
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2095–2106 |  2095 

Incentive Learning-Based Triplet Attention Enabled BILSTM Model 

for Network Traffic Congestion Prediction 

Tejas Prashantrao Adhau1*, Dr. Prasad Lokulwar2 

Submitted: 29/01/2024    Revised: 07/03/2024     Accepted: 15/03/2024 

Abstract: Network traffic congestion creates a significant threat in the realm of online live video streaming, affecting the quality of 

service and user experience. The congestion is caused due to factors including excessive user demand, restricted bandwidth, or 

ineffective data routing. The predictive models employed for network congestion in online streaming video may not adapt well to 

dynamic changes in network conditions and challenges associated with capturing long-range dependencies, limiting their ability to 

provide accurate congestion predictions in evolving environments. To mitigate these limitations this research proposed an incentive 

learning-based triplet attention enabled rat fierce Hunting optimized Bidirectional Long Short Term Memory (Incentive-RF-Tri ASTM) 

for network traffic congestion prediction in online streaming video. The incentive learning mechanism incorporates a reward system that 

encourages the model to prioritize congestion prediction in online live video streaming. The BiLSTM architecture known for capturing 

temporal dependencies is employed for the sequential nature of network traffic data. The use of the triplet Attention mechanism improves 

the model's focus on pertinent regions in the input data, improving its ability to discern congestion patterns effectively. To further refine 

the parameters of the classifier the RFHO algorithm combines the social behavior along with the selection and searching traits, which 

achieves a more robust and efficient tuning of the model's parameters, optimizing its performance in congestion detection. The 

experimental outcomes exhibit the efficacy of the Incentive-RF-Tri ASTM method in accurately predicting traffic congestion in terms of 

accuracy is 95.97%, specificity is 96.08%, and MSE is 0.22 for the Darpa99week1 dataset.  

Keywords: Network traffic congestion prediction, incentive learning, triplet Attention mechanism, rat fierce Hunting optimization 

algorithm, online video streaming.  

1. Introduction  

The increasing growth of video streams on online 

platforms for various applications cause network traffic in 

the internet.  According to some predictions, in only two 

years, video streaming will account for 82% of all Internet 

traffic [1]. Network traffic is the total amount of data 

transferred over a network link in a certain amount of time. 

In the present decade, it is crucial to forecast network 

traffic to maximize resource allocation and increase 

network efficiency [2]. Accurately forecasting potential 

network traffic at a specific time using historical network 

data is known as traffic prediction. The network 

administrator can increase the network's availability and 

transmission speeds with the aid of an accurate assessment 

of the traffic [3], [4] [5][6]. The variety of features 

including network protocols and management policies can 

influence the behavior of network traffic [7], where the 

time scale and the degree of aggregation are the primary 

determinants of traffic characteristics. Self-similarity has 

long been seen at the network aggregate level, and because 

of statistical multiplexing over the traffic produced by 

numerous users and applications, abrupt shifts are 

uncommon [8] [9] [10]. Sudden change, poor coupling, 

and nonlinearity are features of network traffic that are 

influenced by numerous intrinsic factors [11]. 

As a result, the properties of network traffic cannot be well 

described by either the singular linear model or the 

nonlinear model. The two types of models can be coupled 

to extract both relationships in network traffic prediction, 

as a single model can only provide so much information 

about both interactions in network traffic [2]. Nonlinear 

models are less able to capture long-term dependence, 

although they are more accurate than classic prediction 

models. Furthermore, in an effort to increase forecast 

accuracy, machine learning (ML)-based methods have 

been employed to investigate the statistical properties of 

network traffic. These algorithms continuously use past 

network data to extract various elements of the traffic for 

prediction. Earlier ML-based methods have yielded more 

accurate network traffic forecasts than statistical model-

based techniques. Nevertheless, ML-based IIoT backbone 

network traffic forecast has numerous difficulties [12]. 

Deep learning techniques have gained popularity as a time 

series prediction tool recently [13], [14]. The application of 

these networks [15], [16] has demonstrated its benefits in 

sequence modeling.  As the number of service providers 

grows, the traffic flows typically exhibit hybrid and non-

linear characteristics. In this instance, non-linear or hybrid 
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model-based approaches were are used to predict traffic in 

network. 

Numerous prediction models, such as time-series models, 

neural networks [17], kernel-based techniques, and others, 

have been suggested and are based on various algorithms. 

They train and forecast the traffic data primarily using a 

single learner. While those models perform well for certain 

kinds of network traffic, they are not flexible or universal 

enough to represent the rich and varied behavior seen in 

traffic time series [7]. Network traffic prediction is done 

[18] [19] using artificial graph neural networks [20], [21] 

that are specifically made for modeling and forecasting 

graph-based data. However, ANN has two significant 

drawbacks. First of all, because of their unique designs, 

they are unable to manage missing values effectively. 

