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Abstract: Multimodal medical picture fusion is a trending research topic, in which research is happening. Multimodal medical image
fusion is a procedure that integrates information from several medical imaging modalities to provide a more useful and complete visual
content in the same picture to do subsequent operations like image segmentation etc. Medical image fusion may be particularly
advantageous for biomedical research and medical image analysis and to minimize both the scan duration and motion artifacts in scan.
The merging of neuroimaging data may lead to new insights into brain function and structure. In this article, multiple deep learning
techniques including pre-trained VGG19 model, ALEXNET model and DENSENET model are applied utilizing transfer learning
methodology to merge MRI (Magnetic Resonance Imaging) and PET (Positron Emission Tomography) neuroimaging. As the availability
to medical data is restricted, transfer learning is employed for feature extraction and save training time. The features are blended using a
pre-trained VGG19 model, ALEXNET model and DENSENET model. The experimental findings of all the three models include both
quantitative and qualitative assessment metrics analysis for fused picture and achieves superior overall performance than unimodal and
feature-level fusion approaches, and that it beats state-of-the-art methods.
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1. Introduction Each modality gives unique information about the human
body, and fusion is applied to maximize the strengths of
each modality while accounting for their specific limits.
For instance, the combined employment of positron
emission tomography (PET) and computed tomography
(CT) has become a regular practice in the clinical field for
several neurological illnesses [3,4]. The major objective of
combining various modalities is to build a system that
smoothly combines diverse diagnostic procedures to
provide a single picture. This integrated depiction becomes
helpful in supporting experts such as radiologists,
oncologists, and interventionists throughout their
diagnostic procedures and decision-making. Deep learning
(DL) has produced amazing breakthroughs in numerous
computer vision and image processing difficulties.
Numerous DL-based approaches for multimodal image
fusion, addressing issues including multi-focus picture
fusion, multi-exposure image fusion, and multi-sensor
image fusion, have been presented. These approaches
significantly enhance the efficacy of applications such as
image-guided disease analysis, medical diagnostics,
automatic change detection, navigation assistance, military
operations, remote sensing, digital imaging, aerial and
satellite imaging, microscopic imaging, and concealed
weapon detection in satellite images [5,6].

Medical imaging scans are diagnostic procedures used to
provide visual reconstructions of the inside of the human
body. These scans enable healthcare providers to observe
and analyze the structure and function of organs, tissues,
and systems without the need for intrusive treatments [1,2].
These plays a significant part in the diagnosis, monitoring,
and treatment planning of numerous medical disorders.
Neuroimaging is crucial in the area of neuroscience and
clinical practice. It enables for the diagnosis and
monitoring of numerous neurological and psychiatric
diseases, such as brain tumors, stroke, epilepsy,
Alzheimer's  disease,  schizophrenia, and  more.
Neuroimaging essentially separates into two categories-
structural neuroimaging, offers the anatomical information
of the organ on the other hand functional neuroimaging,
depicts and analyzes the change in metabolism and blood
flow. The structural and functional neuroimaging fusion
permits medical practitioners to concurrently observe soft
tissues and molecular processes altogether and delivers
more constructive knowledge about the same thing. Brain
tumor segmentation may be properly conducted by
leveraging the integration of structural neuroimaging like
MRI (Magnetic Resonance Imaging) with functional

neuroimaging like PET (Positron Emission Tomography).
1.1. Types of Multimodal Image Fusion
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applied to the pixel values of the pictures, independent of
the features being examined. The focus is on merging the
full pixel, including all its attributes, without any specific
emphasis on the intensity or color elements. For example,
intensity-level fusion is a special sort of pixel-level fusion
that highlights the intensity values or grayscale properties
of the pixels [2,3,7]. It has the power to integrate a high-
resolution grayscale picture, such as X-ray, with a color
image from a different modality. This results in a merged
picture that contains specific anatomical information from
the X-ray and color or contextual information from the
other modality.

2. Feature Level Fusion:- Feature-level fusion involves
merging information from several sources or modalities at
a low level, generally after the extraction of fundamental
features from separate sources but before higher-level
analysis or decision-making procedures. It is often used
with machine learning models. The purpose of feature-
level fusion is frequently to increase the information
available for further processing by merging complimentary
features from diverse sources and enhancing overall
system performance in tasks like tumor classification etc. It
also offers issues, such as dealing with heterogeneous data,
aligning distinct feature spaces, and addressing changes in
size and resolution across the input modalities.

