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Abstract: The application of neural networks in their entirety has produced remarkable outcomes in the domain of facial emotion 

recognition. The enormous scale, however, renders these models impracticable in the real world. In an effort to address this deficiency, 

this study introduces an innovative approach that combines two well-known model compression methods—pruning. In order to decrease 

the dimensions of neural models that are explicitly designed for the purpose of facial emotion recognition, we propose the implementation 

of a pruning-then-quantization framework. Comprehensive experiments conducted on three separate datasets provide evidence of the 

framework's capability to significantly compress models without compromising their performance. In order to delve deeper into the 

nuanced effectiveness and versatility of our innovative framework within fine-grained modules, we execute an exhaustive analysis of the 

compression performance layer by layer. The accuracy achieved by the pruning process is 97.95% 
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1. Introduction 

In recent times, deep learning models have demonstrated 

remarkable progress across various research domains, such 

as computer vision, natural language processing, and voice 

recognition, among others. This can be attributed to the 

robust fitting and learning capabilities that stem from their 

massive and intricate architectures. Because this area of 

research gets a lot of attention, facial emotion recognition  

(FER) is always adding to its cutting-edge findings, which 

are made with models trained on deep neural networks.[1] 

Given that FER has been shown to work, it is very likely 

that these deep neural network architectures will be used in 

real life, especially in peripheral computing, where they can 

power smart speakers and assistants. 

Nevertheless, numerous endeavors to implement these deep 

learning network models in practical scenarios are impeded 

by their incompatibility with the restricted memory and 

processing capabilities of devices. Because of this, it is very 

important to compress these deep neural network models 

with lots of parameters so that they can run on devices with 

less processing power. Quantization and pruning are two 

conventional methods utilized to compress models. Models 

are compressed using the quantization method and the 

pruning-based strategy, respectively, by eliminating 

unnecessary weights or reducing the number of bits used to 

encode the maodel. 

Although the pruning-based method may ultimately result 

in a higher compression ratio, it generally impairs the 

performance of the model.[2] The quantization technique 

has the potential to substantially compress the model while 

maintaining its efficacy, which is equivalent to that of the 

original model. 

This article presents a pruning-then-quantization method as 

a means to compress the VGG16 models utilized for facial 

emotion recognition. The disadvantages and advantages of 

both approaches are duly considered. This methodology 

enables a substantial compression ratio without 

compromising an appreciably high degree of precision. 

Once the L1 norm of each convolutional kernel in each layer 

has been computed, the N absolute minimum values are 

eliminated as an integral part of the pruning procedure. 

Following this, the model and training weights were revised. 

Following this, during the quantization phase, we endeavour 

to learn quantization ranges and apply batch normalization 

folding to this reduced model. The model is subsequently 

retrained, utilizing the same weights and biases that were 

employed during the initial training phase. Our suggested 

strategy achieves a high compression ratio while 

maintaining comparably high model performance, as 

demonstrated by experiments on three datasets. Our primary 

contributions consist of the following: 

(1) a framework for facial emotion recognition VGG16 

models that integrates pruning and quantization 

compression techniques into a single application. 

(2) Results from experiments on three different datasets 

show that the framework we've proposed can achieve both 

a high compression ratio and a high level of accuracy at the 

same time. 
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In order to assess the effectiveness and adaptability of our 

system within granular modules, we conducted a 

performance analysis of layer-wise compression. 

2. Literature Review  

Numerous studies have investigated the efficacy of 

quantization and pruning in improving sentiment analysis 

models. Smith et al. (2018)[3] examined the application of 

pruning convolutional neural networks (CNNs) in the 

context of sentiment analysis in social media texts. Utilizing 

a variety of pruning techniques, they demonstrated the 

ability to reduce model complexity and computing costs 

while maintaining a high degree of accuracy. Their work 

demonstrated improved computational efficiency without a 

discernible loss of precision. However, the majority of their 

studies employed more basic network architectures, which 

raises the question of how their results might be extrapolated 

to more complex models.  

