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Abstract: Security is a major concern these days because of the increasing use of smart technologies and the Internet. Security is 

required to preserve the confidentiality, integrity, and availability of the resources over the network [2]. Homomorphic encryption (HE) 

is privacy preserving technique for sharing of data with cloud backend securely [20]. It offers a safe environment where operations on 

previously encrypted data can be carried out and the outcomes will be the same as for the original data [3]. This work serves as a 

demonstration of practical use of homomorphic encryption, which can be used to guarantee data security and computation. We present an 

analysis of the fully homomorphic encryption library known as SEAL (Simple Encrypted Arithmetic Library) in this work. Three SEAL 

supported schemes - Brakerski-Gentry- Vaikuntanathan (BGV), Brakerski-Fan- Vercauteren (BFV), and Cheon-Kim-Kim- Song 

(CKKS) -with default and custom degrees of polynomial are examined in relation to the outcomes produced for a range of parameters. 

Keywords: BFV, BGV, CKKS, Fully Homomorphic Encryption, SEAL, Security. 

1. Introduction 

This Security is now of utmost importance due to the 

increasing use of smart technologies and the Internet. The 

availability, integrity, and confidentiality of the resources 

over the network depend on security [2]. Databases can 

store encrypted data, but processing such data requires first 

decryption of it; once decrypted, the data might not be 

safe.  When data is already encrypted, homomorphic 

encryption creates a safe environment where operations on 

the encrypted data yield identical outcomes to those on the 

original data [3]. Homomorphic encryption was first 

proposed in 1978 by Michael Dertouzos, Leonard 

Adleman, and Ronald Rivest [4]. There are several 

homomorphic encryption schemes that vary in the number 

of operations that can be carried out on the encrypted data.   

The first one is Partially Homomorphic Encryption (PHE) 

in which one type of operation, addition or multiplication, 

can be performed on encrypted data an unlimited number 

of times. The second scheme is called Somewhat 

Homomorphic Encryption (SWHE), which restricts the 

number of computations and only permits specific 

operations on encrypted data because noise makes the 

ciphertext size increase with each step.  This scheme is 

practically more feasible. Third one is Fully Homomorphic 

Encryption which allows any number of computations on 

cipher text. But practically fully homomorphic encryptions 

have lot of overhead and in terms of computations it is 

expensive [5]. Therefore, investigating fully homomorphic 

encryption schemes is our goal. In September 2009, Craig 

Gentry proposed the first fully homomorphic encryption 

scheme [1]. 

A compact fully homomorphic encryption (FHE) that 

enable the computation of multiple functions on encrypted 

data has proven to be much more challenging to develop 

than the numerous cryptosystems that have been proposed 

over the years. Since from the Genrty’s work there have 

been roughly three generations of FHE development. The 

original Gentry approach, which involves ideal lattices[6], 

and scheme of van Dijk et al. which makes use of integer 

arithmetic[7]  are both included in the first generation.   

The issue of rapidly growing noise is faced by both of 

these schemes. The study of Brakerski-Vaikuntanathan [8] 

and Brakerski et al. [9] in 2011 brought about the second 

generation, which was distinguished by noticeably superior 

techniques for lowering noise and increasing efficiency. 

The Gentry et al. [48] method, which had a slightly 

different pattern of noise growth, was the starting point for 

the third generation. Both asymmetric multiplication and 

asymmetric noise growth were present in this scheme 

[10][11]. 

2. Homomorphic Encryption 

Four functions are typically included in a public-key 

homomorphic encryption scheme: KeyGen, Encrypt, and 

Decrypt, along with an Evaluate process for computing on 

encrypted data [14]. 

Key generation: To encrypt plaintext, the client will 

create a pair of keys, a public key (PK) and a secret key 

(SK). 
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Encryption: The plain text (PT) is encrypted by client 

using the secret key SK to create ESK (PT). This cipher 

text (CT), along with the public key (PK), is then sent to 

the server. 

Evaluation: The server contains a function called f that 

allows it to evaluate the cipher text CT in accordance with 

the necessary function while utilizing PK. 

Decryption: The client will use its SK to decrypt the 

generated Eval(f(PT)) and obtain the original result. 

