

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2174–2181 | 2174

Homomorphic Encryption with SEAL: Investigating Security and

Performance

Kirti Dinkar More*1, Dr. Dhanya Pramod2 , Dr. Rahul Ashokrao Patil3

Submitted: 29/01/2024 Revised: 07/03/2024 Accepted: 15/03/2024

Abstract: Security is a major concern these days because of the increasing use of smart technologies and the Internet. Security is

required to preserve the confidentiality, integrity, and availability of the resources over the network [2]. Homomorphic encryption (HE)

is privacy preserving technique for sharing of data with cloud backend securely [20]. It offers a safe environment where operations on

previously encrypted data can be carried out and the outcomes will be the same as for the original data [3]. This work serves as a

demonstration of practical use of homomorphic encryption, which can be used to guarantee data security and computation. We present an

analysis of the fully homomorphic encryption library known as SEAL (Simple Encrypted Arithmetic Library) in this work. Three SEAL

supported schemes - Brakerski-Gentry- Vaikuntanathan (BGV), Brakerski-Fan- Vercauteren (BFV), and Cheon-Kim-Kim- Song

(CKKS) -with default and custom degrees of polynomial are examined in relation to the outcomes produced for a range of parameters.

Keywords: BFV, BGV, CKKS, Fully Homomorphic Encryption, SEAL, Security.

1. Introduction

This Security is now of utmost importance due to the

increasing use of smart technologies and the Internet. The

availability, integrity, and confidentiality of the resources

over the network depend on security [2]. Databases can

store encrypted data, but processing such data requires first

decryption of it; once decrypted, the data might not be

safe. When data is already encrypted, homomorphic

encryption creates a safe environment where operations on

the encrypted data yield identical outcomes to those on the

original data [3]. Homomorphic encryption was first

proposed in 1978 by Michael Dertouzos, Leonard

Adleman, and Ronald Rivest [4]. There are several

homomorphic encryption schemes that vary in the number

of operations that can be carried out on the encrypted data.

The first one is Partially Homomorphic Encryption (PHE)

in which one type of operation, addition or multiplication,

can be performed on encrypted data an unlimited number

of times. The second scheme is called Somewhat

Homomorphic Encryption (SWHE), which restricts the

number of computations and only permits specific

operations on encrypted data because noise makes the

ciphertext size increase with each step. This scheme is

practically more feasible. Third one is Fully Homomorphic

Encryption which allows any number of computations on

cipher text. But practically fully homomorphic encryptions

have lot of overhead and in terms of computations it is

expensive [5]. Therefore, investigating fully homomorphic

encryption schemes is our goal. In September 2009, Craig

Gentry proposed the first fully homomorphic encryption

scheme [1].

A compact fully homomorphic encryption (FHE) that

enable the computation of multiple functions on encrypted

data has proven to be much more challenging to develop

than the numerous cryptosystems that have been proposed

over the years. Since from the Genrty’s work there have

been roughly three generations of FHE development. The

original Gentry approach, which involves ideal lattices[6],

and scheme of van Dijk et al. which makes use of integer

arithmetic[7] are both included in the first generation.

The issue of rapidly growing noise is faced by both of

these schemes. The study of Brakerski-Vaikuntanathan [8]

and Brakerski et al. [9] in 2011 brought about the second

generation, which was distinguished by noticeably superior

techniques for lowering noise and increasing efficiency.

The Gentry et al. [48] method, which had a slightly

different pattern of noise growth, was the starting point for

the third generation. Both asymmetric multiplication and

asymmetric noise growth were present in this scheme

[10][11].

2. Homomorphic Encryption

Four functions are typically included in a public-key

homomorphic encryption scheme: KeyGen, Encrypt, and

Decrypt, along with an Evaluate process for computing on

encrypted data [14].

Key generation: To encrypt plaintext, the client will

create a pair of keys, a public key (PK) and a secret key

(SK).

1MVP samaj’s K. T. H. M. College, Nashik, India
2 Symbiosis Centre for Information Technology, Symbiosis International

(Deemed) University, Pune, India.

Email: dhanya@scit.edu

ORCID ID : 0000-0003-3451-9794
3 MVP samaj’s K. T. H. M. College, Nashik, India

Email:patilra@rediffmail.com

* Corresponding Author Email: kirtimore@kthmcollege.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2174–2181 | 2175

Encryption: The plain text (PT) is encrypted by client

using the secret key SK to create ESK (PT). This cipher

text (CT), along with the public key (PK), is then sent to

the server.