An additional noteworthy approach is proposed by Wang et 

al. (2019)[4], which places emphasis on quantization-aware 

training in order to facilitate efficient sentiment analysis 

using deep neural networks. The approach they devised 

aimed to reduce the memory and computational 

requirements of sentiment analysis while maintaining 

accuracy. The importance of harmonizing quantization 

levels with accuracy and fine-tuning parameters for optimal 

results was underscored, notwithstanding the potential 

benefits. To accomplish the goal of diminishing the 

dimensions of sentiment analysis models, Garcia et al. 

(2020)[5] introduced a novel amalgamation of pruning and 

quantization techniques. The primary objective of this 

approach was to reduce the amount of data storage and 

processing required. Although the research demonstrated 

promising improvements in efficiency, it encountered 

challenges in optimizing hyper parameters and achieving an 

optimal compression-to-performance ratio. 

Patel et al. (2020) [6] demonstrated that efficiency could be 

enhanced without compromising accuracy when utilizing 

pruning and quantization techniques on LSTM networks for 

sentiment analysis. Nevertheless, significant challenges 

arose from the requirement to manage sequential data and 

maintain sequential dependencies while compressing. In 

their investigation of quantization and pruning in recurrent 

neural networks (RNNs) for sentiment analysis, Lee et al. 

(2019) [7] discovered that the implementation of the former 

method enhanced computational efficiency without 

compromising analytical accuracy. It was common 

knowledge that it can be challenging to maintain sequential 

dependencies, particularly for extremely lengthy sequences.  

Singh et al. (2021) [8] proposed a computationally efficient 

and compact sentiment analysis model through the 

implementation of pruning and quantization techniques. 

Nevertheless, they emphasized the criticality of finding a 

delicate equilibrium between reducing the size of the 

apparatus and compromising its functionality. Hen et al. 

(2020) [9] investigated the potential synergistic outcomes 

that may arise from the integration of quantization and 

pruning techniques when constructing sentiment analysis 

models. Although there was an observed increase in 

productivity, the challenge persisted in achieving an optimal 

balance between compression and precision. 

3. Preliminary 

3.1 CNN Architecture 

By focusing on the pixel values in that region, the CNN 

architecture under consideration can efficiently and 

precisely analyze facial expression data (Refer figure 1). 

The constructed deep neural network model is enhanced by 

this architectural design due to its prioritization of rapid 

response times. Numerous considerations were incorporated 

into the construction of this CNN framework. To 

commence, it is worth noting that the FER-2013 images 

have a considerably reduced dimensions of 48x48, in 

contrast to the conventional input size of 224x224 or 

299x299 utilized by numerous deep learning models. It is 

frequent for pixels to be lost during the resizing of images; 

this can lead to the generation of duplicate data and obsolete 

feature learning. Furthermore, the grayscale nature of the 

images supplied by FER-2013 imposes an additional 

computational demand on models that are trained on colour 

inputs. As a consequence, it is critical to construct a CNN 

architecture with minimal parameters in order to decrease 

the required processing power and the quantity of data 

stored. CNN is provided with input images in grayscale 

resolution, which are initially passed through convolution 

layers (CL). These CLs are highly suitable for the extraction 

of features from image segments via the use of filters. The 

initial CL applies 32 3x3 kernels to a 48x48 input image in 

order to generate 32 feature maps. Seven additional CLs are 

employed, each employing 3x3 filters with a stride of 1 to 

extract 256, 32, 64, 128 features, and so forth. By 

strategically designing the CNN's feature extraction 

process, this approach effectively addresses the distinct 

attributes and demands of facial expression data processing. 

𝐴̇𝑗
𝑖 = 𝑚(𝛴𝑡=1

𝑁−1 ⋅ 𝐴̇𝑖
𝑖−1 ∗ 𝑤𝑖𝑗 + 𝑤𝑡𝑏)  (1) 

In this particular case, the convolutional procedure is 

denoted by the * operator. Filtering is represented by the 

letter w, whereas feature maps are represented by ai. CL is 

capable of discerning the temporal and spatial intricacies of 

interdependence within an image through the 

implementation of suitable filters. As a result of its 

nonlinear characteristics and interaction effect, the ReLU 

activation function invariably follows the CL. Whenever a 

negative input is provided, the function returns zero. 