3. Decision Level Fusion:- Decision-level fusion, also
known as late fusion or post-processing fusion, is a method
in which the outputs or decisions from several sources or
classifiers are joined at a later stage. These sources may act
on the same or separate modalities. The fusion process
happens after the separate sources have made their
conclusions or projections. Decision-level fusion is
typically applied when dealing with heterogeneous data or
when the sources use distinct techniques, models, or
representations. The fusion procedure helps resolve the
disparities in the results [8,13]. Decision-level fusion may
increase the resilience and dependability of a system. By
merging judgments from numerous sources, the entire
system may be more resistant to mistakes or uncertainty
associated with individual inputs. Redundancy in
information may be utilized to promote dependability.
There are several approaches for decision-level fusion,
including voting systems (e.g., majority voting, weighted
voting), averaging, and more complex techniques such as
ensemble methods like bagging or boosting. The selection
of the approach depends on the features of the data and the
special needs of the application. Challenges related with
decision-level fusion include assuring compatibility
between the outputs of diverse sources, addressing
uncertainties, and defining suitable weighting or voting
algorithms.

1.2. Applications of PET/MRI Fusion

Positron Emission Tomography (PET) , a functional

neuroimaging and Magnetic Resonance Imaging (MRI), a
structural neuroimaging are sophisticated medical
neuroimaging methods that play significant roles in the
diagnosis, staging, and monitoring of different medical
disorders. Each modality has its distinct strengths and uses
[8,9]. PET-MRI fusion provides a strong and synergistic
technique in medical imaging. By combining the
capabilities of both modalities, PET-MRI gives
complementary information regarding both anatomy and
metabolic activity. The Key applications of PET-MRI
fusion are as following :

1. Oncology:-

e Tumor Localization and characterisation: PET-MRI
fusion enables for exact localization and characterisation
by integrating the anatomical features from MRI with the
metabolic information from PET.

+ Staging and Restaging: In cancer staging, PET offers
information regarding the metabolic activity of tumors,
Cells that are quickly developing or are metabolically
active take up the glucose and light up on the scan. In
general, cancer cells are more metabolically active than
normal cells and tend to "light up" whereas MRI delivers
precise anatomical imaging, which includes data about
lesion location, size, shape, and structural alterations to
nearby tissues . This assists in correct staging and restaging
of cancer [1,3].

2. Pediatric Imaging :-

« Pediatric Oncology: PET-MRI is especially effective in
pediatric oncology for limiting radiation exposure while
giving thorough anatomical and functional information.

+ Congenital Abnormalities: The combination of PET and
MRI is advantageous in the evaluation of congenital
abnormalities, giving thorough structural and metabolic
information.

3. Neurology :-

 Brain Imaging: PET-MRI is important in neuroimaging,
delivering rich structural information from MRI with
functional and metabolic data from PET. It assists in the
diagnosis and monitoring of neurodegenerative illnesses.
Degenerative brain illnesses, such as moderate cognitive
impairment, Alzheimer's, and Parkinson's, originate from
deteriorating neuronal function and diminished neuron
numbers in the central nervous system. These degenerative
disorders, impairing memory, speech, and mobility,
represent considerable issues as the aging population rises,
with no known solution and severe repercussions on
people, families, and society [12].

+ Epilepsy assessment: For the assessment of epilepsy,
several imaging methods like MRI, PET, SPECT, EEG,
MEG etc may be utilized to determine the underlying
causes and find the epileptogenic center. The choice of
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imaging modality relies on the individual clinical setting
and the information sought. The combination of PET and
MRI is utilized in the examination of epilepsy patients to
locate the epileptogenic center and analyze structural
abnormalities.

4. Cardiology:-

» Mpyocardial Perfusion and Viability: Myocardial illness,
the primary cause of mortality in humans, includes
anomalies in the heart muscle. Stunned myocardium refers
to a situation when there is wall dysfunction, but the
perfusion (resting and stress) remains normal. Myocardial
ischemia occurs when there is diminished perfusion of the
myocardium during stress (e.g., during exercise) but
normal perfusion at rest, characterized as a reversible
perfusion abnormality. Patients with reversible perfusion
abnormalities may considerably improve from therapy.
Hibernating myocardial has reduced perfusion in both
stress and resting phases, manifesting as a permanent
defect. Despite the diminished perfusion, the myocytes
remain alive and may benefit from revascularization. In the
event of myocardial infarction, there is a lack of perfusion
both under stress and at rest, resulting in a permanent
defect, and the myocytes are not viable. Revascularization
does not give any advantage in such circumstances. The
fusion of PET-MRI is applied in measuring myocardial
perfusion and viability, delivering full information on
blood flow, metabolism, and heart anatomy.

