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Abstract: Multimodal medical picture fusion is a trending research topic, in which research is happening. Multimodal medical image 

fusion is a procedure that integrates information from several medical imaging modalities to provide a more useful and complete visual 

content in the same picture to do subsequent operations like image segmentation etc. Medical image fusion may be particularly 

advantageous for biomedical research and medical image analysis and to minimize both the scan duration and motion artifacts in scan. 

The merging of neuroimaging data may lead to new insights into brain function and structure. In this article, multiple deep learning 

techniques including pre-trained VGG19 model, ALEXNET model and DENSENET model are applied utilizing transfer learning 

methodology to merge MRI (Magnetic Resonance Imaging) and PET (Positron Emission Tomography) neuroimaging. As the availability 

to medical data is restricted, transfer learning is employed for feature extraction and save training time. The features are blended using a 

pre-trained VGG19 model, ALEXNET model and DENSENET model. The experimental findings of all the three models include both 

quantitative and qualitative assessment metrics analysis for fused picture and achieves superior overall performance than unimodal and 

feature-level fusion approaches, and that it beats state-of-the-art methods. 

Keywords: Fusion, Transfer Learning, PET, MRI, VGG19, ALEXNET, DENSENET, Image Fusion, Multimodal Medical image. 

1. Introduction 

Medical imaging scans are diagnostic procedures used to 

provide visual reconstructions of the inside of the human 

body. These scans enable healthcare providers to observe 

and analyze the structure and function of organs, tissues, 

and systems without the need for intrusive treatments [1,2]. 

These plays a significant part in the diagnosis, monitoring, 

and treatment planning of numerous medical disorders. 

Neuroimaging is crucial in the area of neuroscience and 

clinical practice. It enables for the diagnosis and 

monitoring of numerous neurological and psychiatric 

diseases, such as brain tumors, stroke, epilepsy, 

Alzheimer's disease, schizophrenia, and more. 

Neuroimaging essentially separates into two categories- 

structural neuroimaging, offers the anatomical information 

of the organ on the other hand functional neuroimaging, 

depicts and analyzes the change in metabolism and blood 

flow. The structural and functional neuroimaging fusion 

permits medical practitioners to concurrently observe soft 

tissues and molecular processes altogether and delivers 

more constructive knowledge about the same thing. Brain 

tumor segmentation may be properly conducted by 

leveraging the integration of structural neuroimaging like 

MRI (Magnetic Resonance Imaging) with functional 

neuroimaging like PET (Positron Emission Tomography). 

Each modality gives unique information about the human 

body, and fusion is applied to maximize the strengths of 

each modality while accounting for their specific limits. 

For instance, the combined employment of positron 

emission tomography (PET) and computed tomography 

(CT) has become a regular practice in the clinical field for 

several neurological illnesses [3,4]. The major objective of 

combining various modalities is to build a system that 

smoothly combines diverse diagnostic procedures to 

provide a single picture. This integrated depiction becomes 

helpful in supporting experts such as radiologists, 

oncologists, and interventionists throughout their 

diagnostic procedures and decision-making. Deep learning 

(DL) has produced amazing breakthroughs in numerous 

computer vision and image processing difficulties. 

Numerous DL-based approaches for multimodal image 

fusion, addressing issues including multi-focus picture 

fusion, multi-exposure image fusion, and multi-sensor 

image fusion, have been presented. These approaches 

significantly enhance the efficacy of applications such as 

image-guided disease analysis, medical diagnostics, 

automatic change detection, navigation assistance, military 

operations, remote sensing, digital imaging, aerial and 

satellite imaging, microscopic imaging, and concealed 

weapon detection in satellite images [5,6]. 