Two characteristics of homomorphic encryption are its 

primary ones [13], 

Homomorphic additive encryption: If Enc (PT1+PT2) = 

Enc (PT1) + Enc (PT2), then homomorphic encryption is 

additive. 

Homomorphic multiplicative Encryption: If Enc(PT1 

×PT2) = Enc(PT1) × Enc(PT2), then homomorphic 

encryption is multiplicative. 

Essentially, fully homomorphic encryption has a 

straightforward structure. Presume that fully homomorphic 

encryption enables anyone (not just the key holder) to 

produce a ciphertext that encrypts f(π1,.., πt) for any 

desired function f, provided that function can be computed 

effectively.  There should be no leakage of any 

intermediate plaintext values or information about π1,... πt 

or f(π1,.., πt). Encryption is always used for the inputs, 

output, and intermediate values [1].  

3. Related work 

Homomorphic Encryption (HE) is a secure method for 

exchanging data safely with cloud backend while 

maintaining privacy. Due to its high memory consumption 

and computational overhead, HE may not be suitable for 

use on embedded devices with limited resources. To 

address this issue, authors have proposed the first HE 

library for embedded devices named as SEAL-Embedded, 

based on CKKS approximate homomorphic encryption 

scheme. High performance CKKS encoding and memory 

efficiency on embedded devices are all achieved with this 

newly proposed library, which combines a detailed 

memory reuse scheme with multiple computational and 

algorithmic optimizations [20]. The study of various 

schemes, including BFV, BGV, CKKS, RSA, El-Gamal, 

and Paillier, is covered by the authors in [12], along with 

how these schemes are implemented in HE libraries, such 

as Microsoft SEAL, PALISADE, and HElib. The authors 

of [13] investigated a number of homomorphic encryption 

schemes, including Non-interactive Exponential 

Homomorphic Encryption algorithm (NEHE), Brakerski-

Gentry-Vaikuntanathan (BGV), updated ElGamal (AHEE), 

and Homomorphic Cryptosystem (EHC). In [15] various 

HE schemes are explored out of which Fully homomorphic 

encryption schemes are 1) BFV supported  in both SEAL 

and PALISADE  2) BGV implemented in SEAL, 

PALISADE, and HElib. Leveled homomorphic encryption, 

or CKKS scheme, is an extended version of SWHE 

somewhat homomorphic encryption scheme. HElib, 

HEAAN, SEAL, and PALISADE all has implementation 

of CKKS. The implementations of partially homomorphic 

encryption that the authors have provided include Paillier 

(additive), El-Gamal (multiplicative), and RSA 

(multiplicative). They employed their own 

implementations of Paillier, RSA  and El-Gamal as 

partially homomorphic cryptosystems in the emulation 

since PHE schemes are not implemented in the libraries 

mentioned. For large plaintext moduli of up to 2048 bits, 

the authors of [19] provided the comparative benchmark of 

the well-known homomorphic encryption libraries  SEAL, 

HElib and FV-NFLlib, along with an analysis of their 

respective performances. 

4. Proposed Work 

In this article we have given the study of Microsoft SEAL 

library. In 2015 Microsoft Research created the Simple 

Encrypted Arithmetic Library (SEAL), a cross-platform 

software library that is free and open-source and 

implements several types of homomorphic encryption. It 

was written in C++ and C#. It doesn't rely on outside 

libraries to function independently. Users can choose 

between security levels (128 or 192), degree (1024, 2048, 

4096, 8192, or 16384) and plaintext modulus (with no 

limit), with SEAL, which utilizes the FV cryptosystem 

[16]. Fully Homomorphic Encryption technique is 

explored through SEAL. A basic illustration of fully 

homomorphic encryption is provided in the study. It 

applies mathematical operations to encrypted data without 

ever decrypting it, allowing for the observation of various 

parameters’ performance. Table 1 shows the observed 

values after successful execution of examples given with 

SEAL. Firstly we explored BFV encryption scheme. It is 

shown how to use the BFV encryption method to perform 

basic calculations (a polynomial evaluation) on encrypted 

integers. Setting the following three encryption parameters 

is required: 

• polynomial modulus degree, or 

poly_modulus_degree 

• coeff_modulus, or coefficient modulus  

[ciphertext] 

• plain_modulus, which is the plaintext modulus 

particular to the BFV scheme.  