« Cardiac Tumor Detection: In situations of suspected
cardiac malignancies, PET-MRI may aid in localizing and
defining the lesions.

1.3. Organization of Paper

The paper follows a systematic format as indicated below:
The introduction gives an overview, explaining several
forms of multimodal image fusion and stressing the
applications of PET/MRI fusion. Section 2 investigates the
numerous strategies deployed, with a special emphasis on
deep learning and transfer learning techniques. Subsections
under transfer learning study particular models, including
VGG19, ALEXNET, and DENSNET. Section 3 explains
the proposed multimodal fusion procedure, followed by a
comprehensive discussion of experimental parameters in
Section 4. The analysis of the acquired findings is reported
in Section 5. The report finishes by summarizing the
results and analyzing their ramifications. Finally, a list of
references is supplied to recognize the sources and
background material that informed the research.

2. Different Methodology
2.1. Deep Learning

Before deep learning became popular, there was a lot of
study done on image fusion. Image fusion issues are
further subdivided into visible/infrared image fusion,

multi-focus image fusion techniques, multi-exposure
picture fusion, multi-temporal image fusion, and remote
sensing image fusion, among other subproblems, based on
different application domains.  Traditional  fusion
techniques refer to the early approaches to these image
fusion challenges that used mathematical transformations
to manually examine activity levels and create fusion rules
in the transformation or spatial domain.

These conventional techniques, which are designed to
satisfy the unique needs of various applications, include
multi-scale transform-based approaches, sparse
representation-based techniques, methods based in the
spatial domain, hybrid transform-based methods, and
methods based on total variation or remote sensing image
fusion [10,11]. But it's becoming more and more clear how
limited these conventional approaches are. To guarantee
the viability of feature fusion later, conventional
approaches are limited to using the same transformation
for feature extraction across various source pictures.
Creating efficient picture representation techniques and
fusion rules to provide cutting-edge outcomes is becoming
more difficult, therefore.

Because of its strong capabilities in feature extraction,
representation, fusion, and reconstruction, deep learning
(DL) has had a considerable impact on the discipline since
its introduction. The main benefit of deep learning (DL) is
its ability to create hierarchical representations by
separating high-level features from low-level features. This
allows DL to achieve state-of-the-art performance in many
computer vision and image fusion problems.

Fully

Convolution Connected

Poolingiﬁ,.-»""’_(

\ I

Feature Extraction

Classification

Fig. 1. CNN network architecture [12]

The Convolutional Neural Network (CNN), as seen in Fig.
1, is the best deep learning model for computer vision
because of its many architectural features, such as reduced
parametrization, weight sharing, hierarchical feature
learning, local connection, and parameter sharing.
Furthermore, pre-trained CNN models that have been
trained on huge datasets like ImageNet are easily
accessible and adaptable to particular applications. Even
with a little amount of labeled data, deep networks may be
trained effectively via the use of transfer learning using
pre-trained models. In a work by [10], the trainable layer
for extracting features from infrared pictures was fine-
tuned using transfer learning, which included redesigning
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the CNN architecture.

A typical convolutional neural network's design consists of
many layers placed in a certain order. Three primary layers
make up a conventional CNN architecture, while
modifications may exist depending on particular CNN
models and tasks:

1. Input Layer: Takes unprocessed pictures.

2. Convolutional Layers: To capture characteristics that are
more and more complicated, many layers are layered.
These layers use filters or kernels to apply convolution
operations on the incoming data.

3. Activation Function: Often known as ReLU (Rectified
Linear Unit), this function is used elementwise to provide
the model non-linearity so that it may pick up on more
intricate linkages.

4. Layers for pooling (subsampling or down sampling):
These layers minimize the input volume's width and
height. In order to down sample the data and improve
computing performance, a popular approach called max
pooling keeps the largest value from a set of values.

5. Fully Connected (Dense) Layers: Utilized at the
conclusion of the network to aggregate high-level features
and generate predictions, these layers link every neuron in
one layer to every other layer's neuron.