1.1. Types of Multimodal Image Fusion 

In Literature, there are various distinct kinds of multimodal 

picture fusion approaches, each with its own benefits and 

uses as outlined as follows: 

1. Pixel Level Fusion:- This sort of fusion is directly 
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applied to the pixel values of the pictures, independent of 

the features being examined. The focus is on merging the 

full pixel, including all its attributes, without any specific 

emphasis on the intensity or color elements. For example, 

intensity-level fusion is a special sort of pixel-level fusion 

that highlights the intensity values or grayscale properties 

of the pixels [2,3,7]. It has the power to integrate a high-

resolution grayscale picture, such as X-ray, with a color 

image from a different modality. This results in a merged 

picture that contains specific anatomical information from 

the X-ray and color or contextual information from the 

other modality. 

2. Feature Level Fusion:- Feature-level fusion involves 

merging information from several sources or modalities at 

a low level, generally after the extraction of fundamental 

features from separate sources but before higher-level 

analysis or decision-making procedures. It is often used 

with machine learning models. The purpose of feature-

level fusion is frequently to increase the information 

available for further processing by merging complimentary 

features from diverse sources and enhancing overall 

system performance in tasks like tumor classification etc. It 

also offers issues, such as dealing with heterogeneous data, 

aligning distinct feature spaces, and addressing changes in 

size and resolution across the input modalities. 

3. Decision Level Fusion:- Decision-level fusion, also 

known as late fusion or post-processing fusion, is a method 

in which the outputs or decisions from several sources or 

classifiers are joined at a later stage. These sources may act 

on the same or separate modalities. The fusion process 

happens after the separate sources have made their 

conclusions or projections. Decision-level fusion is 

typically applied when dealing with heterogeneous data or 

when the sources use distinct techniques, models, or 

representations. The fusion procedure helps resolve the 

disparities in the results [8,13]. Decision-level fusion may 

increase the resilience and dependability of a system. By 

merging judgments from numerous sources, the entire 

system may be more resistant to mistakes or uncertainty 

associated with individual inputs. Redundancy in 

information may be utilized to promote dependability. 

There are several approaches for decision-level fusion, 

including voting systems (e.g., majority voting, weighted 

voting), averaging, and more complex techniques such as 

ensemble methods like bagging or boosting. The selection 

of the approach depends on the features of the data and the 

special needs of the application. Challenges related with 

decision-level fusion include assuring compatibility 

between the outputs of diverse sources, addressing 

uncertainties, and defining suitable weighting or voting 

algorithms. 

1.2.  Applications of PET/MRI Fusion 

Positron Emission Tomography (PET) , a functional 

neuroimaging and Magnetic Resonance Imaging (MRI), a 

structural neuroimaging are sophisticated medical 

neuroimaging methods that play significant roles in the 

diagnosis, staging, and monitoring of different medical 

disorders. Each modality has its distinct strengths and uses 

[8,9]. PET-MRI fusion provides a strong and synergistic 

technique in medical imaging. By combining the 

capabilities of both modalities, PET-MRI gives 

complementary information regarding both anatomy and 

metabolic activity. The Key applications of PET-MRI 

fusion are as following : 

1. Oncology:- 

• Tumor Localization and characterisation: PET-MRI 

fusion enables for exact localization and characterisation 

by integrating the anatomical features from MRI with the 

metabolic information from PET. 

• Staging and Restaging: In cancer staging, PET offers 

information regarding the metabolic activity of tumors, 

Cells that are quickly developing or are metabolically 

active take up the glucose and light up on the scan. In 

general, cancer cells are more metabolically active than 

normal cells and tend to "light up" whereas MRI delivers 

precise anatomical imaging, which includes data about 

lesion location, size, shape, and structural alterations to 

nearby tissues . This assists in correct staging and restaging 

of cancer [1,3]. 

2. Pediatric Imaging :- 

• Pediatric Oncology: PET-MRI is especially effective in 

pediatric oncology for limiting radiation exposure while 

giving thorough anatomical and functional information. 

• Congenital Abnormalities: The combination of PET and 

MRI is advantageous in the evaluation of congenital 

abnormalities, giving thorough structural and metabolic 

information. 