Evaluation: The server contains a function called f that

allows it to evaluate the cipher text CT in accordance with

the necessary function while utilizing PK.

Decryption: The client will use its SK to decrypt the

generated Eval(f(PT)) and obtain the original result.

Two characteristics of homomorphic encryption are its

primary ones [13],

Homomorphic additive encryption: If Enc (PT1+PT2) =

Enc (PT1) + Enc (PT2), then homomorphic encryption is

additive.

Homomorphic multiplicative Encryption: If Enc(PT1

×PT2) = Enc(PT1) × Enc(PT2), then homomorphic

encryption is multiplicative.

Essentially, fully homomorphic encryption has a

straightforward structure. Presume that fully homomorphic

encryption enables anyone (not just the key holder) to

produce a ciphertext that encrypts f(π1,.., πt) for any

desired function f, provided that function can be computed

effectively. There should be no leakage of any

intermediate plaintext values or information about π1,... πt

or f(π1,.., πt). Encryption is always used for the inputs,

output, and intermediate values [1].

3. Related work

Homomorphic Encryption (HE) is a secure method for

exchanging data safely with cloud backend while

maintaining privacy. Due to its high memory consumption

and computational overhead, HE may not be suitable for

use on embedded devices with limited resources. To

address this issue, authors have proposed the first HE

library for embedded devices named as SEAL-Embedded,

based on CKKS approximate homomorphic encryption

scheme. High performance CKKS encoding and memory

efficiency on embedded devices are all achieved with this

newly proposed library, which combines a detailed

memory reuse scheme with multiple computational and

algorithmic optimizations [20]. The study of various

schemes, including BFV, BGV, CKKS, RSA, El-Gamal,

and Paillier, is covered by the authors in [12], along with

how these schemes are implemented in HE libraries, such

as Microsoft SEAL, PALISADE, and HElib. The authors

of [13] investigated a number of homomorphic encryption

schemes, including Non-interactive Exponential

Homomorphic Encryption algorithm (NEHE), Brakerski-

Gentry-Vaikuntanathan (BGV), updated ElGamal (AHEE),

and Homomorphic Cryptosystem (EHC). In [15] various

HE schemes are explored out of which Fully homomorphic

encryption schemes are 1) BFV supported in both SEAL

and PALISADE 2) BGV implemented in SEAL,

PALISADE, and HElib. Leveled homomorphic encryption,

or CKKS scheme, is an extended version of SWHE

somewhat homomorphic encryption scheme. HElib,

HEAAN, SEAL, and PALISADE all has implementation

of CKKS. The implementations of partially homomorphic

encryption that the authors have provided include Paillier

(additive), El-Gamal (multiplicative), and RSA

(multiplicative). They employed their own

implementations of Paillier, RSA and El-Gamal as

partially homomorphic cryptosystems in the emulation

since PHE schemes are not implemented in the libraries

mentioned. For large plaintext moduli of up to 2048 bits,

the authors of [19] provided the comparative benchmark of

the well-known homomorphic encryption libraries SEAL,

HElib and FV-NFLlib, along with an analysis of their

respective performances.

4. Proposed Work

In this article we have given the study of Microsoft SEAL

library. In 2015 Microsoft Research created the Simple

Encrypted Arithmetic Library (SEAL), a cross-platform

software library that is free and open-source and

implements several types of homomorphic encryption. It

was written in C++ and C#. It doesn't rely on outside

libraries to function independently. Users can choose

between security levels (128 or 192), degree (1024, 2048,

4096, 8192, or 16384) and plaintext modulus (with no

limit), with SEAL, which utilizes the FV cryptosystem

[16]. Fully Homomorphic Encryption technique is

explored through SEAL. A basic illustration of fully

homomorphic encryption is provided in the study. It

applies mathematical operations to encrypted data without

ever decrypting it, allowing for the observation of various

parameters’ performance. Table 1 shows the observed

values after successful execution of examples given with

SEAL. Firstly we explored BFV encryption scheme. It is

shown how to use the BFV encryption method to perform

basic calculations (a polynomial evaluation) on encrypted

integers. Setting the following three encryption parameters

is required:

• polynomial modulus degree, or

poly_modulus_degree

• coeff_modulus, or coefficient modulus

[ciphertext]

• plain_modulus, which is the plaintext modulus

particular to the BFV scheme.