6. Flatten Layer: This layer is used before the fully
connected layers and helps with input into the fully
connected layers by converting the multi-dimensional
output of the convolutional and pooling layers into a one-
dimensional vector.

7. Output Layer: Generates the ultimate forecasts.
2.2. Transfer Education

using training on the target task, a pre-trained model on a
large dataset may be further refined using transfer learning,
a potent deep learning approach that updates the weights
depending on input from the target task. Three main issues
with conventional machine learning methods are usually
addressed by transfer learning (TL): (1) insufficient labeled
data; (2) insufficient processing capacity; and (3)
distribution mismatches. Transfer learning (TL) may be
broadly divided into four categories: four types of learning
are transudative, inductive, unsupervised, and negative
[5,18]. In addition, there are four different forms of
learning within each category: relation-based learning,
feature-based learning, parameter-based learning, and
instance-based learning. For many industries, transfer
learning is beneficial to multimodal learning. Through
performance optimization, data scarcity surmounting, and
the use of pre-trained models on a variety of data sources,
transfer learning improves multimodal learning in the
healthcare industry. It enables the integration of data from

several modalities, including patient records and medical
imaging, resulting in more reliable and precise healthcare
forecasts. This method speeds up model training, reduces
the amount of labeled data required, and eventually
improves diagnostic and prognostic performance in
medical applications.

VGG19

The deep convolutional neural network architecture known
as VGG-19 was first created for image categorization
applications. Due to its capacity to extract hierarchical
features and patterns from pictures, VGG-19 may be used
in the context of fusion tasks even if it is not specifically
designed for multimodal medical image fusion [16].
Effective spatial hierarchy capture is facilitated by the
VGG-19 architecture's widespread usage of tiny 3x3
convolutional filters.

o
maxpool maxpool maxpoct ’

Fig. 2. VGG19 deep convolutional neural network
architecture [18]

Every convolutional layer in VGG-19 extracts features at a
distinct scale, as shown in fig. 2. The network's flexibility
to adjust to varied scales makes it appropriate for
managing a range of resolutions and modalities' properties,
which aids in efficient fusion. VGG-19 is a pre-trained
model that can be used to big datasets like ImageNet. The
model can learn general characteristics from a variety of
photos because to this pre-training. For the sake of the
particular fusion challenge, transfer learning entails
optimizing the previously trained VGG-19 on a smaller
dataset of medical images. This facilitates the use of
natural image characteristics that have been learnt for
medical image fusion. This is especially useful in
situations when there are few medical imaging datasets
available, as in MRI and PET scans of the same patient
with a brain problem. It successfully addresses data
scarcity problems. Qualitative assessment measures show
state-of-the-art performance in the use of transfer learning
in the integration of CT-MRI data.

AlexNet

AlexNet is a convolutional neural network (CNN)
architecture distinguished by its eight-layer deep structure.
This architecture, which is designed especially for image
classification problems, consists of five convolutional
layers followed by three fully linked layers.
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Fig. 3. ALEXNET deep convolutional neural network
architecture [5]

The model was created by Alex Krizhevsky, Ilya
Sutskever, and Geoffrey Hinton, as seen in Fig. 3. It
received a lot of praise for its performance in the 2012
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). Being among the first models to use Graphics
Processing Units (GPUs) for training deep neural
networks, AlexNet was crucial in making convolutional
neural networks and deep learning more widely used.
Transfer learning may be based on pre-trained models,
such as AlexNet [17, 18]. Utilizing the information gained
from large-scale image classification tasks, a pre-trained
AlexNet may be fine-tuned for a particular medical image
fusion job using a smaller dataset. For medical imaging
researchers and practitioners, having access to such pre-
trained models streamlines the process and makes it easier
for them to modify the architecture to suit their unique
needs rather than having to start from scratch.