Second, as they are deterministic models, they are unable 

to provide information regarding prediction uncertainty 

[22]. A more recent area of study in ML algorithms is 

ensemble learning [23][24][25][26], which involves 

training and combining several learners to enhance 

accuracy of prediction. However, view the relationship 

between diversity and accuracy as two opposing goals. As 

a result, they are unable to ensure the ideal ratio of variety 

to accuracy to reduce the ensemble prediction error [7]. 

The research aims to accurately predict network traffic 

congestion using the Incentive-RF-Tri ASTM model. The 

proposed method leverages the incentive learning 

mechanism with the triplet attention and BiLSTM model. 

The Triplet attention presents a significant advantage in 

network traffic congestion prediction by enhancing the 

capability of the model to capture complex patterns and 

dependencies within data. The combination of two 

optimization strategies enhances the robustness of RFHO, 

which can handle different scenarios and contributes to a 

more reliable congestion prediction system. 

➢ Rat fierce Hunting optimization algorithm (RFHO): 

The RFHO algorithm for a network traffic congestion 

prediction system lies in its ability to globally 

optimize parameters, adapt to different scenarios, 

efficiently tune model parameters, converge quickly, 

exhibit robustness, and conduct fine-grained searches 

in the solution space. These aspects collectively 

contribute to the enhanced performance and reliability 

of the congestion prediction system. 

➢ Incentive learning-based triplet attention enabled rat 

fierce Hunting optimized Bidirectional Long Short 

Term Memory (Incentive-RF-Tri ASTM): By 

incorporating triplets, the attention mechanism can 

better weigh the importance of specific features in the 

prediction process; BiLSTM excels in capturing 

temporal dependencies that enhances the effectiveness 

of congestion prediction systems. The combined 

Incentive-RF-Tri ASTM model aids in smooth 

streaming, ultimately improving the reliability and 

performance of online video streaming services. 

➢ The following sections are structured as follows; 

section 2 details the literature review of the traditional 

methods with its challenges, and the system model is 

explained in section 3. Section 4 contains the proposed 

methodology of the Incentive-RF-Tri ASTM model. 

The result and conclusion of the research are detailed 

in sections 4 and 5 correspondingly.  

2. Literature Review  

Network traffic prediction poses a significant tool in 

various proactive resource scheduling and traffic 

engineering tasks. This section describes the methods 

utilized for network traffic congestion in recent times with 

their advantages and limitations. 

Jing Bi et.al [27] initiated a convolutional LSTM network 

for traffic prediction in networks, which leverages two-step 

architectures namely ST-LSTM. The utilization of 

Savitzky- Golay (SG) filters for preprocessing smoothes 

the input data and eliminates redundant noise. The 1D-

CNN model consists of casual, dilated, and residual 

blocks, which extract the prominent and informative 

attributes from the input. Additionally, the integration of 

SG filters with the LSTM architecture improves the 

capability of the model to predict the traffic. However, the 

framework may increase system complexity which leads to 

performance degradation. Hanyu Yang et.al [2] designed 

simulated Annealing (SA) enabled Backpropagation 

Neural Network (BPNN) for traffic prediction. The authors 

utilized an autoregressive model for processing the time 

series data. The BPNN model parameters were optimized 

using the SA algorithm, which effectively predicts the 

network traffic. However, the model was not suitable for 

real work applications due to user behavior and traffic 

patterns.  

Sajad Mehrizi and Symeon Chatzinotas [28] utilized 

multiclass learning for network traffic congestion 

prediction; the Bayesian model captures complex traffic 

patterns effectively. The utilization of a variation 

interference algorithm increases the model's performance 

to effectively predict traffic congestion. However, the 

inference was not straightforward because the traffic data 

for the absent nodes were not accessible. Abdolkhalegh 

Bayati et.al [7] utilized a Gaussian regression-enabled 

ensemble model that illustrates significant performance for 

network traffic prediction. The authors utilized a divide-

and-conquer approach, which eliminates complicated 

objective functions. The ensemble likelihood function 

minimizes the complexity and augments the predictive 

outcomes. However, the model maximizes the 

computational cost.  
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Abdelhak Bentaleb et.al [29] modeled a reinforcement 

learning-based framework for bandwidth prediction in 

video streaming data, which attains better accuracy with 

maximum user experiences. However, a ramp-up during 

the live video session was necessary to achieve the optimal 

bandwidth prediction, which could impair an RTC system's 

overall performance. Qing He et.al [10] presented a Meta-

learning approach, which processes the time series data 

using the ARIMA technique. The use of the LSTM model 

improved the predictive power of the framework. Based on 

the previous tasks the Meta learning approach effectively 

predicts the traffic characteristics. However, the model was 

not feasible for long-time traffic patterns and the modal 

may increase the computational cost. LSTMs might require 

extensive training data, and their performance may degrade 

in the presence of noisy or irregular patterns. 