It is not possible for the BFV scheme to run random

calculations on encrypted data. The "invariant noise

budget," also known as the "noise budget," is expressed in

bits for each ciphertext. The encryption parameters define

the noise budget (initial noise budget) in a newly encrypted

ciphertext. The two fundamental operations in BFV are

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2174–2181 | 2176

permitted on parameters which are additions and

multiplications. The noise budget is consumed by these

homomorphic operations. Additions are typically

considered to consume almost no noise budget when

compared to multiplications. The most important

consideration when selecting suitable encryption

parameters is the multiplicative depth of the arithmetic

circuit that the user wishes to assess on encrypted data, as

noise budget consumption compounds in sequential

multiplications.

Computing over encrypted data in the BGV scheme is

similar to that in BFV. The purpose of BGV example is

mainly to explain the differences between BFV and BGV

in terms of ciphertext coefficient modulus selection and

noise control. Most of the code is repeated from BFV

basics example. In the exploration of BGV scheme as an

example, evaluation of the degree 8 polynomial x^8

over an encrypted x over integers 1, 2, 3, 4 is done. One

could think of the polynomial's coefficients as inputs in

plaintext. Modulo the plain_modulus 1032193, the

computation is performed. BGV requires modulus

switching to reduce noise growth. Although with modulus

switching there can be less noise budget than before, noise

budget is utilized at a slower rate. To achieve the optimal

consumption rate of noise budget in an application, one

needs to carefully choose the location to insert modulus

switching and manually choose coeff_modulus.

The evaluation of the polynomial function of the form

PI*x^3 + 0.4*x + 1 for a set of 4096 equidistant points in

the interval [0, 1] on encrypted floating-point input data x

is demonstrated for the CKKS scheme. Many of the key

components of the CKKS scheme are illustrated in this

example, along with some of its challenges while using it.

It has been observed that scales in ciphertexts increase with

multiplication in CKKS in the SEAL code of encoders.

Any ciphertext's scale must avoid approaching

coeff_modulus's total size, or else it will run out of space

to hold the scaled-up plaintext. A "rescale" functioning

offered by the CKKS scheme can lower the scale and settle

down the scale expansion. One type of modulus switch

operation is rescaling. It eliminates the final prime from

coeff_modulus as a modulus switch, but as a side effect, it

scales down the ciphertext by the removed prime.

Carefully choosing primes for the coeff_modulus is more

common for the CKKS scheme because the goal is to have

complete control over scale modifications. For example,

let us consider the following scenario: a CKKS ciphertext

has S as the scale, and P as the last prime in the current

coeff_modulus (for ciphertext). As is common in modulus

switching, rescaling to the next level removes the prime P

from the coeff_modulus and modifies the scale to S/P. The

number of primes restricts the number of rescalings that

can be performed, which in turn restricts the multiplicative

depth of the calculation.

The initial scale can be freely selected. Setting the initial

scale S and primes P_i in the coeff_modulus to be

extremely close to one another can be a sensible approach.

After multiplication, ciphertexts with scale S have scale

S^2, and after rescaling, they have scale S^2/P_i. S^2/P_i

is close to S again if all P_i are nearby S. In this manner,

scales remain nearby S all over the computation. A circuit

of depth D typically requires rescaling D times, or the

ability to eliminate D primes from the coefficient modulus.

When there is just one prime left in the coeff_modulus, it

needs to be a bit bigger than S by few bits in order to

maintain the plaintext's pre-decimal-point value. As a

result, selecting the following parameters in the CKKS

method is generally advantageous:

• As the first prime in coeff_modulus, select a 60-

bit prime. This will yield the highest level of

decrypting precision.

• Selecting other 60-bit prime as the final element

of coeff_modulus is recommended because it will

serve as the special prime and should have the

same size as the largest prime.

• Additionally, selecting intermediate primes that

are close to one another is advised.