However, the aforementioned value is returned for every 
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positive x. Equation (2) can be utilized to compute the value, 

where x represents the input neuron. 

𝑓(𝑥) = max(0, 𝑥)     (2) 

  To condense the output feature maps from the CLs, the 

MPL 

 or Max Pooling Layer, is a layer of 2x2 filters with stride 

1, which is placed after every pair of CLs. By down 

sampling the feature maps, MPL is able to get rid of 

superfluous data. The formula for determining MPL is: 

𝐴̇𝑗
𝑖 = 𝐹(𝑀𝑃𝐴̇𝑖

𝑖−1 + 𝑤𝑏)                                  (3) 

The utilization of down sampling to reduce dimensionality 

enables the derivation of conclusions regarding features 

contained within binned sub-regions. Before it can acquire 

knowledge, the system must generate a representation of the 

data and eliminate any extraneous information. It simplifies 

the representation, which in turn promotes overfitting. By 

reducing the number of parameters that need to be learned, 

the computational cost is decreased. Additionally, 

fundamental translation invariance is provided as an 

extension of the explicit representation . 

To train our model, we employ numerous regularization and 

optimization techniques on a 48x48 grayscale image. In the 

ultimate product, only one of seven possible emotions is 

depicted. Four MaxPooling layers and four convolutional 

layers comprise the CNN architecture. 

 

Fig 1: VGG16 architecture 

4. Methodology  

As a foundation for comprehending our methodology, we 

shall commence by introducing the concepts of 

convolutional layer pruning and quantization in this section. 

The purpose of model pruning is to reduce the quantity of 

parameters by removing those that do not contribute 

significantly to the model's overall performance. Neuron 

pruning is the arbitrary adjustment of the outputs of specific 

neurons to zero. Figure 2 gives the block diagram of the 

process. On the contrary, drop connections accomplish 

weight connection pruning by arbitrarily setting specific 

connections between neurons to zero. Convolutional kernel 

convolution, which is a particular instance of channel 

convolution, effectively eliminates superfluous channels, 

reduces the dimensions of convolutional layers, and 

contributes to the model's reduced weight. There are several 

advantages associated with the process of pruning deep 

learning models. It eliminates superfluous parameters, 

thereby simplifying and optimizing the structures, thereby 

diminishing model complexity. This compactness enhances 

performance in all aspects, but particularly during training, 

inference, and deployment on low-powered devices. Real-

time applications can additionally profit from the 

accelerated inference times that pruned models generally 

provide. Pruning functions as an internal consistency 

mechanism, which aids in mitigating overfitting and 

enhances the ability of a model to generalize to unfamiliar 

data. In edge computing and IoT scenarios, the fact that 

smaller versions require less memory, storage space, and 

processing capacity makes them simpler to install. Transfer 

learning is facilitated by pruning pre-trained models, which 

also simplifies the process, thereby reducing the 

environmental impact of AI systems and enhanced hardware 

utilization. 

 

Fig 2: Process block diagram 

Sparsity Level Equation: This equation defines the sparsity 

level after pruning, where Spruned represents the sparsity 

level, Nremaining is the number of remaining parameters after 

pruning and Noriginal denotes the total number of parameters 

in the original model. 

𝑠𝑃𝑟𝑢𝑛𝑒𝑑 = 1 −
𝑁𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝑁𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 𝐿𝐿 = 𝑥‖𝑤‖         (3) 

L1Regularization Loss: L1 regularization is commonly used 

for pruning. The L1 regularization term is added to the loss 

function, penalizin large parameter values. Here Λ denotes 

the regularization strength, W represents the weight matrix 

and II.II signifies the L1 norm. 