Laisen Nie et.al [12] designed a multi-task learning 

technique; the ensemble learning method integrates the 

advantage of the LSTM model for traffic prediction. 

Additionally, the authors combine the MTL algorithm to 

learn the related tasks to intensify the prediction 

performance. However, the ensemble learning approach 

leads to computational complexity for large-scale traffic 

parameters. Smita Mahajan et.al [5] utilized a deep-

learning technique to predict network traffic in wireless 

mesh networks. The regression process combines different 

algorithms with the conv-LSTM model leading to better 

performance for predicting the amount of traffic patterns in 

the network. However, the model may be prone to 

overfitting problems, especially in scenarios with limited 

labeled data. 

2.1 Challenges  

The following challenges describe the limitations 

associated with the relevant works in network traffic 

prediction: 

❖ The BPNN technique has limitations in handling 

complex relationships within network traffic data. 

Additionally, the model may struggle with 

vanishing gradient problems [2].  

❖ The fixed memory cell in the LSTM structure 

may not effectively capture the nuanced patterns 

associated with congestion, especially in 

scenarios with extended time lags or sudden 

spikes in traffic [10]. 

❖ The ensemble learning models have strengths in 

various aspects, but their limitations include 

difficulties in handling non-linear relationships, 

adapting to dynamic changes, and instability in 

training [12].  

❖ Bayesian model training can be unstable, leading 

to mode collapse or failure to converge, which 

may hinder their ability to accurately model 

congestion patterns [28]. 

3. System Model for Network Traffic Congestion 

Prediction 

In online video streaming, network traffic refers to a 

situation where the data flow within a network exceeds its 

capacity, leading to a slowdown or degradation in the 

quality of streaming service. This congestion can occur 

due to various factors such as high user demand, limited 

bandwidth, or inefficient routing of data. In the context of 

online video streaming, the congestion manifests as 

buffering, and stuttering, in the video playback. When the 

network is congested, the streaming platform struggles to 

send video content smoothly to users' devices, which can 

result in a poor viewing experience, as the video may 

pause frequently to buffer, reducing the overall quality and 

enjoyment for the viewers. The network traffic congestion 

system model is a framework designed to understand, 

detect, and alleviate congestion within a computer 

network. At its core, the model analyzes the data flow 

through the network and identifies areas where the demand 

surpasses the available capacity, leading to potential 

congestion. The online video streaming structure is 

illustrated in Figure 1(a).  

 

Fig 1(a): Online video streaming structure 

For online streaming video, an adaptive streaming 

algorithm dynamically adjusts the video quality based on 

the predicted congestion levels. If congestion is 

anticipated, the system may lower the video quality to 

reduce bandwidth demand and prevent network overload. 

Conversely, during periods of low congestion risk, the 

system can increase video quality to enhance user 

experience. The system model for network traffic 

congestion prediction involves three key components, the 

server, gateway network controller, and client.   

Server: The server is responsible for hosting and delivering 

video streams, which actively monitors its outgoing traffic 

patterns and communicates congestion predictions to the 

gateway network controller. Through predictive analytics, 

the server anticipates potential congestion points based on 

historical data, real-time network conditions, and user 

demand patterns [30]. The internal module of the 

streaming media server is illustrated in Figure 1 (b). 
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Fig. 1(a): Internal module of the streaming media server 

Gateway network controller: The gateway controller acts 

as an intermediary between the server and clients that 

receive congestion predictions from the server and 

dynamically adjusts network policies accordingly, in this 

research the Incentive-RF-Tri ASTM model acts as a 

controller for predicting traffic congestions, which can 

prioritize or reroute traffic based on the congestion 

forecast, optimizing the overall network flow.  

Client: End-user devices, receive information from the 

server and may adjust the requested quality of content or 

employ buffering strategies based on the forecasted 

network conditions. In the traffic prediction controller 

module traffic congestion can be predicted using the 

features in the dataset, which is detailed in Table 1.  