3. Neurology :- 

• Brain Imaging: PET-MRI is important in neuroimaging, 

delivering rich structural information from MRI with 

functional and metabolic data from PET. It assists in the 

diagnosis and monitoring of neurodegenerative illnesses. 

Degenerative brain illnesses, such as moderate cognitive 

impairment, Alzheimer's, and Parkinson's, originate from 

deteriorating neuronal function and diminished neuron 

numbers in the central nervous system. These degenerative 

disorders, impairing memory, speech, and mobility, 

represent considerable issues as the aging population rises, 

with no known solution and severe repercussions on 

people, families, and society [12]. 

• Epilepsy assessment: For the assessment of epilepsy, 

several imaging methods like MRI, PET, SPECT, EEG, 

MEG etc may be utilized to determine the underlying 

causes and find the epileptogenic center. The choice of 
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imaging modality relies on the individual clinical setting 

and the information sought. The combination of PET and 

MRI is utilized in the examination of epilepsy patients to 

locate the epileptogenic center and analyze structural 

abnormalities. 

4. Cardiology:- 

• Myocardial Perfusion and Viability: Myocardial illness, 

the primary cause of mortality in humans, includes 

anomalies in the heart muscle. Stunned myocardium refers 

to a situation when there is wall dysfunction, but the 

perfusion (resting and stress) remains normal. Myocardial 

ischemia occurs when there is diminished perfusion of the 

myocardium during stress (e.g., during exercise) but 

normal perfusion at rest, characterized as a reversible 

perfusion abnormality. Patients with reversible perfusion 

abnormalities may considerably improve from therapy. 

Hibernating myocardial has reduced perfusion in both 

stress and resting phases, manifesting as a permanent 

defect. Despite the diminished perfusion, the myocytes 

remain alive and may benefit from revascularization. In the 

event of myocardial infarction, there is a lack of perfusion 

both under stress and at rest, resulting in a permanent 

defect, and the myocytes are not viable. Revascularization 

does not give any advantage in such circumstances. The 

fusion of PET-MRI is applied in measuring myocardial 

perfusion and viability, delivering full information on 

blood flow, metabolism, and heart anatomy. 

• Cardiac Tumor Detection: In situations of suspected 

cardiac malignancies, PET-MRI may aid in localizing and 

defining the lesions. 

1.3.  Organization of Paper 

The paper follows a systematic format as indicated below: 

The introduction gives an overview, explaining several 

forms of multimodal image fusion and stressing the 

applications of PET/MRI fusion. Section 2 investigates the 

numerous strategies deployed, with a special emphasis on 

deep learning and transfer learning techniques. Subsections 

under transfer learning study particular models, including 

VGG19, ALEXNET, and DENSNET. Section 3 explains 

the proposed multimodal fusion procedure, followed by a 

comprehensive discussion of experimental parameters in 

Section 4. The analysis of the acquired findings is reported 

in Section 5. The report finishes by summarizing the 

results and analyzing their ramifications. Finally, a list of 

references is supplied to recognize the sources and 

background material that informed the research. 

2. Different Methodology 

2.1. Deep Learning 

Before deep learning became popular, there was a lot of 

study done on image fusion. Image fusion issues are 

further subdivided into visible/infrared image fusion, 

multi-focus image fusion techniques, multi-exposure 

picture fusion, multi-temporal image fusion, and remote 

sensing image fusion, among other subproblems, based on 

different application domains. Traditional fusion 

techniques refer to the early approaches to these image 

fusion challenges that used mathematical transformations 

to manually examine activity levels and create fusion rules 

in the transformation or spatial domain. 

These conventional techniques, which are designed to 

satisfy the unique needs of various applications, include 

multi-scale transform-based approaches, sparse 

representation-based techniques, methods based in the 

spatial domain, hybrid transform-based methods, and 

methods based on total variation or remote sensing image 

fusion [10,11]. But it's becoming more and more clear how 

limited these conventional approaches are. To guarantee 

the viability of feature fusion later, conventional 

approaches are limited to using the same transformation 

for feature extraction across various source pictures. 