DENSENET

Densely Connected Convolutional Networks, or DenseNet
for short, is a unique kind of convolutional neural network
(CNN) architecture that departs from traditional CNN
topologies. DenseNet, developed by Gao Huang, Zhuang
Liu, and Laurens van der Maaten, is characterized by a
dense connection pattern in which all layers are feed
forwardly linked to all other layers. By encouraging feature
reuse and improving gradient flow during training, this
architecture facilitates smooth information flow across the
network. Multiple dense blocks, each including a group of
densely linked layers, make up DenseNet. The feature
maps from earlier layers are concatenated inside each
dense block and used as input for later layers. Compared to
conventional topologies, this dense connection results in a
more parameter-efficient and computationally powerful
network. Like AlexNet, DenseNet has shown successful in
a variety of computer vision applications, most notably
picture categorization. Its design improves gradient flow,
reduces the vanishing gradient issue, and makes the model
more compact.

e 160+ :!z zga 3 128
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Fig. 4. DENSENET deep convolutional neural network
architecture [18]

As shown in fig.4 model is application in medical image
fusion tasks, particularly in conjunction with transfer
learning, can capitalize on its inherent benefits. Pre-trained
DenseNet models can serve as a robust starting point for
medical imaging tasks, allowing researchers and
practitioners to fine-tune the network on a smaller dataset
related to specific fusion requirements. Leveraging the
knowledge encoded in the pre-trained models aids in
achieving better performance and faster convergence on
medical image fusion tasks, like the role played by pre-
trained models such as AlexNet in other domains.

3. Proposed Multimodal Fusion Process

Transfer learning techniques have shown to be very
effective in automatically extracting representative and
hierarchical characteristics at different levels of
abstraction. VGG19, AlexNet, and DenseNet are standard
models for image fusion that are often used. Using certain
feature extraction methods, feature-level fusion entails
removing features from input pictures to fuse them. This
procedure isolates and uses pertinent features or qualities
from the original pictures for the fusion process.

Our study intends to develop a hybrid approach that
incorporates structural and functional information from
PET and MRI scans, producing a unique fused picture, to
produce a more robust and controlled fusion choice. The
suggested method combines the transfer learning VGG19
architecture with the discrete wavelet transform for
multimodal medical picture fusion. Additionally, the
AlexNet architecture applies the concepts of transfer
learning networks.

picture processing entails running the picture through a
series of filters to calculate the Discrete Wavelet
Transform (DWT). The picture is first passed through a
low-pass filter and then a high-pass filter. The objective of
this dual-filtering process is to extract from the picture the
detailed (d), diagonal (h), vertical (v), and approximation
(a) characteristics. While the high-pass filter concentrates
on smaller, more precise information, the low-pass filter
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catches wider, more general qualities. When combined,
these filters aid in the image's breakdown into its
component parts, enabling a depiction that incorporates
both the general structure and more subtle details.

Transfer s AN —
Learning

Transfer
Learning

Inverse
Wavelet
Transform!
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Fig. 5. PET-MRI Medical Image Fusion System

In this work, the pre-trained VGG19, AlexNet, and
DenseNet models were trained using multimodal medical
data, namely PET and MRI, as input source pictures. The
PET and MRI images were first broken down using the
Discrete Wavelet decomposition approach in the transform
domain. Approximation (a), horizontal (h), vertical (v), and
diagonal (d) coefficients were obtained from the
decomposition of MRI images. Similarly, as shown in Fig.
5, the decomposition of PET images vyielded the
coefficients a' (approximation), h' (horizontal), v' (vertical),
and d' (diagonal).

The lower-level coefficients (a and a'), horizontal
coefficients (h and h'), vertical coefficients (v and v'), and
diagonal coefficients (d and d') of the CT and MRI pictures
were then used to extract features. The VGG19 model was
then utilized to merge these characteristics. From the input
coefficients, the VGG19, AlexNet, and DenseNet models
produced the A, H, V, and D bands. Essential information
from the original picture was caught in the A band, while
details were acquired in the H, V, and D bands, which
corresponded to horizontal, wvertical, and diagonal
directions.

Lastly, the inverse discrete wavelet transform was used to
create the fused picture after the frequency sub-bands A,
H, V, and D were integrated using the VGG19, AlexNet,
and DenseNet architecture.

4. Experimental Parameters

Image fusion is a process that involves combining
information from multiple images to create a single, more
informative image. To assess the quality of fused images,
various evaluation metrics are employed [14,15]. The
selection of a specific metric depends on the goals and
requirements of the fusion task. Commonly used
evaluation metrics for image fusion include:

Entropy: Entropy measures the amount of information or

uncertainty in an image. Higher entropy indicates greater
information content. Entropy-based metrics can be used to
evaluate the amount of information preserved in the fused
image.