It is not possible for the BFV scheme to run random 

calculations on encrypted data.  The "invariant noise 

budget," also known as the "noise budget," is expressed in 

bits for each ciphertext. The encryption parameters define 

the noise budget (initial noise budget) in a newly encrypted 

ciphertext. The two fundamental operations in BFV are 
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permitted on parameters which are additions and 

multiplications. The noise budget is consumed by these 

homomorphic operations. Additions are typically 

considered to consume almost no noise budget when 

compared to multiplications. The most important 

consideration when selecting suitable encryption 

parameters is the multiplicative depth of the arithmetic 

circuit that the user wishes to assess on encrypted data, as 

noise budget consumption compounds in sequential 

multiplications.  

Computing over encrypted data in the BGV scheme is 

similar to that in BFV. The purpose of BGV example is 

mainly to explain the differences between BFV  and BGV 

in terms of ciphertext coefficient modulus selection and 

noise control. Most of the code is repeated from BFV 

basics example. In the exploration of BGV scheme as an 

example, evaluation of the degree 8 polynomial    x^8    

over an encrypted x over integers 1, 2, 3, 4 is done. One 

could think of the polynomial's coefficients as inputs in 

plaintext. Modulo the plain_modulus 1032193, the 

computation is performed.   BGV requires modulus 

switching to reduce noise growth. Although with modulus 

switching there can be less noise budget than before, noise 

budget is utilized at a slower rate. To achieve the optimal 

consumption   rate of noise budget in an application, one 

needs to carefully choose the location to insert modulus 

switching and manually choose coeff_modulus. 

The evaluation of the polynomial function of the form 

PI*x^3 + 0.4*x + 1 for a set of 4096 equidistant points in 

the interval [0, 1] on encrypted floating-point input data x 

is demonstrated for the CKKS scheme. Many of the key 

components of the CKKS scheme are illustrated in this 

example, along with some of its  challenges while using it. 

It has been observed that scales in ciphertexts increase with 

multiplication in CKKS in the SEAL code of encoders. 

Any ciphertext's scale must avoid approaching 

coeff_modulus's total size, or else it will run out of space 

to hold the scaled-up plaintext. A "rescale" functioning 

offered by the CKKS scheme can lower the scale and settle 

down the scale expansion.   One type of modulus switch 

operation is rescaling. It eliminates the final prime from 

coeff_modulus as a modulus switch, but as a side effect, it 

scales down the ciphertext by the removed prime.     

Carefully choosing primes for the coeff_modulus is more 

common for the CKKS scheme because the goal is to have 

complete control over scale modifications.   For example, 

let us consider the following scenario: a CKKS ciphertext 

has S as the scale, and P as the last prime in the current 

coeff_modulus (for  ciphertext). As is common in modulus 

switching, rescaling to the next level removes the prime P 

from the coeff_modulus and modifies the scale to S/P. The 

number of primes restricts the number of rescalings that 

can be performed, which in turn restricts the multiplicative 

depth of the calculation.   

The initial scale can be freely selected. Setting the initial 

scale S and primes P_i in the coeff_modulus to be 

extremely close to one another can be a sensible approach. 

After multiplication, ciphertexts with scale S have scale 

S^2, and after rescaling, they have scale S^2/P_i. S^2/P_i 

is close to S again if all P_i are nearby S. In this manner, 

scales remain nearby S all over the computation. A circuit 

of depth D typically requires rescaling D times, or the 

ability to eliminate D primes from the coefficient modulus. 

When there is just one prime left in the coeff_modulus, it 

needs to be a bit bigger than S by few bits  in order to 

maintain the plaintext's pre-decimal-point value.    As a 

result, selecting the following parameters in the CKKS 

method is generally advantageous: 

• As the first prime in coeff_modulus, select a 60-

bit prime. This will yield the highest level of 

decrypting precision. 

• Selecting other 60-bit prime as the final element 

of coeff_modulus is recommended because it will 

serve as the special prime and should have the 

same size as the largest prime.  

• Additionally, selecting intermediate primes that 

are close to one another is advised. 