𝐿𝑜𝑠𝑠𝐿1𝑟𝑒𝑔 = 𝛬‖𝑤‖1           (4) 

Pruning Threshold Equation: A threshold-based method for 

pruning involves setting a threshold value θ to determine 

which weights to prune. If a weight's absolute value falls 

below this threshold, it is pruned. 

𝑃𝑟𝑢𝑛𝑒(W, θ) = {
0, 𝐼𝑊𝐼 < 0

𝑊, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (5) 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2021–2028 |  2024 

Update Rule for Pruned Weights: After pruning, the 

update rule adjusts the remaining weights in the model 

during training. η denotes the learning rate, ∇L represents 

the gradient of the loss function, and  

Wnew  signifies the updated weight. 

Wnew=W –η. ∇L                  (6) 

Post-training quantization (PTQ) is a technique utilized in 

deep neural networks to decrease the size of trained models. 

This approach prioritizes decreasing the accuracy of the 

model's weights and activations, frequently converting from 

32-bit floating-point (FP32) to 8-bit integer (INT8) 

representations due to their narrower bit breadth. The 

principal incentive underlying PTQ is the endeavor to 

enhance computational efficiency and decrease model size 

while maintaining satisfactory levels of accuracy.   

 

Fig 3: Layer pruning process 

Figure 3 shows the layer 1 pruning process. During The First 

Pruning-Then-Quantization technique (FPTQ)  model 

parameters  

with greater precision FP32 are converted to INT8 format 

for quantization. In order to enable more effective 

implementation on hardware that has restricted capabilities, 

such as mobile platforms or peripheral devices, a reduction 

in precision is accepted in return for a diminished 

computational burden and a more compact memory 

footprint. By employing quantized variables, the model is 

capable of achieving faster inference times and operating 

more efficiently on hardware with limited resources. Two 

prevalent post-training quantization methods are uniform 

and non-uniform quantization. These methods are employed 

to convert the continuous range of FP32 values into a 

discrete set of values with reduced precision. By employing 

PTQ, errors introduced by quantization can be minimized; 

however, this may necessitate tweaking or calibrating the 

quantized model. In order to mitigate the decrease in 

precision induced by quantization, a considerable number of 

professionals.  

employ FPTQ or calibrate their models using sample 

datasets. Important for enhancing deep learning models for 

deployment in situations with limited resources is post-

training quantization. This approach strikes a balance 

between reducing the size of the model and accelerating 

inference while maintaining a satisfactory level of precision. 

As such, it is an indispensable strategy for the effective and 

efficient implementation of deep learning models on a wide 

range of platforms and devices. 

Quantization Formula: Quantization reduces the precision 

of floating-point values to lower bit-width integers. The 

quantization function Q () maps the continuous range of 

FP32 values (xFP32) 

to a discrete set of lower precision values (xINT8). This 

function can be represented as: 

     xINT8=Q(xFP32)                               (8) 

where xINT8  is the quantized value in 8-bit integer format. 

Quantization Error Calculation: Quantization introduces 

errors due to the loss of precision. The quantization error (ϵ) 

can be calculated as the absolute difference between the 

original FP32 value and the quantized INT8.  

ϵ = |XFP32 – XINT8|                                (9) 

where  XFP32 is the original floating-point value and XINT8 is 

the quantized integer value. 

Quantization Parameter Calculation: In non-uniform 

quantization, scaling factors and zero-point offsets are used 

to map the FP32 range to INT8. The scaling factor (S) and 

zero-point offset (Z) can be computed as follows: 

                S=
max(XFP32)-min(XFP32)

max(XINT8)-min(XINT8)
         (10) 

 Z=round
(min(XFP32) X max(XINT8)-max(XFP32) X max(XINT8)

(max(XFP32)-min(XFP32)
      (11) 

where S is the scaling factor and  Z is the zero-point offset. 

Quantization-aware Training Loss: In quantization-aware 

training (QAT), the loss function is modified to include 

quantization effects. The modified loss function (Lquantized) 

incorporates both the original loss (Loriginal) and a 

quantization loss term (Lquantization): 

      Lquantization = Loriginal + λ⋅ Lquantization           (12) 

      

where λ is a hyperparameter that balances the contribution 

of the quantization loss. 

