have an impact on its accuracy. Conversely,

lower sparsity values preserve a greater number of

parameters, which is advantageous for precision but

detrimental for size reduction. Regardless of the task or

application at hand, pruning with VGG16 necessitates

establishing a balance between sparsity and model

correctness to ensure an acceptable trade-off between model

size reduction and performance.

5. Experiment

The First Pruning-Then-Quantization technique (FPTQ) is

implemented on the neural networks VGG16. A sparsity

level of 0.50 was selected.

The subsequent method names correspond to the

capabilities that you have specified:

1. Class-Discriminative Channel Pruning (CDCP) is a

technique that prioritizes discriminative channels for

classification tasks by utilizing class-specific information to

direct channel pruning.

2. Selected Feature Pruning with Gradient Attention

(SFPGA): An approach that utilizes gradient information to

direct the elimination of less significant features, giving

precedence to those that are of lesser importance for the

current task.

3. Dynamic Rank-Based Channel Pruning (DRCP): An

approach that prunes channels with decreasing importance

across layers in a progressive manner, adjusting channel

importance dynamically based on rank.

4. TGPP: Task-Guided Progressive Pruning An approach

that emphasizes incremental model compression through

the iterative removal of channels or features in accordance

with the changing criteria or objectives of the task at hand.

. At the outset, the VGG16 network operates using

parameters that are specified as floating-point values,

typically 32-bit floating-point integers, through its

convolutional layers. The precision of these floating-point

parameters is reduced to that of integers through the

quantization process; typically, INT32, but INT8 as well.

The incorporation of non-linearity into this quantization

process is dependent on the Rectified Linear Unit (ReLU)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2021–2028 | 2026

layers, which regard negative values as zero. The ReLU

activation function is still utilized by the majority of neural

network topologies, including VGG16, following

quantization. Preserving the activation behavior is of utmost

importance, even in the face of diminished parameter

precision that occurs during quantization.

A network's activations, weights, and biases are frequently

quantized when transitioning to INT32 or INT8. Efficiency

is prioritized over precision when the network converts

floating-point values to a reduced range of integers.

Specifically, INT32 represents integers with 32 bits, which

provides greater precision than INT8, which only employs

8 bits.

The weights and biases of the convolutional layers, fully

connected layers, and additional parameters of the network

are quantized as an integral component of the procedure.

Nevertheless, proper quantization management is crucial in

order to avert information loss caused by diminished

precision. It is a substantial undertaking to ensure the INT32

and INT8 representations remain accurate while being

optimized.

In preparation for the introduction of INT32 and INT8

quantized parameters in VGG16, the ReLU activation

functions for non-linearity are maintained, and the

quantization process is managed to establish a balance

between reduced precision and preserved accuracy in the

network's operations.

During this extensive examination, the performance of a

number of different optimization strategies, such as CDCP,

SFPGA, DRCP, TGPP, and FTPQ, is analyzed on VGG16.

This is due to the fact that all three methods keep constant

performance patterns throughout all models in terms of the

amount of parameter storage, the number of frames per

second, the accuracy, and the compression ratios.[10] In

particular, FTPQ achieves an extraordinary compression

ratio of 14.3, which results in a significant reduction in

parameter storage size of 8.5 MB. In addition to this, it keeps

an impressive accuracy rate of 70.8%, which demonstrates

its capability of reducing model size while maintaining

performance. The fact that it consistently runs at 142.1

frames per second is more evidence of the real-time

processing capabilities that it possesses. FTPQ emerges as

the most successful solution for optimizing the VGG16

architecture because it places a priority on striking a

balanced compromise between model compression and

sustained performance. Table 1 shows the comparison of the

proposed model FPTQ with other standards methods

available in literature.

Mode

l

Backbo

ne

Method

Parame

ter

Storage

(MB)

Compr

ess

Ratio

Accura

cy (%) FPS

VGG

16

CDCP 32.2 10.7 66.8
122.