4.1.  Rotations 

Native vectored operations on encrypted numbers are 

supported by the BFV,CKKS and BGV techniques (with 

Batch Encoder). Apart from computing slot-wise, the 

encrypted vectors can also be rotated cyclically. You can 

specify the number of steps to rotate left or right. A 

different kind of unique key known as "Galois keys" is 

needed for rotations.  These can be obtained from the 

KeyGenerator with ease. No budget for noise is used 

during rotations. This holds true, though, only in the event 

that the special prime is at least as big as the other primes. 

This also applies to relinearization. Rotations in BFV and 

the CKKS scheme function very much alike. It is up to the 

user to decide the size of special prime appropriately 

because Microsoft SEAL does not require the special 

prime to be any specific size.  It is also feasible to evaluate 

a complex conjugation on a vector of encrypted complex 

numbers using the CKKS strategy. This is actually a form 

of rotation, and it also needs Galois keys. 

When implementing the BFV scheme in SEAL, it has been 

demonstrated how to use it to carry out a very basic 

computation. The calculation used a single coefficient 

from a BFV plaintext polynomial and was done modulo 

the plain_modulus parameter. There are two major issues 

with this approach: 

1. Modular arithmetic is rarely used in practical 

applications; instead, integer or real number 
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arithmetic is mostly preferred. 

2. The plaintext polynomial has a single coefficient. 

This is ineffective because the large plaintext 

polynomial will always be fully encrypted. 

Regarding the first point raised above, one might wonder 

why the calculations don't behave like integer arithmetic if 

one simply increases the plain_modulus parameter until 

there is no overflow. The issue is that raising 

plain_modulus both reduces the initial noise budget and 

increases the consumption of the noise budget. Additional 

encoding methods that enable further computations with no 

data type overflow and that can make use of the entire 

plaintext polynomial are discussed in the encoder's code. 

5. Results and Discussion 

Table 1 includes the various parameters results for BFV 

scheme with default degree and custom degree, BGV 

scheme with default degree and custom degree, 

 CKKS scheme with default degree and custom degree. 

Here, the parameters that are being compared are 

Poly_modulus_degree, Coeff_modulus size, Average 

encrypt, average decrypt, average add, average multiply, 

average compressed (ZLIB), average serialization of 

ciphertext (microseconds), average compressed 

(Zstandard) serialization of ciphertext (microseconds), 

generation of relinearization keys (microseconds), 

generation of Galois keys (microseconds). 

It can be seen from Figure 1 and 2 that among the three 

homomorphic encryption schemes with default and custom 

chosen degree, BGV requires the least average encryption 

time, while for decryption, CKKS requires the least time 

compared to BFV and BGV  

 

Fig 1.  Encryption and Decryption timings of HE schemes 

using SEAL with default polynomial modulus degree of 

4096. 

 

Fig 2.  Encryption and Decryption timings of HE schemes 

using SEAL with custom polynomial modulus degree of 

32768  

Table 1. Encryption parameters values/time 

(microseconds) for BFV, CKKS and BGV generated 

through SEAL library.  

 

En
cry

pt
ion

 Pa
ram

ete
rs

Sch
em

e
BF

V C
us

tom
 

De
gre

e

CK
KS

 Cu
sto

m 

De
gre

e

BG
V C

us
tom

 

De
gre

e

Po
ly_

mo
du

lus
_d

eg
ree

40
96

81
92

16
38

4
32

76
8

40
96

81
92

16
38

4
32

76
8

40
96

81
92

16
38

4
32

76
8

Co
eff

_m
od

ulu
s s

ize
10

9
21

8
43

8
88

1
10

9
21

8
43

8
88

1
10

9
21

8
43

8
88

1

Re
lin

ea
riz

ati
on

 ke
ys 

ge
ne

rat
ion

 