Creating efficient picture representation techniques and 

fusion rules to provide cutting-edge outcomes is becoming 

more difficult, therefore. 

Because of its strong capabilities in feature extraction, 

representation, fusion, and reconstruction, deep learning 

(DL) has had a considerable impact on the discipline since 

its introduction. The main benefit of deep learning (DL) is 

its ability to create hierarchical representations by 

separating high-level features from low-level features. This 

allows DL to achieve state-of-the-art performance in many 

computer vision and image fusion problems. 

 

Fig. 1. CNN network architecture [12] 

The Convolutional Neural Network (CNN), as seen in Fig. 

1, is the best deep learning model for computer vision 

because of its many architectural features, such as reduced 

parametrization, weight sharing, hierarchical feature 

learning, local connection, and parameter sharing. 

Furthermore, pre-trained CNN models that have been 

trained on huge datasets like ImageNet are easily 

accessible and adaptable to particular applications. Even 

with a little amount of labeled data, deep networks may be 

trained effectively via the use of transfer learning using 

pre-trained models. In a work by [10], the trainable layer 

for extracting features from infrared pictures was fine-

tuned using transfer learning, which included redesigning 
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the CNN architecture. 

A typical convolutional neural network's design consists of 

many layers placed in a certain order. Three primary layers 

make up a conventional CNN architecture, while 

modifications may exist depending on particular CNN 

models and tasks: 

1. Input Layer: Takes unprocessed pictures. 

2. Convolutional Layers: To capture characteristics that are 

more and more complicated, many layers are layered. 

These layers use filters or kernels to apply convolution 

operations on the incoming data. 

3. Activation Function: Often known as ReLU (Rectified 

Linear Unit), this function is used elementwise to provide 

the model non-linearity so that it may pick up on more 

intricate linkages. 

4. Layers for pooling (subsampling or down sampling): 

These layers minimize the input volume's width and 

height. In order to down sample the data and improve 

computing performance, a popular approach called max 

pooling keeps the largest value from a set of values. 

5. Fully Connected (Dense) Layers: Utilized at the 

conclusion of the network to aggregate high-level features 

and generate predictions, these layers link every neuron in 

one layer to every other layer's neuron. 

6. Flatten Layer: This layer is used before the fully 

connected layers and helps with input into the fully 

connected layers by converting the multi-dimensional 

output of the convolutional and pooling layers into a one-

dimensional vector. 

7. Output Layer: Generates the ultimate forecasts.   

2.2. Transfer Education  

using training on the target task, a pre-trained model on a 

large dataset may be further refined using transfer learning, 

a potent deep learning approach that updates the weights 

depending on input from the target task. Three main issues 

with conventional machine learning methods are usually 

addressed by transfer learning (TL): (1) insufficient labeled 

data; (2) insufficient processing capacity; and (3) 

distribution mismatches. Transfer learning (TL) may be 

broadly divided into four categories: four types of learning 

are transudative, inductive, unsupervised, and negative 

[5,18]. In addition, there are four different forms of 

learning within each category: relation-based learning, 

feature-based learning, parameter-based learning, and 

instance-based learning. For many industries, transfer 

learning is beneficial to multimodal learning. Through 

performance optimization, data scarcity surmounting, and 

the use of pre-trained models on a variety of data sources, 

transfer learning improves multimodal learning in the 

healthcare industry. It enables the integration of data from 

several modalities, including patient records and medical 

imaging, resulting in more reliable and precise healthcare 

forecasts. This method speeds up model training, reduces 

the amount of labeled data required, and eventually 

improves diagnostic and prognostic performance in 

medical applications. 

VGG19 

The deep convolutional neural network architecture known 

as VGG-19 was first created for image categorization 

applications. Due to its capacity to extract hierarchical 

features and patterns from pictures, VGG-19 may be used 

in the context of fusion tasks even if it is not specifically 

designed for multimodal medical image fusion [16]. 