4. Proposed Methodology for Network Traffic 

Congestion Prediction 

In online video streaming platforms predicting the network 

traffic congestion is crucial to ensure a seamless and 

quality of user experience. By anticipating congestion, 

streaming platforms can proactively implement 

optimization strategies such as dynamic bandwidth 

allocation and content delivery adjustments. Several 

models were developed for network traffic congestion 

prediction, which demonstrates various advantages, but 

their limitations in terms of data requirement, the dynamic 

environment of network traffic, and limitations associated 

with capturing long-range dependencies. To mitigate these 

limitations, this research aims to predict the network traffic 

in online streaming video. The research process begins 

with data collection from the online databases Information 

Management and Security Group (NIMS) and 

Darpa99week 1. Followed by data collection the data 

packets including the size of the packets (SP), total 

forward packets (TFP), Flow IAT min (FIM), total 

backward packets (TBP), the total length of the backward 

packets (TLBP), the total length of the forward packets 

(TLFP), Flow IAT max (F1M), flow bytes per second 

(FBPS), SYN flag count (SYN), flow packets per second 

(FPPS), FIN flag count (FFC), Flow IAT total (FIT), sub-

flow forward packets (SFFP), ECE flag count (ECE), URG 

flag count (URG), PSH flag count (PSH), sub-flow bytes 

(SFB), and ACK flag count (ACK), are obtained from the 

input. The collected data is provided in the proposed 

Incentive-RF-Tri ASTM model that combines the 

incentive learning approach and triplet attention 

mechanism along with the BiLSTM model for effective 

prediction of network traffic congestion. The proposed 

RFHO algorithm efficiently searches the solution space, 

finding global optima for the parameters in the congestion 

prediction system. The schematic illustration of the 

network traffic congestion prediction model is depicted in 

Figure 2.  

 

Fig 2: Schematic illustration of the Incentive-RF-Tri 

ASTM model for traffic congestion prediction 

4.1 Input  

The input traffic data is obtained from the NIMS and 

Darpa99week1 database, which consists of several packets.  

 1 2, ,.... ......,i nP q q q q=    (1) 

where P  represents the database, and  1 2, ,.... ......,i nq q q q

indicates the total number of data present in the database. 

From the input data, the features including TFP, FPPS, 

TBP, FIM, TLFP, ECE, ACK, TLBP, SP, SYN, FBPS, 

SFFP,  FIT, F1M, FFC, PSH, URG, SFB, are extracted and 

provided into the Incentive-RF-TriASTM model. 

4.2 Network traffic congestion prediction using 

Incentive-RF-TriASTM model 

Predicting network traffic is a useful tool for enhancing 

traffic engineering and proactive resource allocation. 

Numerous predictive models based on various algorithms 

have been developed. Despite that certain approaches work 

well for certain types of traffic, they are rigid and unable to 

adequately represent the diverse and complicated behavior 

seen in traffic time series. This research proposed an 

efficient prediction model for network traffic that 

combines the advantages of incentive learning and Triplet 
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attention with the BiLSTM model. Figure 3 shows the 

architecture of the Incentive-RF-TriASTM model. In the 

Incentive-RF-TriASTM model initially, the features 

collected from the database are provided in the model that 

consists of four BiLSTM layers. The BiLSTM is the 

combination of two unidirectional LSTM layers, which 

process both previous and future information effectively 

[31]. The LSTM technique is intended to reduce long-term 

dependency problems in the time series data, which has the 

default behavior of long-term information memory. The 

detailed structure of LSTM is summarized as follows, 

Together with the cell state, the LSTM model consists of 

an input gate, an output gate, and a forgetting gate. The 

three gate structures control information flow in the cell 

state; additionally, the hidden state values are determined 

using the output gate. Prominent information is stored 

using the memory cell state and also preserves the 

previously learned information [32]. However, the LSTM 

layer evaluates the succeeding instances with the prior 

instances. In network traffic congestion prediction the 

target value is influenced by both the past and future 

instances, therefore the research employs the BiLSTM 

framework, which enhances the network stability while 

processing the short-term traffic flow time series in both 

directions is accomplished by predicting the input at a time 

T using the forward and reverse propagation, and jointly 

determining the output by the two LSTMs [33]. The output 

of the BiLSTM layer *Q  is provided in the triplet attention 

mechanism.  

 

Fig 3: Architecture of the Incentive-RF-TriASTM model 

The triplet attention mechanism presents significant 

advantages in network traffic congestion prediction by 

enhancing the models' ability to capture intricate patterns 

within the data. Unlike traditional attention mechanisms 

that focus on pairwise relationships, the triplet attention 

mechanism considers the interplay among three elements, 

allowing it to discern more subtle changes in the network 

traffic data. The triplet attention contains three branches, 

which is depicted in Figure 4; the two branches in the 

model are accountable for collecting cross-dimension 

interaction between the spatial dimensions h or w and the 

channel dimension c , and the last branch is employed to 

develop spatial attention. Simple averaging is used to 

combine the outputs from the three branches.  The 

interplay between the spatial dimensions of the input 

tensor with the channel dimension is captured by the triplet 

attention through the use of cross-dimension interaction. 

Three branches are assigned to document the 

interdependence between the input tensor's dimensions,

( ),c h , ( ),c w , and ( ),h w , respectively [34].  