4.1. Rotations

Native vectored operations on encrypted numbers are

supported by the BFV,CKKS and BGV techniques (with

Batch Encoder). Apart from computing slot-wise, the

encrypted vectors can also be rotated cyclically. You can

specify the number of steps to rotate left or right. A

different kind of unique key known as "Galois keys" is

needed for rotations. These can be obtained from the

KeyGenerator with ease. No budget for noise is used

during rotations. This holds true, though, only in the event

that the special prime is at least as big as the other primes.

This also applies to relinearization. Rotations in BFV and

the CKKS scheme function very much alike. It is up to the

user to decide the size of special prime appropriately

because Microsoft SEAL does not require the special

prime to be any specific size. It is also feasible to evaluate

a complex conjugation on a vector of encrypted complex

numbers using the CKKS strategy. This is actually a form

of rotation, and it also needs Galois keys.

When implementing the BFV scheme in SEAL, it has been

demonstrated how to use it to carry out a very basic

computation. The calculation used a single coefficient

from a BFV plaintext polynomial and was done modulo

the plain_modulus parameter. There are two major issues

with this approach:

1. Modular arithmetic is rarely used in practical

applications; instead, integer or real number

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2174–2181 | 2177

arithmetic is mostly preferred.

2. The plaintext polynomial has a single coefficient.

This is ineffective because the large plaintext

polynomial will always be fully encrypted.

Regarding the first point raised above, one might wonder

why the calculations don't behave like integer arithmetic if

one simply increases the plain_modulus parameter until

there is no overflow. The issue is that raising

plain_modulus both reduces the initial noise budget and

increases the consumption of the noise budget. Additional

encoding methods that enable further computations with no

data type overflow and that can make use of the entire

plaintext polynomial are discussed in the encoder's code.

5. Results and Discussion

Table 1 includes the various parameters results for BFV

scheme with default degree and custom degree, BGV

scheme with default degree and custom degree,

 CKKS scheme with default degree and custom degree.

Here, the parameters that are being compared are

Poly_modulus_degree, Coeff_modulus size, Average

encrypt, average decrypt, average add, average multiply,

average compressed (ZLIB), average serialization of

ciphertext (microseconds), average compressed

(Zstandard) serialization of ciphertext (microseconds),

generation of relinearization keys (microseconds),

generation of Galois keys (microseconds).

It can be seen from Figure 1 and 2 that among the three

homomorphic encryption schemes with default and custom

chosen degree, BGV requires the least average encryption

time, while for decryption, CKKS requires the least time

compared to BFV and BGV

Fig 1. Encryption and Decryption timings of HE schemes

using SEAL with default polynomial modulus degree of

4096.

Fig 2. Encryption and Decryption timings of HE schemes

using SEAL with custom polynomial modulus degree of

32768

Table 1. Encryption parameters values/time

(microseconds) for BFV, CKKS and BGV generated

through SEAL library.