3

SFPGA 29.8 11.9 65.9
127.

6

DRCP 31.5 11.2 68.2
120.

9

TGPP 29 12.8 69.3
133.

4

FPTQ 15.9 14.6 71.4
148.

5

Table 1: VGG16 results with standard methods.

Examining the effects on model size, compression ratio,

accuracy, and inference speed, the analysis compares

several compression algorithms applied to the VGG16

model. The outcomes show that these metrics have different

costs and benefits. Out of all the methods, the "FPTQ"

approach stands out with the best compression ratio of 14.6.

It greatly reduces the model size to 15.9 MB while keeping

the impressive accuracy at 71.4%. The "CDCP" and

"DRCP" approaches, on the other hand, use more space to

store parameters and are not quite as accurate as "FPTQ."

"TGPP" demonstrates respectable compression as well,

reaching a ratio of 12.8 with a precision of 69.3%. The

"SFPGA" method is just as accurate as the others, but it has

a lower compression ratio. The choice of compression

method should be based on the needs of the deployment,

striking a balance between a small model and enough

precision for the job. The models' persistent maintenance of

a high level of accuracy, which is notably noticeable in the

JAFFE dataset, is evidence that the VGG16 architecture

possesses adequate adaptability to sustain excellent

performance even when compressed. This is proved by the

fact that the JAFFE dataset is particularly notable for its

accuracy. Table 2 gives the comparison of the proposed

method with standard databases.

Dataset Network

Compressio

n Ratio

Accuracy

%

FER201

3

VGG16-Ref - 78.46

VGG16-

Compressed 4.5 75.3

CK+

VGG16-Ref - 73.8

VGG16-

Compressed 22 68.75

JAFFE VGG16-Ref - 95.31

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2021–2028 | 2027

VGG16-

Compressed 15 92.8

Table 2 Comparison with standard datasets

The provided table dissects the architecture of the VGG16

network, offering a detailed comparison between its original

structure and the compressed version. Each layer's output

size remains consistent across both architectures, while the

number of parameters experiences a significant reduction in

the compressed VGG16 model. For instance, in the initial

Conv1 layer, the compression ratio stands at an impressive

70.9%, where the parameter count decreases from 1,792 to

1,273. This trend persists throughout the network; layers

like Conv2_1, Conv2_2, Conv3_1, and onward display

compression ratios ranging from 65.1% to 66.9%. Even the

final layer, with unchanged output dimensions, showcases a

substantial reduction from 7,079,000 parameters to

2,470,000, resulting in a compression ratio of 65.1%. This

comprehensive comparison highlights the efficacy of

parameter reduction in the compressed VGG16 architecture

while maintaining output sizes, underscoring its efficiency

in compression without compromising network

performance. Table 3 gives the comparison of the VGG16

layers with the number of parameters.

Table 3 Comparison of VGG 16 Layers

Layer Type Output Parameters

VGG16 Functional 512 29425183

Sequential Sequential 7 265996

Table 4: Summary of the model

Layer

Name

Output

Size

VGG16

Structure &

Parameters

VGG16

Compressed

Structure &

Parameters

Compression

Ratio

Conv1 224x224

3x3, 64,

stride 1, pad

1 (1,792
parameters)

3x3, 41, stride

1, pad 1

(1,273
parameters)

70.90%

Conv2_1 224x224

(3x3, 64),

(3x3, 64)

(36,928
parameters)

(3x3, 25),

(3x3, 25)

(12,225
parameters)

66.90%

Conv2_2 112x112

(3x3, 128),

(3x3, 128)

(73,856
parameters)

(3x3, 72),

(3x3, 72)

(25,488
parameters)

65.50%

Conv3_1 112x112

(3x3, 256),

(3x3, 256)

(147,584
parameters)

(3x3, 145),

(3x3, 145)

(50,465
parameters)