 

Fig 4: Architecture of triplet attention module 

The relation of the channel and spatial dimensions has 

been established inside the first branch. Initially, the input 

*Q  is rotated across the h  axis by 90 in an anticlockwise 

direction, and the feature after rotation is denoted as

*ˆ w h cQ   . Two feature maps along the spatial 

dimension are then created by applying average and 

maximum pooling algorithms also known as Z-pool to the 

spinning features, which creates rich feature 

representation. Subsequently, a convolution layer is 

created by combining and convolving the two feature 

maps. Sigmoid is the final activation layer employed to 

merge features while preserving their original shape. Next, 

the output is turned over the h  axis by 90 clockwise [35]. 

The input is rotated across the w  axis by 90 in 

anticlockwise direction in the second branch, and the 

feature after rotation is denoted as *ˆ h c wQ   . Similar to 

the first branch the Z pool and Conv operations are 

employed for the features, and the outcome is turned over 

the w  axis by 90 clockwise. The final branch weights the 

feature parameters in the same channel directly to create 

weighted feature maps rather than rotating the input *Q . To 

combine the final refined features the triplet attention 

module uses a simple averaging technique which is 

mathematically denoted as 

( )1 2 3 1 2 3
1 1ˆ ˆ ˆ
3 3

Y Q Q Q Y Y Y     
= + + = + + 

 

  (2) 

where the cross-dimensional attention weights calculated 

from the three branches are represented as 1 2,  and 3  

respectively. The 90 clockwise rotation is denoted as 1Y  
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and 2Y [36], which maintains the original input shape. In 

essence, the triplet attention mechanism empowers the 

model to extract richer contextual information, providing a 

nuanced and effective approach to address the 

complexities inherent in network traffic congestion 

prediction. 

The output from the triplet attention is subjected to the 

dropout layer which reduces the overfitting problem and 

followed by the dropout layer the multi-dimensional 

features ( ),128,128n are combined into one dimension 

( ),16384n using the flattening layer. The fully connected 

layer along with the softmax activation is utilized in this 

research to make a final prediction about the network 

traffic congestion in a streaming video.  

Incentive learning plays a crucial role in network traffic 

congestion prediction by introducing a framework where 

agents are motivated by rewards to optimize their behavior 

[37]. Agents receive positive reinforcement when their 

decisions contribute to congestion mitigation, fostering a 

learning process that adapts to dynamic network conditions 

[38]. In this mechanism, if the loss function of the trained 

framework is less than the threshold loss, each model gets 

a reward that is saved as score. Finally, the local model is 

combined with a global model which produces a minimum 

loss. This approach aligns the interests of individual agents 

with the overarching goal of congestion prevention, 

leading to more proactive and adaptive congestion 

prediction models. By incentivizing desirable behaviors, 

incentive learning enhances the network's ability to 

respond to changing conditions and promotes a more 

efficient and resilient network infrastructure. Thus the 

proposed Incentive-RF-TriASTM model accurately 

predicts the network traffic congestion and leads to smooth 

video streaming. The RFHO method optimizes the model's 

adjustable parameters.  

4.3 Rat Fierce Hunting Optimization Algorithm 

4.3.1 Motivation  

The RFHO algorithm combines the behavioral 

characteristics of a sand puppy [39] with the selection and 

searching abilities of bald eagles [40], which allows the 

algorithm to efficiently search the solution space, finding 

global optima for the parameters in the congestion 

prediction system. The behavioral characteristic provides 

robust exploration during the initial stages, while the 

searching ability fine-tunes the solution for improved 

accuracy. 

4.3.2 Inspiration 

The main source of motivation for RFHO is the ingenious 

social behavior and hunting mechanism of eagles 

(predators). The hunting technique of the predators 

involves three stages. Swooping, looking around, and 

selecting an area are these phases. When it comes to 

choosing its space, the predator chooses the area that 

contains the maximum amount of food. During the 

hunting-in-the-space phase, the predator starts scanning the 

allocated area for potential food. During the swooping 

phase, the predator eventually starts to move to and fro 

from its perfect position from the preceding phase. The 

next step is to figure out the best place to hunt. The 

proposed RFHO algorithm combines the selection and 

searching traits with the social behavior of sand puppies, 

which majorly works based on the worker-breeder 

relationship. The best worker in the worker pool has the 

opportunity to become the best solution. Thus the RFHO 

algorithm is particularly effective in conducting a fine-

grained search in the solution space. This precision aids in 

refining the parameters of the congestion prediction 

system, leading to improved model performance.  