En
cry

pt
ion

 Pa
ram

ete
rs

Sch
em

e
BF

V C
us

tom

De
gre

e

CK
KS

 Cu
sto

m

De
gre

e

BG
V C

us
tom

De
gre

e

Po
ly_

mo
du

lus
_d

eg
ree

40
96

81
92

16
38

4
32

76
8

40
96

81
92

16
38

4
32

76
8

40
96

81
92

16
38

4
32

76
8

Co
eff

_m
od

ulu
s s

ize
10

9
21

8
43

8
88

1
10

9
21

8
43

8
88

1
10

9
21

8
43

8
88

1

Re
lin

ea
riz

ati
on

 ke
ys

ge
ne

rat
ion

(m
icr

os
ec

on
ds

)
72

16
44

68
3

24
93

48
16

86
84

5
11

08
20

41
68

1
35

97
43

15
31

49
7

20
18

5
35

87
5

23
98

79
14

46
23

3

Ga
loi

s k
ey

s g
en

era
tio

n (
mi

cro
se

co
nd

s)
13

39
46

98
00

18
68

95
42

9
51

61
95

19
13

66
81

3
94

05
31

13
05

87
03

28
43

07
68

7
16

35
37

14
80

01
6

45
47

51
09

45
65

76
21

Av
era

ge
 en

cry
pt

(m
icr

os
ec

on
ds

)
53

64
17

63
5

56
51

2
22

23
28

46
60

14
87

1
10

46
22

17
27

92
44

00
11

05
9

39
01

0
16

28
07

Av
era

ge
 de

cry
pt

(m
icr

os
ec

on
ds

)
90

9
42

81
18

77
2

11
26

86
13

4
56

5
22

75
92

45
90

3
27

98
13

30
6

75
09

8

Av
era

ge
 ad

d (
mi

cro
se

co
nd

s)
73

33
8

14
51

61
12

67
29

8
13

10
80

45
68

26
5

11
93

52
15

Av
era

ge
 m

ult
ipl

y
10

98
9

48
20

6
23

38
37

11
64

19
3

35
98

14
77

64
15

22
25

6
10

91
8

94
31

42
94

7
30

32
49

Av
era

ge
 Co

mp
res

se
d (

ZL
IB)

 se
ria

lize

cip
he

rte
xt

(m
icr

os
ec

on
ds

)
22

09
7

92
11

9
40

65
32

91
78

03
20

18
5

78
75

5
34

56
78

68
30

89
20

72
4

79
45

8
32

11
94

68
66

32

Av
era

ge
 Co

mp
res

se
d (

Zs
tan

da
rd)

se
ria

lize
 c

iph
ert

ex
t (m

icr
os

ec
on

ds
)

47
42

40
65

17
69

3
93

39
9

43
23

40
21

14
79

8
55

16
6

51
25

35
10

13
24

9
14

41
75

BF
V D

efa
ult

 De
gre

e
CK

KS
 De

fau
lt D

eg
ree

BG
V D

efa
ult

 De
gre

e

Va
lue

s/t
im

e i
n m

icr
os

ec
on

ds

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2174–2181 | 2178

Using the default (4096) and custom degree (32768)

configurations for the BFV, CKKS, and BGV

homomorphic encryption schemes, let's compare (Table 2)

the some of the performance metrics.

Table 2. Comparison of performance metrics for default

and custom degree polynomial.

Performance

metrics

Observation

Default Degree Custom Degree

1. Average

Encrypt Time:

Out of the three

schemes, BGV is

relatively fast in

encryption when

using the default

degree

configuration.

BFV has the

maximum

encryption time,

followed by BGV,

which in turn

follows CKKS .

For the custom

degree

configuration, BGV

has the fastest

encryption out of the

three techniques.

BFV has the longest

encryption time,

followed by CKKS,

which has a

somewhat longer

encryption time than

BGV.

2. Average

Decrypt Time:

When it comes to

decryption time,

CKKS performs

noticeably better

than BFV and

BGV, having a

much lower value.

In this comparison,

BGV decrypts

faster than BFV.

With a much lower

value for decryption

time, CKKS

performs noticeably

better in custom

degree of

polynomial than

both BFV and BGV.

BGV does not

require as much time

to decrypt as BFV.

3. Degree

Configurations:

In this comparison,

CKKS, which is

intended for

approximate

arithmetic on real

numbers, performs

exceptionally well

in terms of both

encryption and

decryption times.

BGV and BFV

have different

performance

characteristics;

whereas BFV has a

lower decryption

time, BGV has a

lower encryption

With a much faster

decryption time than

BFV and BGV,

CKKS retains its

efficiency in the

custom degree

configuration for

both encryption and

decryption times.

In the custom

degree, BGV has a

shorter encryption

time, but CKKS

outperforms it in the

decryption time.

In the custom

degree, BFV has the

time. Both

algorithms are

intended for integer

arithmetic.

longest encryption

time and the longest

decryption time.

4. Overall

Performance:

In situations where

encryption and

decryption

performance are

critical, such as

while working with

real-number data,

CKKS might be

chosen.

If a shorter

encryption time is

desired, BGV may

be taken into

consideration.

When a quicker

decryption time is

more important,

BFV might be

appropriate.

CKKS remains the

best option in

situations where

performance in both

encryption and

decryption is

essential,

particularly when

dealing with real-

number data.

BGV may be taken

into account, even in

custom degree

configurations, if a

shorter encryption

time is desired.

Although BFV has a

longer encryption

time, it might be

appropriate in

situations where a

shorter decryption

time is more

important.