(m
icr

os
ec

on
ds

)
72

16
44

68
3

24
93

48
16

86
84

5
11

08
20

41
68

1
35

97
43

15
31

49
7

20
18

5
35

87
5

23
98

79
14

46
23

3

Ga
loi

s k
ey

s g
en

era
tio

n (
mi

cro
se

co
nd

s)
13

39
46

98
00

18
68

95
42

9
51

61
95

19
13

66
81

3
94

05
31

13
05

87
03

28
43

07
68

7
16

35
37

14
80

01
6

45
47

51
09

45
65

76
21

Av
era

ge
 en

cry
pt 

(m
icr

os
ec

on
ds

)
53

64
17

63
5

56
51

2
22

23
28

46
60

14
87

1
10

46
22

17
27

92
44

00
11

05
9

39
01

0
16

28
07

Av
era

ge
 de

cry
pt 

(m
icr

os
ec

on
ds

)
90

9
42

81
18

77
2

11
26

86
13

4
56

5
22

75
92

45
90

3
27

98
13

30
6

75
09

8

Av
era

ge
 ad

d (
mi

cro
se

co
nd

s)
73

33
8

14
51

61
12

67
29

8
13

10
80

45
68

26
5

11
93

52
15

Av
era

ge
 m

ult
ipl

y
10

98
9

48
20

6
23

38
37

11
64

19
3

35
98

14
77

64
15

22
25

6
10

91
8

94
31

42
94

7
30

32
49

Av
era

ge
 Co

mp
res

se
d (

ZL
IB)

 se
ria

lize
 

cip
he

rte
xt 

(m
icr

os
ec

on
ds

)
22

09
7

92
11

9
40

65
32

91
78

03
20

18
5

78
75

5
34

56
78

68
30

89
20

72
4

79
45

8
32

11
94

68
66

32

Av
era

ge
 Co

mp
res

se
d (

Zs
tan

da
rd)

 

se
ria

lize
  c

iph
ert

ex
t (m

icr
os

ec
on

ds
)

47
42

40
65

17
69

3
93

39
9

43
23

40
21

14
79

8
55

16
6

51
25

35
10

13
24

9
14

41
75

BF
V D

efa
ult

 De
gre

e
CK

KS
 De

fau
lt D

eg
ree

BG
V D

efa
ult

 De
gre

e

Va
lue

s/t
im

e i
n m

icr
os

ec
on

ds



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2174–2181 |  2178 

Using the default (4096) and custom degree (32768) 

configurations for the BFV, CKKS, and BGV 

homomorphic encryption schemes, let's compare (Table 2) 

the some of the performance metrics. 

Table 2. Comparison of performance metrics for default 

and custom degree polynomial. 

Performance 

metrics 

Observation 

Default Degree  Custom Degree  

1. Average 

Encrypt Time: 

 

Out of the three 

schemes, BGV is 

relatively fast in 

encryption when 

using the default 

degree 

configuration. 

 

BFV has the 

maximum 

encryption time, 

followed by BGV, 

which in turn 

follows CKKS . 

For the custom 

degree 

configuration, BGV 

has the fastest 

encryption out of the 

three techniques. 

 

BFV has the longest 

encryption time, 

followed by CKKS, 

which has a 

somewhat longer 

encryption time than 

BGV. 

2. Average 

Decrypt Time: 

 

When it comes to 

decryption time, 

CKKS performs 

noticeably better 

than BFV and 

BGV, having a 

much lower value. 

 

In this comparison, 

BGV decrypts 

faster than BFV. 

With a much lower 

value for decryption 

time, CKKS 

performs noticeably 

better in custom 

degree of 

polynomial than 

both BFV and BGV. 

 

BGV does not 

require as much time 

to decrypt as BFV. 

3. Degree 

Configurations: 

 

In this comparison, 

CKKS, which is 

intended for 

approximate 

arithmetic on real 

numbers, performs 

exceptionally well 

in terms of both 

encryption and 

decryption times. 

 

BGV and BFV 

have different 

performance 

characteristics; 

whereas BFV has a 

lower decryption 

time, BGV has a 

lower encryption 

With a much faster 

decryption time than 

BFV and BGV, 

CKKS retains its 

efficiency in the 

custom degree 

configuration for 

both encryption and 

decryption times. 

 

In the custom 

degree, BGV has a 

shorter encryption 

time, but CKKS 

outperforms it in the 

decryption time. 

 

In the custom 

degree, BFV has the 

time. Both 

algorithms are 

intended for integer 

arithmetic. 

longest encryption 

time and the longest 

decryption time. 