Effective spatial hierarchy capture is facilitated by the 

VGG-19 architecture's widespread usage of tiny 3x3 

convolutional filters. 

 

Fig. 2. VGG19 deep convolutional neural network 

architecture [18] 

Every convolutional layer in VGG-19 extracts features at a 

distinct scale, as shown in fig. 2. The network's flexibility 

to adjust to varied scales makes it appropriate for 

managing a range of resolutions and modalities' properties, 

which aids in efficient fusion. VGG-19 is a pre-trained 

model that can be used to big datasets like ImageNet. The 

model can learn general characteristics from a variety of 

photos because to this pre-training. For the sake of the 

particular fusion challenge, transfer learning entails 

optimizing the previously trained VGG-19 on a smaller 

dataset of medical images. This facilitates the use of 

natural image characteristics that have been learnt for 

medical image fusion. This is especially useful in 

situations when there are few medical imaging datasets 

available, as in MRI and PET scans of the same patient 

with a brain problem. It successfully addresses data 

scarcity problems. Qualitative assessment measures show 

state-of-the-art performance in the use of transfer learning 

in the integration of CT-MRI data. 

AlexNet 

AlexNet is a convolutional neural network (CNN) 

architecture distinguished by its eight-layer deep structure. 

This architecture, which is designed especially for image 

classification problems, consists of five convolutional 

layers followed by three fully linked layers. 
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Fig. 3. ALEXNET deep convolutional neural network 

architecture [5] 

The model was created by Alex Krizhevsky, Ilya 

Sutskever, and Geoffrey Hinton, as seen in Fig. 3. It 

received a lot of praise for its performance in the 2012 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC). Being among the first models to use Graphics 

Processing Units (GPUs) for training deep neural 

networks, AlexNet was crucial in making convolutional 

neural networks and deep learning more widely used. 

Transfer learning may be based on pre-trained models, 

such as AlexNet [17, 18]. Utilizing the information gained 

from large-scale image classification tasks, a pre-trained 

AlexNet may be fine-tuned for a particular medical image 

fusion job using a smaller dataset. For medical imaging 

researchers and practitioners, having access to such pre-

trained models streamlines the process and makes it easier 

for them to modify the architecture to suit their unique 

needs rather than having to start from scratch. 

DENSENET 

Densely Connected Convolutional Networks, or DenseNet 

for short, is a unique kind of convolutional neural network 

(CNN) architecture that departs from traditional CNN 

topologies. DenseNet, developed by Gao Huang, Zhuang 

Liu, and Laurens van der Maaten, is characterized by a 

dense connection pattern in which all layers are feed 

forwardly linked to all other layers. By encouraging feature 

reuse and improving gradient flow during training, this 

architecture facilitates smooth information flow across the 

network. Multiple dense blocks, each including a group of 

densely linked layers, make up DenseNet. The feature 

maps from earlier layers are concatenated inside each 

dense block and used as input for later layers. Compared to 

conventional topologies, this dense connection results in a 

more parameter-efficient and computationally powerful 

network. Like AlexNet, DenseNet has shown successful in 

a variety of computer vision applications, most notably 

picture categorization. Its design improves gradient flow, 

reduces the vanishing gradient issue, and makes the model 

more compact. 

 

Fig. 4. DENSENET deep convolutional neural network 

architecture [18] 

As shown in fig.4 model is application in medical image 

fusion tasks, particularly in conjunction with transfer 

learning, can capitalize on its inherent benefits. Pre-trained 

DenseNet models can serve as a robust starting point for 

medical imaging tasks, allowing researchers and 

practitioners to fine-tune the network on a smaller dataset 

related to specific fusion requirements. Leveraging the 

knowledge encoded in the pre-trained models aids in 

achieving better performance and faster convergence on 

medical image fusion tasks, like the role played by pre-

trained models such as AlexNet in other domains. 