When comparing the average encryption times for all three

schemes at the default degree of 4096, we can see that

BGV takes less time to encrypt data. Depending on the

processor's speed and system configuration, these values

might change. These results are currently being produced

by a 64-bit Windows 10 Pro operating system running on

an Intel(R) Core(TM) i3-2370M CPU at 2.40GHz with 8

GB of RAM. Compared to BGV and BFV schemes, the

CKKS scheme decrypts 4096 degree polynomials much

faster. By observing results from table 1, when comparing

all three schemes' degrees, we find that the BGV scheme

performs addition operations faster on average, while the

CKKS scheme performs multiplication operations faster.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2174–2181 | 2179

Fig 3. Comparison of encrypt and decrypt time for HE-

BFV scheme

Fig 4. Comparison of encrypt and decrypt time for HE-

CKKS scheme

Fig 5. Comparison of encrypt and decrypt time for HE-

BFV scheme

The fact that all three configurations of homomorphic

encryption scheme with default degree 4096, 8192, and

16384, share the same degree of polynomial modulus is

one of the main points of comparison, suggesting

consistency in this parameter. Higher Coeff Modulus sizes

typically result in higher security requirements, but they

also increase computational demands. The degree of the

polynomial modulus and the size of the coefficient

modulus both contribute to an increase in encryption time.

In BFV scheme, encryption times are longer for larger

degrees and coefficient modulus sizes. With increasing

degrees and coefficient modulus sizes, decryption times

also rise. Although the decryption time is typically less

than the corresponding encryption time, figure 3 illustrates

the same trend of increasing time with higher parameters.

In summary, the comparison demonstrates a trade-off

between longer computation times (both for encryption and

decryption, linked to higher polynomial modulus degree

and coefficient modulus size) and increased security

(achieved by higher coefficient modulus size). The

particular configuration selected is determined by the

security and performance requirements of the application.

The encryption times for the given CKKS (Cheon-Kim-

Kim-Song) and BGV (Brakerski-Gentry-Vaikuntanathan)

configurations are shown in Figures 4 and 5, respectively.

The comparative description shows that, like BFV, both

encryption and decryption times increase with increasing

degree and coefficient modulus size in the CKKS and

BGV encryption schemes. CKKS is well-known for being

appropriate in situations involving continuous data and

floating-point numbers. The notable rise in computation

time as the parameters are increased demonstrates the

trade-offs between security and performance. Arithmetic

and polynomial evaluation over rational and integer

numbers is supported by SEAL [18].

6. Conclusion

The FHE schemes CKKS and BFV are explored here

through SEAL library. Due to its integrated fractional

encoder, SEAL is recommended when dealing with

fractional numbers as inputs [17]. If we consider all the

parameters from the table 1, we can say that not a single

scheme can be considered as optimal one from BGV,

CKKS and BFV. As per the requirements of application,

one can choose the desired scheme for securing the

application based on computational performance of

encryption, decryption, and additive, multiplicative

homomorphic operations [19] because as per the degree

and depth of computation the results can vary. BFV,

CKKS, and BGV with default and custom degree

configurations can be chosen based on the desired trade-

offs between security and performance, the type of data,

and the significance of encryption compared to decryption

speed, among other application-specific considerations.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2174–2181 | 2180

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Gentry, Craig. 2009. “A Fully Homomorphic

Encryption Scheme.” Dissertation, no. September:

169. http://cs.au.dk/~stm/local-cache/gentry-

thesis.pdf.

[2] William, Stallings, and William Stallings.

Cryptography and Network Security, 4/E. Pearson

Education India, 2006.

[3] Zvika Brakerski and Vinod Vaikuntanathan, Effcient

Fully Homomorphic Encryption from (Standard)

LWE, IeeeXplore-2011 BrakerskiV-FOCS 2011.

[4] Rivest, Ronald L., Len Adleman, and Michael L.

Dertouzos. "On data banks and privacy

homomorphisms." Foundations of secure

computation 4, no. 11 (1978): 169-180.

[5] Sathya, Sai Sri, Praneeth Vepakomma, Ramesh

Raskar, Ranjan Ramachandra, and Santanu

Bhattacharya. 2018. “A Review of Homomorphic

Encryption Libraries for Secure Computation.”

ArXiv, 1–12.

[6] C. Gentry. Fully homomorphic encryption using ideal

lattices. In M. Mitzenmacher, editor, Proceedings of

the 41st Annual ACM Symposium on Theory of

Computing, STOC 2009, Bethesda, MD, USA, May

31 - June 2, 2009, pages 169–178. ACM, 2009.