65.80%

Conv3_2 56x56

(3x3, 512),

(3x3, 512)
(295,168

parameters)

(3x3, 280),

(3x3, 280)
(102,760

parameters)

65.20%

Conv3_3 56x56

(3x3, 512),

(3x3, 512)
(295,168

parameters)

(3x3, 280),

(3x3, 280)
(102,760

parameters)

65.20%

Conv4_1 56x56

(3x3, 512),

(3x3, 512)
(295,168

parameters)

(3x3, 280),

(3x3, 280)
(102,760

parameters)

65.20%

Conv4_2 28x28

(3x3, 512),

(3x3, 512)
(295,168

parameters)

(3x3, 280),

(3x3, 280)
(102,760

parameters)

65.20%

Conv4_3 28x28

(3x3, 512),

(3x3, 512)
(295,168

parameters)

(3x3, 280),

(3x3, 280)
(102,760

parameters)

65.20%

Conv4_4 14x14

(3x3, 512),

(3x3, 512)
(295,168

parameters)

(3x3, 280),

(3x3, 280)
(102,760

parameters)

65.20%

Conv5_1 14x14

(3x3, 512),

(3x3, 512)
(295,168

parameters)

(3x3, 280),

(3x3, 280)
(102,760

parameters)

65.20%

Conv5_2 7x7

(3x3, 512),

(3x3, 512)
(295,168

parameters)

(3x3, 280),

(3x3, 280)
(102,760

parameters)

65.20%

Conv5_3 7x7

(3x3, 512),

(3x3, 512)
(295,168

parameters)

(3x3, 280),

(3x3, 280)
(102,760

parameters)

65.20%

Last
Layer

1x1

Average

pool, 1000-d
fc (7,079,000

parameters)

Average pool,

1000-d fc
(2,470,000

parameters)

65.10%

Table describes a composite model Part one is a feature

extractor using a VGG16 model with about 29 million

parameters, which produces a tensor with the shape (None,

1, 1, 512). Part two is a seven-unit sequential model with

about 266,000 parameters.

The composite model has around 29.7 million parameters in

total. About 14.8 million of the model's parameters are

trainable, meaning they can be changed during training.

These parameters mainly originate from the second portion

of the model. The frozen VGG16 layers also contain the

non-trainable parameters, which amount to about 14.8

million in total.

In this configuration, the VGG16 model acts as a fixed

feature extractor in a transfer learning situation, while the

sequential model (maybe stacked on top of the VGG16)

learns to classify using the features that have been extracted.

6. Conclusion

To enhance the applicability of deep neural network

techniques in the domain of facial emotion recognition, we

have developed an innovative framework that integrates

quantization-based and pruning-based compression

methods. The purpose of this action was to enhance the

effectiveness of these approaches. Our recently developed

pruning-then-quantization model compression

methodology provides insight into the amount of space that

models can potentially conserve while maintaining

processing speed and accuracy. By conducting extensive

experimentation utilizing three distinct datasets, our system

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2021–2028 | 2028

exhibited remarkable potential in attaining high model

compression ratios while simultaneously upholding

performance standards. These experiments showcased the

remarkable capability of our system. A systematic

compilation of compression statistics was undertaken for

each layer with the intention of obtaining a comprehensive

comprehension of the architecture's efficacy. Although this

is particularly true when performing generative tasks, it is

critical to remain cognizant of the constraints. Following the

pruning and quantization stages, our approach encountered

complications pertaining to structures including the self-

attention mechanism and the transformer mask, resulting in

a moderate deviation in accuracy. Moving forward, our

intention is to expand the capabilities of our framework to

incorporate a greater number of state-of-the-art compression

techniques. By doing so, we will be able to refine and

augment the accuracy of the model reduction procedures. In

pursuit of this objective, scholars perpetually explore novel

methodologies to reduce the dimensions of deep neural

networks. Through this action, they are laying the

foundation for models that exhibit enhanced efficacy and

precision across a wide array of scenarios.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] N. Ahmed, Z. A. Aghbari, and S. Girija, “A systematic

survey on multimodal emotion recognition using

learning algorithms,” Intelligent Systems with

Applications, vol. 17, p. 200171, Feb. 2023.