Solution initialization  

The initial solution of the RFHO algorithm is 

mathematically modeled as  

( )min 1 min max
tH H r H H= + −

   
(3) 

where  minH represents the lower bound, maxH indicates 

the upper bound, 1r  signifies the random number

( )

( ) ( )
min

min max

F H

F H F H

 
 
 −
 

.  

Fitness evaluation  

The fitness function of the RFHO algorithm is calculated 

as follows, the higher value of fitness denotes the better 

solution.  

( ) ( )( )t tfit H Max accuracy H=         (4) 

Phase (i): Producer phase ( )tIf fit H Th fit  

If the solution’s fitness function is superior to the fitness of 

the threshold level, the best solution is assigned as a 

producer individual, which is selected based on the 

selection process.   

( ) ( )1
20.5 1 0.5

g best mean

t t t t t t t
p p P p

H H H H H r H H  +     
= − + − + +  −              

(5) 

where the modulus of proportionality vector is denoted as 

best

g

t t
bestp

t t
bestp

H H

H H



−

=

−

, t
pH  is the personal best solutions, 

t
pgH  signifies the global best solution,  represents the 

iterative factor ( )0,1 . Thus the above equation shows the 

individual producer is selected by a selection process 

inspired by the predator.  
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Phase (ii): Worker phase ( )tIf fit H Th fit  

The worker phase represents that the remaining individuals 

act as a workers of the group and give hunting and 

escaping support to the whole group. The location of the 

worker is updated as 

( )1

a b

t t t t
w w w w

H H H H+ = + −    (6) 

where the iterative factor is denoted as

( )max

max

1
0,1

3

tt

t t


 
= +  
  

, and the two ransom solutions 

chosen from the worker's pool are represented as 
a

t
w

H and

b

t
w

H . 

The worker solution is responsible for food searching for 

the entire group and if any intruder arrives in the group the 

worker sends alarm signals and sending strong odor to 

block the way of the attack.  From the swooping 

characteristics the worker starts to move to and fro from its 

perfect position from the preceding phase.  

( ) ( ) ( ) ( )
1

1

i

t t t t t
w w w w meanw

H H u i H H v i H H
−

+ = +  − +  −   (7) 

where ( )u i  and ( )v i  represents the cooperative movement. 

The worker phase equation according to the searching 

criteria is rewritten as  

( ) ( ) ( ) ( ) ( )
1

1 0.5 0.5
a b i

t t t t t t t t
w w w w w meanw w w

H H H H H u i H H v i H H
−

+    
= + − + +  − +  −      

(8) 

The equation shows that the worker continuously updates 

its position in each iteration and if it has better fitness of 

producer then it is updated as a producer and one of the 

producers with lower fitness is degraded into the worker. 

The flowchart of the RFHO algorithm is depicted in Figure 

5.  

 

 

Fig 5: flowchart of the RFHO algorithm 

5. Results and Discussion  

The experimental results of the Incentive-RF-Tri ASTM 

model for network traffic congestion prediction with its 

performance and comparative analysis are detained in this 

section 

5.1 Experimental setup  

Utilizing the Incentive-RF-Tri ASTM for network traffic 

congestion prediction, the research is executed using 

Pycharm software on a Windows 10 operating system with 

16 GB of RAM.  

5.2 Dataset Description  

The NIMS [41] and Darpa99week1 [42] datasets comprise 

data packets related to network traffic congestion. The 

Darpa99week1 contains five network trace files 

representing network traffic from 8:00 AM to 5:00 PM 

provided for each week. Since these two weeks were free 

of attacks, data from weeks one through three was used. 

The different types of traffic and their feature 

specifications are detailed in Table 1.  

Table 1: Types of network traffic and its features in the 

NIMS dataset 

features Min(TE

LNET) 

max(b'TE

LNET') 

min(b'

FTP') 

max(b'

FTP') 

min_fpk

tl 

40 40 40 52 

mean_fp

ktl 

40 46 43 89 

max_fpk

tl 

49 55 56 175 

std_fpktl 1 3 3 41 

min_bpk 40 40 40 52 
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tl 

mean_b

pktl 

43 456 59 118 

max_bp

ktl 

52 1300 98 226 

std_bpkt

l 

5 491 10 53 

min_fiat 72 29642 10 4241 

mean_fi

at 

10133 415976 7352 273933 

max_fiat 40198 1137031 42339 174368

2 

std_fiat 17143 398938 12613 385847 

min_biat 7 390 39 36003 

mean_bi

at 

10877 414694 4836 277301 

max_bia

t 

40405 1208875 27582 100003

8 

std_biat 17693 424737 8013 366005 

duration 6191214 9.38E+08 66171 8.9E+08 

proto 6 6 6 6 

total_fpa

ckets 

6 948 5 3615 

total_fvo

lume 

278 39118 295 259895 

total_bp

ackets 

7 680 4 2595 

total_bv

olume 

315 139585 344 272888 

5.3 Performance metrics 

The prediction performance of the Incentive-RF-Tri 

ASTM framework is analyzed using the following 

performance metrics namely accuracy, Mean Squared 

error, and specificity. Accuracy measures the correctly 

predicted traffic. The MSE estimates the squared error 

value between the predicted and observed results. 