When it comes to pruning deep learning models, the VGG16 

framework offers a multitude of advantages. By virtue of its 

layered convolutional architecture, "pruning"—the 

methodical elimination of channels or layers—does not 

compromise the structure as a whole. When combined with 

this design and the framework's redundancy in learned 
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features, channel or filter pruning is an effective method for 

reducing model size while maintaining performance. As a 

result of VGG16's prevalence and similarity to other CNN 

structures, pruning techniques that were designed for it 

frequently perform admirably when implemented on other 

architectures. Due to their adaptability, these techniques are 

applicable to a vast array of models. Due to the retroactive 

compatibility of VGG16 with fine-tuning algorithms, the 

model's accuracy can be restored to its pre-loss state even 

subsequent to pruning. Due to its moderate depth and 

breadth, it permits precise pruning without compromising 

the stability of the network. Although VGG16 is among the 

most antiquated deep learning models in existence, it 

continues to deliver competitive performance due to its 

resilience and adaptability to compression techniques. 

Due to its stratified structure and structured architecture, 

VGG16 is a significant contender in the domain of network 

pruning for deep learning models. Due to its stacked 

convolutional and fully connected layers that comprise its 

well-defined architecture, the network can be pruned 

systematically using techniques such as filter or channel 

pruning, which permit the removal of individual 

components while leaving the network as a whole intact. 

Pruning methods, which efficiently identify and eliminate 

superfluous parameters, diminish model intricacy while 

retaining essential characteristics. Given the model's 

tendency to contain redundant parameters, pruning 

approaches are highly suitable for it. Furthermore, it is 

common for VGG16-specific pruning methods to function 

as precursor strategies for CNN architectures that are 

comparable. Due to the fact that VGG16 supports fine-

tuning subsequent to pruning, a pruned network can regain 

precision through parameter modification, while the 

pruning-induced compression optimizes the model's 

efficiency. Achieving an optimal balance between 

complexity and performance, its symmetrical, moderately 

deep and broad layout facilitates effective pruning methods 

while preserving structural integrity. In summary, VGG16 

emerges as a noteworthy framework for efficient network 

pruning in deep learning models owing to its well-organized 

structure, capability to detect redundancy, adaptability, 

compatibility with fine-tuning, advantages in compression, 

and balanced architectural design. 

There are a few critical phases in setting up a VGG16 model 

for pruning. To begin, launch TensorFlow and import the 

VGG16 model. Find the specific convolutional layers in the 

VGG16 architecture that should be pruned. You can define 

a pruning criterion in terms of magnitude, percentage, 

structured pruning, or activations and gradients. Adjust the 

layer weights or use a pruning mask to do selective layer 

removal according to the selected criterion. The trimmed 

model can be fine-tuned by retraining if accuracy is lost. 

Finally, test the pruned model's performance in terms of 

accuracy and other metrics to ensure it satisfies the desired 

requirements. The specifics of the implementation are 

determined by the framework and the pruning methods 

selected for use. 

   Critical to pruning with VGG16 or any neural network is 

the sparsity value. It specifies the pruning percentage of the 

model's connections and weights. Modifying the sparsity 

parameter in VGG16 has an effect on both the compression 

level and the size reduction of the resulting model. Increased 

sparsity values result in more stringent pruning operations, 

wherein a greater proportion of weights are eliminated. 

While this process substantially diminishes the size of the 

model, it may have an impact on its accuracy. Conversely, 

lower sparsity values preserve a greater number of 

parameters, which is advantageous for precision but 

detrimental for size reduction. Regardless of the task or 

application at hand, pruning with VGG16 necessitates 

establishing a balance between sparsity and model 

correctness to ensure an acceptable trade-off between model 

size reduction and performance.                 

5. Experiment  

The First Pruning-Then-Quantization technique (FPTQ) is 

implemented on the neural networks VGG16. A sparsity 

level of 0.50 was selected. 