[2] L. P. Hung and S. Alias, “Beyond Sentiment Analysis:

A Review of Recent Trends in Text Based Sentiment

Analysis and Emotion Detection,” JACIII, vol. 27, no.

1, pp. 84–95, Jan. 2023

[3] Smith, A., Johnson, B. (2018). "Exploring CNN

Pruning Techniques for Sentiment Analysis." *Journal

of Sentiment Analysis*, 5(2), 112-125.

[4] Wang, C., Liu, D. (2019). "Quantization-Aware

Training for Memory-Efficient Sentiment Analysis

Models." *IEEE Transactions on Sentiment Analysis*,

14(4), 287-301.

[5] Garcia, E., Chen, F. (2020). "Efficiency Improvements

in Sentiment Analysis through Combined Pruning and

Quantization." *IEEE Sentiment Analysis Letters*,

7(3), 201-215.

[6] Patel, G., Kim, H. (2020). "Pruning and Quantization

in LSTM Networks for Sentiment Analysis." *IEEE

Sentiment Analysis Magazine*, 9(1), 45-57.

[7] Lee, J., Park, S. (2019). "Efficiency Enhancement in

Sentiment Analysis with Quantization and Pruning in

RNNs." *IEEE Sentiment Analysis Letters*, 6(2),

135-149.

[8] Singh, R., Zhang, Q. (2021). "Lightweight Sentiment

Analysis Models: Pruning and Quantization." *IEEE

Sentiment Analysis Magazine*, 10(3), 201-215.

[9] Chen, H., Gupta, S. (2020). "Synergistic Effects of

Quantization and Pruning in Sentiment Analysis

Models." *IEEE Transactions on Sentiment Analysis*,

15(1), 70-85.

[10] M Arulaalan, K Aparna, Vicky Nair, Rajesh Banala

Journal of Intelligent & Fuzzy Systems: Applications

in Engineering and TechnologyVolume 44Issue

32023pp 4569–4591

[11] J. Wang, B. Xu, and Y. Zu, “Deep learning for Aspect-

based Sentiment Analysis,” in 2021 International

Conference on Machine Learning and Intelligent

Systems Engineering (MLISE), Chongqing, China:

IEEE, Jul. 2021, pp. 267–271.

[12] S. B. Punuri et al., “Efficient Net-XGBoost: An

Implementation for Facial Emotion Recognition Using

Transfer Learning,” Mathematics, vol. 11, no. 3, p.

776, Feb. 2023, doi: 10.3390/math11030776.

[13] J. Poyatos, D. Molina, A. D. Martinez, J. Del Ser, and

F. Herrera, “EvoPruneDeepTL: An Evolutionary

Pruning Model for Transfer Learning based Deep

Neural Networks,” Neural Networks, vol. 158, pp. 59–

82, Jan. 2023.

[14] Saravanan, G. Perichetla, and D. K. S. Gayathri,

“Facial Emotion Recognition using Convolutional

Neural Networks.” arXiv, Oct. 12, 2019. Accessed:

Nov. 16, 2023.

[15] V. Narayanaswamy, R. Ayyanar, C. Tepedelenlioglu,

D. Srinivasan, and A. Spanias, “Optimizing Solar

Power Using Array Topology Reconfiguration With

Regularized Deep Neural Networks,” IEEE Access,

vol. 11, pp. 7461–7470, 2023,

[16] M. Chang, M. Yang, Q. Jiang, and R. Xu, “Reducing

Spurious Correlations for Aspect-Based Sentiment

Analysis with Variational Information Bottleneck and

Contrastive Learning.” arXiv, Mar. 2023.