3. Proposed Multimodal Fusion Process 

Transfer learning techniques have shown to be very 

effective in automatically extracting representative and 

hierarchical characteristics at different levels of 

abstraction. VGG19, AlexNet, and DenseNet are standard 

models for image fusion that are often used. Using certain 

feature extraction methods, feature-level fusion entails 

removing features from input pictures to fuse them. This 

procedure isolates and uses pertinent features or qualities 

from the original pictures for the fusion process. 

Our study intends to develop a hybrid approach that 

incorporates structural and functional information from 

PET and MRI scans, producing a unique fused picture, to 

produce a more robust and controlled fusion choice. The 

suggested method combines the transfer learning VGG19 

architecture with the discrete wavelet transform for 

multimodal medical picture fusion. Additionally, the 

AlexNet architecture applies the concepts of transfer 

learning networks. 

picture processing entails running the picture through a 

series of filters to calculate the Discrete Wavelet 

Transform (DWT). The picture is first passed through a 

low-pass filter and then a high-pass filter. The objective of 

this dual-filtering process is to extract from the picture the 

detailed (d), diagonal (h), vertical (v), and approximation 

(a) characteristics. While the high-pass filter concentrates 

on smaller, more precise information, the low-pass filter 
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catches wider, more general qualities. When combined, 

these filters aid in the image's breakdown into its 

component parts, enabling a depiction that incorporates 

both the general structure and more subtle details. 

 

Fig. 5. PET-MRI Medical Image Fusion System 

In this work, the pre-trained VGG19, AlexNet, and 

DenseNet models were trained using multimodal medical 

data, namely PET and MRI, as input source pictures. The 

PET and MRI images were first broken down using the 

Discrete Wavelet decomposition approach in the transform 

domain. Approximation (a), horizontal (h), vertical (v), and 

diagonal (d) coefficients were obtained from the 

decomposition of MRI images. Similarly, as shown in Fig. 

5, the decomposition of PET images yielded the 

coefficients a' (approximation), h' (horizontal), v' (vertical), 

and d' (diagonal). 

The lower-level coefficients (a and a'), horizontal 

coefficients (h and h'), vertical coefficients (v and v'), and 

diagonal coefficients (d and d') of the CT and MRI pictures 

were then used to extract features. The VGG19 model was 

then utilized to merge these characteristics. From the input 

coefficients, the VGG19, AlexNet, and DenseNet models 

produced the A, H, V, and D bands. Essential information 

from the original picture was caught in the A band, while 

details were acquired in the H, V, and D bands, which 

corresponded to horizontal, vertical, and diagonal 

directions. 

Lastly, the inverse discrete wavelet transform was used to 

create the fused picture after the frequency sub-bands A, 

H, V, and D were integrated using the VGG19, AlexNet, 

and DenseNet architecture. 

4. Experimental Parameters 

Image fusion is a process that involves combining 

information from multiple images to create a single, more 

informative image. To assess the quality of fused images, 

various evaluation metrics are employed [14,15]. The 

selection of a specific metric depends on the goals and 

requirements of the fusion task. Commonly used 

evaluation metrics for image fusion include:  

Entropy: Entropy measures the amount of information or 

uncertainty in an image. Higher entropy indicates greater 

information content. Entropy-based metrics can be used to 

evaluate the amount of information preserved in the fused 

image. 

Mutual Information (MI): Mutual information measures 

the statistical dependence between two variables. In image 

fusion, it assesses the shared information between the 

source images and the fused image. Higher mutual 

information values indicate better fusion. 

Structural Similarity Index (SSI): SSI compares the 

structural information between the source and fused 

images. It considers luminance, contrast, and structure, 

providing a more comprehensive assessment of image 

quality. 

Peak Signal-to-Noise Ratio (PSNR): PSNR (Peak Signal-

to-Noise Ratio) measures the ratio of the maximum 

possible power of a signal to the power of corrupting noise. 

Higher PSNR values are indicative of better image quality. 