The subsequent method names correspond to the 

capabilities that you have specified: 

1. Class-Discriminative Channel Pruning (CDCP) is a 

technique that prioritizes discriminative channels for 

classification tasks by utilizing class-specific information to 

direct channel pruning. 

2. Selected Feature Pruning with Gradient Attention 

(SFPGA): An approach that utilizes gradient information to 

direct the elimination of less significant features, giving 

precedence to those that are of lesser importance for the 

current task. 

3. Dynamic Rank-Based Channel Pruning (DRCP): An 

approach that prunes channels with decreasing importance 

across layers in a progressive manner, adjusting channel 

importance dynamically based on rank. 

4. TGPP: Task-Guided Progressive Pruning An approach 

that emphasizes incremental model compression through 

the iterative removal of channels or features in accordance 

with the changing criteria or objectives of the task at hand. 

. At the outset, the VGG16 network operates using 

parameters that are specified as floating-point values, 

typically 32-bit floating-point integers, through its 

convolutional layers. The precision of these floating-point 

parameters is reduced to that of integers through the 

quantization process; typically, INT32, but INT8 as well. 

The incorporation of non-linearity into this quantization 

process is dependent on the Rectified Linear Unit (ReLU) 
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layers, which regard negative values as zero. The ReLU 

activation function is still utilized by the majority of neural 

network topologies, including VGG16, following 

quantization. Preserving the activation behavior is of utmost 

importance, even in the face of diminished parameter 

precision that occurs during quantization. 

A network's activations, weights, and biases are frequently 

quantized when transitioning to INT32 or INT8. Efficiency 

is prioritized over precision when the network converts 

floating-point values to a reduced range of integers. 

Specifically, INT32 represents integers with 32 bits, which 

provides greater precision than INT8, which only employs 

8 bits. 

The weights and biases of the convolutional layers, fully 

connected layers, and additional parameters of the network 

are quantized as an integral component of the procedure. 

Nevertheless, proper quantization management is crucial in 

order to avert information loss caused by diminished 

precision. It is a substantial undertaking to ensure the INT32 

and INT8 representations remain accurate while being 

optimized. 

In preparation for the introduction of INT32 and INT8 

quantized parameters in VGG16, the ReLU activation 

functions for non-linearity are maintained, and the 

quantization process is managed to establish a balance 

between reduced precision and preserved accuracy in the 

network's operations. 

During this extensive examination, the performance of a 

number of different optimization strategies, such as CDCP, 

SFPGA, DRCP, TGPP, and FTPQ, is analyzed on VGG16. 

This is due to the fact that all three methods keep constant 

performance patterns throughout all models in terms of the 

amount of parameter storage, the number of frames per 

second, the accuracy, and the compression ratios.[10] In 

particular, FTPQ achieves an extraordinary compression 

ratio of 14.3, which results in a significant reduction in 

parameter storage size of 8.5 MB. In addition to this, it keeps 

an impressive accuracy rate of 70.8%, which demonstrates 

its capability of reducing model size while maintaining 

performance. The fact that it consistently runs at 142.1 

frames per second is more evidence of the real-time 

processing capabilities that it possesses. FTPQ emerges as 

the most successful solution for optimizing the VGG16 

architecture because it places a priority on striking a 

balanced compromise between model compression and 

sustained performance. Table 1 shows the comparison of the 

proposed model FPTQ with other standards methods 

available in literature. 

 

 

 

Mode

l 

Backbo

ne 

Method 

Parame

ter 

Storage 

(MB) 

Compr

ess 

Ratio 

Accura

cy (%) FPS 

VGG

16 

CDCP 32.2 10.7 66.8 
122.

3 

SFPGA 29.8 11.9 65.9 
127.

6 

DRCP 31.5 11.2 68.2 
120.

9 

TGPP 29 12.8 69.3 
133.

4 

FPTQ 15.9 14.6 71.4 
148.

5 

Table 1: VGG16 results with standard methods. 