Additionally, the specificity is defined as the ability of the 

Incentive-RF-Tri ASTM model to predict the occurrences 

of traffic. 

5.4 Performance analysis  

5.4.1 Analysis of performance with TP for NIMS 

dataset 

The performance evaluation of the Incentive-RF-Tri 

ASTM framework for the NIMS dataset with training 

percentage is shown in Figure 6. At TP 90 with epoch 500 

the Incentive-RF-Tri ASTM model attains a prediction 

accuracy of 95.59%, similarly, the model attains a 

specificity of 96.09% for the same. At TP 90 and epoch 

500, the Incentive-RF-Tri ASTM model obtains a 

minimum MSE of 2.06. Thus the utilization of the 

Incentive-RF-Tri ASTM model for improved detection of 

congestion patterns and more accurate predictions, 

ultimately enhancing the overall performance and the 

proposed RFHO algorithm is faster convergence to optimal 

solutions, making the congestion prediction system more 

responsive to changes in network conditions. 

  

Accuracy MSE 

 

Specificity 

Fig 6: Analysis of performance with TP for NIMS dataset 

5.4.2 Performance analysis with TP for Darpa99week1 

dataset 

Figure 7 depicts the evaluation of performance for the 

Incentive-RF-Tri ASTM model with the Darpa99week 1 

dataset and Training percentage. At TP 90 with epoch 500 

the Incentive-RF-Tri ASTM model attains a prediction 

accuracy of 95.97%, similarly, the model attains specificity 

of 96.07% for the same. At TP 90 and epoch 500, the 

Incentive-RF-Tri ASTM model obtains a minimum MSE 

of 0.22. The Incentive-RF-Tri ASTM model integrates the 

triplet attention mechanism and the incentive learning 

mechanism with the deep learning architecture, thus the 

combined model exhibits superior prediction performance.  

  
Accuracy MSE 

 
Specificity 

Fig 7: Analysis of performance with TP for the 

Darpa99week1 dataset 
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5.5 Comparative methods  

The traditional methods including Support Vector Machine 

(SVM) [43], LSTM [27], Multilayer Perceptron (MLP) 

[44], GRU classifier [45], neural network (NN) [46], Deep 

CNN [47], BiLSTM, BiLSTM with Shuffled Shepherd 

optimization (BiLSTM with SSO), BiLSTM with Border 

collie optimization (BiLSTM with BCO), Rat-incentive 

triplet BiLSTM, eagle- incentive triplet BiLSTM, and 

PHO-based BiLSTM are used in this comparative analysis. 

5.5.1 Analysis of comparative methods with TP for the 

NIMS dataset 

Figure 8 depicts the comparative evaluation of the 

Incentive-RF-Tri ASTM framework with the conventional 

methods for the NIMS dataset. The Incentive-RF-Tri 

ASTM technique gains an accuracy of 95.56%, shows a 

19.70% improvement over the old SVM classifier and 

15.73% over the BiLSTM model, which exhibits that the 

classical methods may encounter difficulties in handling 

non-linear relationships and adapting to dynamic changes 

in network traffic. In the Incentive-RF-Tri ASTM 

framework, the use of the triplet attention can better weigh 

the importance of specific features in the prediction 

process, offering a more comprehensive understanding of 

traffic dynamics. Additionally, for TP 90 the Incentive-RF-

Tri ASTM framework attains a specificity of 96.09% 

which is improved over the LSTM by 16.10% and PHO-

based BiLSTM by 1.35%. In comparison to conventional 

techniques for forecasting network traffic congestion, the 

Incentive-RF-Tri ASTM achieves the lowest MSE value. 

  
Accuracy MSE 

 
Specificity 

Fig. 8: Comparative analysis with TP for NIMS dataset 

5.5.2 Analysis of Comparative Methods TP for 

Darpa99week1 dataset 

Figure 9 depicts the comparative evaluation of the 

Incentive-RF-Tri ASTM framework with the conventional 

methods for the Darpa99week1 dataset. The Incentive-RF-

Tri ASTM framework gains an accuracy of 95.97%, shows 

a 21.65% improvement over the traditional MLP classifier 

and 16.04%, over the LSTM model, which exhibits that the 

classical methods may encounter difficulties in handling 

non-linear relationships and adapting to dynamic changes 

in network traffic. In the Incentive-RF-Tri ASTM 

framework, the use of the triplet attention can better weigh 

the importance of specific features in the prediction 

process, offering a more comprehensive understanding of 

traffic dynamics. Additionally, for TP 90 the Incentive-RF-

Tri ASTM framework attains a specificity of 96.07% 

which is improved over the deep CNN by 13.72% and 

PHO-based BiLSTM by 10.64%. When compared with the 

traditional methods for network traffic congestion 

prediction the Incentive-RF-Tri ASTM gets minimum 

MSE value of 0.22.  