4. Overall 

Performance: 

 

In situations where 

encryption and 

decryption 

performance are 

critical, such as 

while working with 

real-number data, 

CKKS might be 

chosen. 

 

If a shorter 

encryption time is 

desired, BGV may 

be taken into 

consideration. 

 

When a quicker 

decryption time is 

more important, 

BFV might be 

appropriate. 

CKKS remains the 

best option in 

situations where 

performance in both 

encryption and 

decryption is 

essential, 

particularly when 

dealing with real-

number data. 

 

BGV may be taken 

into account, even in 

custom degree 

configurations, if a 

shorter encryption 

time is desired. 

 

Although BFV has a 

longer encryption 

time, it might be 

appropriate in 

situations where a 

shorter decryption 

time is more 

important. 

When comparing the average encryption times for all three 

schemes at the default degree of 4096, we can see that 

BGV takes less time to encrypt data. Depending on the 

processor's speed and system configuration, these values 

might change. These results are currently being produced 

by a 64-bit Windows 10 Pro operating system running on 

an Intel(R) Core(TM) i3-2370M CPU at 2.40GHz with 8 

GB of RAM. Compared to BGV and BFV schemes, the 

CKKS scheme decrypts 4096 degree polynomials much 

faster. By observing results from table 1, when comparing 

all three schemes' degrees, we find that the BGV scheme 

performs addition operations faster on average, while the 

CKKS scheme performs multiplication operations faster.  
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Fig 3.  Comparison of encrypt and decrypt time for HE- 

BFV scheme 

   

Fig 4.  Comparison of encrypt and decrypt time for HE- 

CKKS scheme 

 

Fig 5.  Comparison of encrypt and decrypt time for HE- 

BFV scheme 

 

 

 

 

 

 

The fact that all three configurations of homomorphic 

encryption scheme with default degree 4096,  8192, and  

16384, share the same degree of polynomial modulus is 

one of the main points of comparison, suggesting 

consistency in this parameter. Higher Coeff Modulus sizes 

typically result in higher security requirements, but they 

also increase computational demands. The degree of the 

polynomial modulus and the size of the coefficient 

modulus both contribute to an increase in encryption time. 

In BFV scheme, encryption times are longer for larger 

degrees and coefficient modulus sizes.  With increasing 

degrees and coefficient modulus sizes, decryption times 

also rise. Although the decryption time is typically less 

than the corresponding encryption time, figure 3 illustrates 

the same trend of increasing time with higher parameters. 

In summary, the comparison demonstrates a trade-off 

between longer computation times (both for encryption and 

decryption, linked to higher polynomial modulus degree 

and coefficient modulus size) and increased security 

(achieved by higher coefficient modulus size). The 

particular configuration selected is determined by the 

security and performance requirements of the application. 

The encryption times for the given CKKS (Cheon-Kim-

Kim-Song) and BGV (Brakerski-Gentry-Vaikuntanathan) 

configurations are shown in Figures 4 and 5, respectively. 

The comparative description shows that, like BFV, both 

encryption and decryption times increase with increasing 

degree and coefficient modulus size in the CKKS and 

BGV encryption schemes. CKKS is well-known for being 

appropriate in situations involving continuous data and 

floating-point numbers. The notable rise in computation 

time as the parameters are increased demonstrates the 

trade-offs between security and performance. Arithmetic 

and polynomial evaluation over rational and integer 

numbers is supported by SEAL [18]. 

6. Conclusion 

The FHE schemes CKKS and BFV are explored here 

through SEAL library. Due to its integrated fractional 

encoder, SEAL is recommended when dealing with 

fractional numbers as inputs [17]. If we consider all the 

parameters from the table 1, we can say that not a single 

scheme can be considered as optimal one from BGV, 

CKKS and BFV. As per the requirements of application, 

one can choose the desired scheme for securing the 

application based on computational performance of 

encryption, decryption, and additive, multiplicative 

homomorphic operations [19] because as per the degree 

and depth of computation the results can vary. BFV, 

CKKS, and BGV with default and custom degree 

configurations can be chosen based on the desired trade-

offs between security and performance, the type of data, 

and the significance of encryption compared to decryption 

speed, among other application-specific considerations.  
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