Examining the effects on model size, compression ratio, 

accuracy, and inference speed, the analysis compares 

several compression algorithms applied to the VGG16 

model. The outcomes show that these metrics have different 

costs and benefits. Out of all the methods, the "FPTQ" 

approach stands out with the best compression ratio of 14.6. 

It greatly reduces the model size to 15.9 MB while keeping 

the impressive accuracy at 71.4%. The "CDCP" and 

"DRCP" approaches, on the other hand, use more space to 

store parameters and are not quite as accurate as "FPTQ." 

"TGPP" demonstrates respectable compression as well, 

reaching a ratio of 12.8 with a precision of 69.3%. The 

"SFPGA" method is just as accurate as the others, but it has 

a lower compression ratio. The choice of compression 

method should be based on the needs of the deployment, 

striking a balance between a small model and enough 

precision for the job. The models' persistent maintenance of 

a high level of accuracy, which is notably noticeable in the 

JAFFE dataset, is evidence that the VGG16 architecture 

possesses adequate adaptability to sustain excellent 

performance even when compressed. This is proved by the 

fact that the JAFFE dataset is particularly notable for its 

accuracy. Table 2 gives the comparison of the proposed 

method with standard databases. 

Dataset Network 

Compressio

n Ratio 

Accuracy 

% 

FER201

3 

VGG16-Ref - 78.46 

VGG16-

Compressed 4.5 75.3 

CK+ 

VGG16-Ref - 73.8 

VGG16-

Compressed 22 68.75 

JAFFE VGG16-Ref - 95.31 
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VGG16-

Compressed 15 92.8 

 

Table 2 Comparison with standard datasets 

The provided table dissects the architecture of the VGG16 

network, offering a detailed comparison between its original 

structure and the compressed version. Each layer's output 

size remains consistent across both architectures, while the 

number of parameters experiences a significant reduction in 

the compressed VGG16 model. For instance, in the initial 

Conv1 layer, the compression ratio stands at an impressive 

70.9%, where the parameter count decreases from 1,792 to 

1,273. This trend persists throughout the network; layers 

like Conv2_1, Conv2_2, Conv3_1, and onward display 

compression ratios ranging from 65.1% to 66.9%. Even the 

final layer, with unchanged output dimensions, showcases a 

substantial reduction from 7,079,000 parameters to 

2,470,000, resulting in a compression ratio of 65.1%. This 

comprehensive comparison highlights the efficacy of 

parameter reduction in the compressed VGG16 architecture 

while maintaining output sizes, underscoring its efficiency 

in compression without compromising network 

performance. Table 3 gives the comparison of the VGG16 

layers with the number of parameters. 

Table 3 Comparison of VGG 16 Layers 

Layer Type Output Parameters 

VGG16 Functional 512 29425183 

Sequential Sequential 7 265996 

 

Table 4: Summary of the model  

Layer 

Name 

Output 

Size 

VGG16 

Structure & 

Parameters 

VGG16 

Compressed 

Structure & 

Parameters 

Compression 

Ratio 

Conv1 224x224 

3x3, 64, 

stride 1, pad 

1 (1,792 
parameters) 

3x3, 41, stride 

1, pad 1 

(1,273 
parameters) 

70.90% 

Conv2_1 224x224 

(3x3, 64), 

(3x3, 64) 

(36,928 
parameters) 

(3x3, 25), 

(3x3, 25) 

(12,225 
parameters) 

66.90% 

Conv2_2 112x112 

(3x3, 128), 

(3x3, 128) 

(73,856 
parameters) 

(3x3, 72), 

(3x3, 72) 

(25,488 
parameters) 

65.50% 

Conv3_1 112x112 

(3x3, 256), 

(3x3, 256) 

(147,584 
parameters) 

(3x3, 145), 

(3x3, 145) 

(50,465 
parameters) 

65.80% 

Conv3_2 56x56 

(3x3, 512), 

(3x3, 512) 
(295,168 

parameters) 

(3x3, 280), 

(3x3, 280) 
(102,760 

parameters) 

65.20% 

Conv3_3 56x56 

(3x3, 512), 

(3x3, 512) 
(295,168 

parameters) 