Mean Squared Error (MSE): For multimodal image fusion, 

when information from multiple images is combined, MSE 

(Mean Squared Error) can be calculated to quantify the 

difference between the fused image and a reference image.  

Root Mean Square Error (RMSE): RMSE (Root Mean 

Square Error) calculates the average difference between 

the pixel values of the fused and reference images. Lower 

RMSE values are indicative of better image fusion. 

RESULTS ANALYSIS 

We used assessment metrics such PSNR, MSE, RMSE, 

SSI, MI, and EN for our extensive experimental tests on 

different PET and MRI test pictures. Taking into account 

the deep learning model that was used, we also 

incorporated the time required for the fusion of pictures. 

 

Fig. 6. DWT of PET & MRI 
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Fig. 7. VGG19 Fusion 

As seen in Table 1, the fusion results are compared using 

MRI and PET input pictures as reference images. The 

comparison shows that the performance is better. The 

computed entropies for the input PET and MRI pictures, 

the fused image, and the combined entropy of the input and 

fused images are shown in Table 2. 

When compared to other models that are currently 

available, our suggested technique, DWT+VGG19, 

performs very well in evaluation metrics like PSNR and 

SSIM, successfully collecting a significant amount of 

structural information in the pictures. Consequently, in 

terms of picture quality, our suggested technique for 

medical image fusion outperforms previous wavelet-based 

and neural network-based algorithms. 

Table 1. DWT+VGG19 Fusion 

Image Type Parameters Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 

 

 

MRI 

MSE 2317.09  2464.75 2929.01 2667.17 2046.22 1051.61 

PSNR 14.4 14.21 13.46 13.87 15.02 17.91 

RMSE 0.41 0.44 0.49 0.47 0.45 0.41 

SSIM 0.75 0.75 0.74 0.75 0.80 0.90 

MI 0.90 0.889 0.885 0.86 0.890 0.91 

 

 

PET 

MSE 5510.0 4197.8 3707.8 3415.20 3590.57 3389.92 

PSNR 10.7 11.9 12.43 12.79 12.57 12.82 

RMSE 0.89 0.71 0.64 0.65 0.69 0.92 

SSIM 0.60 0.61 0.63 0.65 0.69 0.72 

MI 0.43 0.440 0.486 0.468 0.432 0.247 

Time  3.36 sec 2.85 sec 4.43 sec 3.41 sec 3.60 sec 3.85 sec 

Table 2. DWT+VGG19 Fusion Entropy Analysis 

 

 

 

 

 

 

 

 

5. Conclusion 

Finally, evaluations of the DWT+VGG19 fusion approach 

were conducted over a range of parameters for both MRI 

and PET imaging. Improvements in Mean Squared Error 

(MSE), Peak Signal-to-Noise Ratio (PSNR), Root Mean 

Square Error (RMSE), Structural Similarity Index (SSIM), 

Mutual Information (MI), and computational time 

demonstrate the positive effects of our suggested fusion 

strategy. Notably, for both MRI and PET modalities, the 

fusion procedure performed better at keeping structural 

information and picture quality. The entropy study shown 

in Table 2 adds further evidence to the fusion technique's 

efficacy. It is crucial to remember that even if the 

suggested approach showed encouraging outcomes, there 

is still space for development.  

To improve overall diagnosis accuracy, future research 

areas may concentrate on deep learning architecture 

exploration, fusion algorithm optimization for particular 

medical imaging applications, and integration of other 

modalities. Translating these discoveries into useful 

medical imaging solutions would also need a thorough 

validation study and an investigation of real-world clinical 

circumstances. 

 

No. MRI Entropy PET Entropy Fusion Entropy Joint Entropy 

Img1 4.32 2.51 5.041 7.569 

Img2 4.36 2.63 5.016 7.602 

Img3 4.25 2.42 4.761 7.251 

Img4 3.99 2.45 4.590 6.894 

Img5 3.69 1.98 4.127 6.082 

Img6 2.98 1.24 3.327 4.510 
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