Mutual Information (MI): Mutual information measures
the statistical dependence between two variables. In image
fusion, it assesses the shared information between the
source images and the fused image. Higher mutual
information values indicate better fusion.

Structural Similarity Index (SSI): SSI compares the
structural information between the source and fused
images. It considers luminance, contrast, and structure,
providing a more comprehensive assessment of image
quality.

Peak Signal-to-Noise Ratio (PSNR): PSNR (Peak Signal-
to-Noise Ratio) measures the ratio of the maximum
possible power of a signal to the power of corrupting noise.
Higher PSNR values are indicative of better image quality.

Mean Squared Error (MSE): For multimodal image fusion,
when information from multiple images is combined, MSE
(Mean Squared Error) can be calculated to quantify the
difference between the fused image and a reference image.

Root Mean Square Error (RMSE): RMSE (Root Mean
Square Error) calculates the average difference between
the pixel values of the fused and reference images. Lower
RMSE values are indicative of better image fusion.

RESULTS ANALYSIS

We used assessment metrics such PSNR, MSE, RMSE,
SSI, MI, and EN for our extensive experimental tests on
different PET and MRI test pictures. Taking into account
the deep learning model that was used, we also
incorporated the time required for the fusion of pictures.

Input MRI Input PET

@

-PETimage DWT

f : 3
i A - (
& e # W

Fig. 6. DWT of PET & MRI
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Final Fusion

Fig. 7. VGG19 Fusion

As seen in Table 1, the fusion results are compared using

MRI and PET input pictures as reference images. The
comparison shows that the performance is better. The
computed entropies for the input PET and MRI pictures,
the fused image, and the combined entropy of the input and
fused images are shown in Table 2.

When compared to other models that are currently
available, our suggested technique, DWT+VGG19,
performs very well in evaluation metrics like PSNR and
SSIM, successfully collecting a significant amount of
structural information in the pictures. Consequently, in
terms of picture quality, our suggested technique for
medical image fusion outperforms previous wavelet-based
and neural network-based algorithms.

Table 1. DWT+VGG19 Fusion

Image Type| Parameters Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
MSE 2317.09 2464.75 2929.01 2667.17 2046.22 1051.61
PSNR 14.4 14.21 13.46 13.87 15.02 17.91
MRI RMSE 0.41 0.44 0.49 0.47 0.45 0.41
SSIM 0.75 0.75 0.74 0.75 0.80 0.90
MI 0.90 0.889 0.885 0.86 0.890 0.91
MSE 5510.0 4197.8 3707.8 3415.20 3590.57 3389.92
PSNR 10.7 11.9 12.43 12.79 12.57 12.82
PET RMSE 0.89 0.71 0.64 0.65 0.69 0.92
SSIM 0.60 0.61 0.63 0.65 0.69 0.72
MI 0.43 0.440 0.486 0.468 0.432 0.247
Time 3.36 sec 2.85 sec 4.43 sec 3.41 sec 3.60 sec 3.85 sec
Table 2. DWT+VGG19 Fusion Entropy Analysis
No. MRI Entropy PET Entropy Fusion Entropy Joint Entropy
Imgl 4.32 251 5.041 7.569
Img2 4.36 2.63 5.016 7.602
Img3 4.25 242 4,761 7.251
Img4 3.99 2.45 4.590 6.894
Img5 3.69 1.98 4127 6.082
Img6 2.98 1.24 3.327 4510
5. Conclusion efficacy. It is crucial to remember that even if the

Finally, evaluations of the DWT+VGG19 fusion approach
were conducted over a range of parameters for both MRI
and PET imaging. Improvements in Mean Squared Error
(MSE), Peak Signal-to-Noise Ratio (PSNR), Root Mean
Square Error (RMSE), Structural Similarity Index (SSIM),
Mutual Information (MI), and computational time
demonstrate the positive effects of our suggested fusion
strategy. Notably, for both MRI and PET modalities, the
fusion procedure performed better at keeping structural
information and picture quality. The entropy study shown
in Table 2 adds further evidence to the fusion technique's

suggested approach showed encouraging outcomes, there
is still space for development.

To improve overall diagnosis accuracy, future research
areas may concentrate on deep learning architecture
exploration, fusion algorithm optimization for particular
medical imaging applications, and integration of other
modalities. Translating these discoveries into useful
medical imaging solutions would also need a thorough
validation study and an investigation of real-world clinical
circumstances.
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