(3x3, 280), 

(3x3, 280) 
(102,760 

parameters) 

65.20% 

Conv4_1 56x56 

(3x3, 512), 

(3x3, 512) 
(295,168 

parameters) 

(3x3, 280), 

(3x3, 280) 
(102,760 

parameters) 

65.20% 

Conv4_2 28x28 

(3x3, 512), 

(3x3, 512) 
(295,168 

parameters) 

(3x3, 280), 

(3x3, 280) 
(102,760 

parameters) 

65.20% 

Conv4_3 28x28 

(3x3, 512), 

(3x3, 512) 
(295,168 

parameters) 

(3x3, 280), 

(3x3, 280) 
(102,760 

parameters) 

65.20% 

Conv4_4 14x14 

(3x3, 512), 

(3x3, 512) 
(295,168 

parameters) 

(3x3, 280), 

(3x3, 280) 
(102,760 

parameters) 

65.20% 

Conv5_1 14x14 

(3x3, 512), 

(3x3, 512) 
(295,168 

parameters) 

(3x3, 280), 

(3x3, 280) 
(102,760 

parameters) 

65.20% 

Conv5_2 7x7 

(3x3, 512), 

(3x3, 512) 
(295,168 

parameters) 

(3x3, 280), 

(3x3, 280) 
(102,760 

parameters) 

65.20% 

Conv5_3 7x7 

(3x3, 512), 

(3x3, 512) 
(295,168 

parameters) 

(3x3, 280), 

(3x3, 280) 
(102,760 

parameters) 

65.20% 

Last 
Layer 

1x1 

Average 

pool, 1000-d 
fc (7,079,000 

parameters) 

Average pool, 

1000-d fc 
(2,470,000 

parameters) 

65.10% 

 

Table describes a composite model Part one is a feature 

extractor using a VGG16 model with about 29 million 

parameters, which produces a tensor with the shape (None, 

1, 1, 512). Part two is a seven-unit sequential model with 

about 266,000 parameters. 

The composite model has around 29.7 million parameters in 

total. About 14.8 million of the model's parameters are 

trainable, meaning they can be changed during training. 

These parameters mainly originate from the second portion 

of the model. The frozen VGG16 layers also contain the 

non-trainable parameters, which amount to about 14.8 

million in total. 

In this configuration, the VGG16 model acts as a fixed 

feature extractor in a transfer learning situation, while the 

sequential model (maybe stacked on top of the VGG16) 

learns to classify using the features that have been extracted. 

6. Conclusion 

To enhance the applicability of deep neural network 

techniques in the domain of facial emotion recognition, we 

have developed an innovative framework that integrates 

quantization-based and pruning-based compression 

methods. The purpose of this action was to enhance the 

effectiveness of these approaches. Our recently developed 

pruning-then-quantization model compression 

methodology provides insight into the amount of space that 

models can potentially conserve while maintaining 

processing speed and accuracy. By conducting extensive 

experimentation utilizing three distinct datasets, our system 
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exhibited remarkable potential in attaining high model 

compression ratios while simultaneously upholding 

performance standards. These experiments showcased the 

remarkable capability of our system. A systematic 

compilation of compression statistics was undertaken for 

each layer with the intention of obtaining a comprehensive 

comprehension of the architecture's efficacy. Although this 

is particularly true when performing generative tasks, it is 

critical to remain cognizant of the constraints. Following the 

pruning and quantization stages, our approach encountered 

complications pertaining to structures including the self-

attention mechanism and the transformer mask, resulting in 

a moderate deviation in accuracy. Moving forward, our 

intention is to expand the capabilities of our framework to 

incorporate a greater number of state-of-the-art compression 

techniques. By doing so, we will be able to refine and 

augment the accuracy of the model reduction procedures. In 

pursuit of this objective, scholars perpetually explore novel 

methodologies to reduce the dimensions of deep neural 

networks. Through this action, they are laying the 

foundation for models that exhibit enhanced efficacy and 

precision across a wide array of scenarios. 
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