[7] M. van Dijk, C. Gentry, S. Halevi, and V.

Vaikuntanathan. Fully homomorphic encryption over

the integers. In Advances in Cryptology -

EUROCRYPT 2010, 29th Annual International

Conference on the Theory and Applications of

Cryptographic Techniques, French Riviera, May 30 -

June 3, 2010. Proceedings, pages 24–43, 2010.

[8] Z. Brakerski and V. Vaikuntanathan. Efficient fully

homomorphic encryption from (standard)

LWE. SIAM J. Comput., 43(2):831–871,

2014.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan.

Fully homomorphic encryption without

bootstrapping. In Innovations in Theoretical

Computer Science (ITCS’12), 2012. Available at

http://eprint.iacr.org/2011/277.

[10] C. Gentry, A. Sahai, and B. Waters. Homomorphic

encryption from learning with errors: Conceptually-

simpler, asymptotically-faster, attribute-based. In R.

Canetti and J. A. Garay, editors, Advances in

Cryptology - CRYPTO 2013, Part I, pages 75–92.

Springer, 2013.

[11] Halevi, S. (2017). Homomorphic Encryption. In:

Lindell, Y. (eds) Tutorials on the Foundations of

Cryptography. Information Security and

Cryptography. Springer, Cham.

https://doi.org/10.1007/978-3-319-57048-8_5

[12] Thi Van Thao Doan, Mohamed-Lamine Messai,

Gérald Gavin et al. A Survey on Implementations of

Homomorphic Encryption Schemes, 06 September

2022, PREPRINT (Version 1) available at Research

Square [https://doi.org/10.21203/rs.3.rs-2018739/v1]

[13] V.Parmar, Payal, Shraddha B. Padhar, Shafika N.

Patel, Niyatee I. Bhatt, and Rutvij H. Jhaveri. 2014.

“Survey of Various Homomorphic Encryption

Algorithms and Schemes.” International Journal of

Computer Applications 91 (8): 26–32.

https://doi.org/10.5120/15902-5081.

[14] Prasitsupparote, A. (2018). Implementation and

Analysis of Fully Homomorphic Encryption in

Resource-Constrained Devices. International Journal

of Digital Information and Wireless Communications,

8(4), 288–303. https://doi.org/10.17781/p002535

[15] Acar, Abbas, Hidayet Aksu, A. Selcuk Uluagac, and

Mauro Conti. 2018. “A Survey on Homomorphic

Encryption Schemes.” ACM Computing Surveys 51

(4): 1–35. https://doi.org/10.1145/3214303.

[16] Bel Korchi, Amina, and Nadia El Mrabet. 2019. “A

Practical Use Case of Homomorphic Encryption.”

Proceedings - 2019 International Conference on

Cyberworlds, CW 2019, 328–35.

https://doi.org/10.1109/CW.2019.00060.

[17] Viand, Alexander, and Hossein Shafagh. 2018.

“Marble: Making Fully Homomorphic Encryption

Accessible to All.” Proceedings of the ACM

Conference on Computer and Communications

Security, 49–60.

https://doi.org/10.1145/3267973.3267978.

[18] Alabdulatif, Abdulatif, Ibrahim Khalil, Heshan

Kumarage, Albert Y. Zomaya, and Xun Yi. 2019.

“Privacy-Preserving Anomaly Detection in the Cloud

for Quality Assured Decision-Making in Smart

Cities.” Journal of Parallel and Distributed

Computing 127: 209–23.

https://doi.org/10.1016/j.jpdc.2017.12.011.

[19] Aguilar Melchor, Carlos, Marc Olivier Kilijian,

Cédric Lefebvre, and Thomas Ricosset. 2019. “A

Comparison of the Homomorphic Encryption

Libraries HElib, SEAL and FV-NFLlib.” Lecture

Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) 11359 LNCS: 425–42.

https://doi.org/10.1007/978-3-030-12942-2_32.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2174–2181 | 2181

[20] Natarajan, Deepika & Dai, Wei. (2021). SEAL-

Embedded: A Homomorphic Encryption Library for

the Internet of Things. IACR Transactions on

Cryptographic Hardware and Embedded Systems.

2021. 756-779. 10.46586/tches.v2021.i3.756-779.