  

Accuracy MSE 

 
Specificity 

Fig 9: Comparative analysis with TP for the 

Darpa99week1 dataset 

5.6 Comparative discussion  

The traditional methods designed for traffic prediction 

have certain limitations; mainly the SVM and MLP models 

may require vast amounts of annotated data. The LSTM 

may pose difficulty in data dependency and may not 

effectively capture the nuanced patterns associated with 

congestion, especially in scenarios with extended time lags 

or sudden spikes in traffic. Additionally, the ensemble 

learning models have limitations in handling non-linear 

relationships, and instability in training. By using the 

Incentive-RF-Tri ASTM framework, the proposed research 

gets better performance for network traffic prediction. The 

use of incentive learning enhances the network's ability to 

respond to changing conditions and promotes a more 

efficient and resilient network infrastructure. The data 

dependency problems are rectified using the triplet 

attention mechanism. The combined Incentive-RF-Tri 

ASTM model improves the reliability and performance of 

online video streaming services. Table 2 depicts the 

comparative discussion of the Incentive-RF-Tri ASTM 

model with the existing techniques for network traffic 

congestion prediction. Table 2 depicts the comparative 
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discussion of the Incentive-RF-Tri ASTM model with the 

existing techniques for network traffic congestion 

prediction.  

Table 2: Comparative discussion of the Incentive-RF-Tri 

ASTM model 

TP 90 

Meth

ods 

/Metr

ics  

NIMS dataset Darpa99week1 

dataset 

 

Accur

acy  

(%) 

MS

E 

Specifi

city  

(%) 

Accur

acy  

(%) 

M

SE 

Specifi

city  

(%) 

SVM  

76.74 

779.

33 78.21 64.42 

3.0

0 44.50 

MLP  

78.70 

33.9

9 79.28 75.19 

15.

44 79.97 

NN  

78.89 

38.0

4 79.39 76.70 

35.

08 81.97 

LSTM 

80.29 

26.6

7 80.62 80.57 

34.

02 82.28 

Deep 

CNN 80.48 

19.1

2 80.73 80.94 

34.

88 82.89 

GRU 

80.53 

18.0

5 80.75 81.99 

34.

10 82.97 

BiLS

TM  80.78 

14.3

9 80.88 82.59 

0.6

8 82.97 

BiLS

TM 

with 

SSO 86.79 8.96 86.89 85.62 

0.6

6 85.45 

BiLS

TM 

with 

BCO 88.79 

11.5

4 88.88 88.60 

0.7

1 88.73 

Rat-

incent

ive 

triplet 

BiLS

TM,  92.71 

10.4

7 92.20 91.27 

0.7

9 82.39 

eagle- 

incent

ive 

triplet 

BiLS

TM,  93.88 9.39 94.80 95.12 

0.7

1 85.85 

PHO-

based 

BiLS

TM 94.81 4.91 94.90 95.62 

0.3

8 95.96 

Incent

ive-

RF- 95.57 2.61 96.10 95.97 

0.2

2 96.08 

Tri 

AST

M 

6. Conclusion  

In conclusion, the research addresses the critical issue of 

network traffic congestion in the context of online live 

video streaming. By combining Incentive Learning, Triplet 

Attention, BiLSTM, and the RFHO algorithm, the research 

presents a comprehensive solution that outperforms 

existing methods. The incorporation of incentive learning 

provides a dynamic framework for the model to adapt and 

prioritize congestion detection based on evolving network 

conditions. By strengthening the model's capacity to 

concentrate on pertinent data, the Triplet Attention 

mechanism raises the model's precision in recognizing 

patterns of congestion. The model can detect intricate 

temporal dependencies in the network traffic data, ensuring 

a more nuanced analysis for congestion detection. The 

RFHO algorithm further refines the model's parameters, 

enhancing its efficiency and generalization abilities. For 

the Darpa99week1 dataset, the experimental findings show 

that the Incentive-RF-Tri ASTM technique is effective in 

properly predicting traffic congestion, with an accuracy of 

95.97%, specificity of 96.08%, and MSE of 0.22. Despite 

the advantages, the model may poses complexity which 

leads to increased memory usage. Additionally, this 

research contributes to the ongoing efforts in optimizing 

video streaming services and lays the groundwork for 

future advancements in congestion detection techniques.  
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