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Abstract: MapReduce is an admirable Hadoop technique for processing enormous information in cloud computing which runs programs 

and instructions in equivalent employing computers or processors. It simplifies complex data processing tasks by breaking them down into 

two basic operations mapping and reducing. Numerous scheduling algorithms are established for the Hadoop-MR model which varies in 

behavior and design, managing various issues like user share impartiality, and data locality along with resource consciousness. This paper 

proposed an innovative optimization algorithm such as Inertia Weight-based Grey Wolf Optimization (IW-GWO) Algorithm. The inertia 

weight strategy is utilized for controlling the exploration and population growth capability which effectively enhances the algorithm search 

capability and balance the connection between local development and global exploration. The obtained result shows that the IW-GWO 

attains better results in terms of makespan, cost, execution time, and throughput of 2.82s, 59.75 tasks/s, 52$ and 381.62ms for 200 nodes 

compared with existing algorithms like MOABCQ_LJF, HWACO, and IMOMVO. 
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1.  Introduction 

Task scheduling is a significant aspect of cloud computing 

which plays a significant role in optimizing resource 

consumption and ensuring effective task execution within a 

cloud framework [1]. Task scheduling is the process of 

allocating resources to various tasks, minimizing cost and 

improving the overall system effectiveness [2]. The virtual 

machines (VMs) deployment, data processing, handling of 

user requests, and effective task scheduling approaches are 

important for connecting the full potential cloud 

environment [3]. Cloud computing is utilized to generate 

user requirements for retrieving computing resources or 

allowing users to buy cloud services as essential in on-

demand resource-sharing concept over internet-based 

applications [4] [5]. It is a payment method for the capability 

to use customizable computing sources across shared 

networks like servers, applications, storage space, and 

services [6]. This method is according to number of existing 

requests and accessed network levels that were generated 

rapidly through the smallest number of management and 

interference from user service providers [7] [8]. Cloud 

computing is a technique for allocating data and computing 

through huge network nodes like cloud services, computers, 

and data centers [9]. The cloud system is a procedure of 

distributed and parallel systems that contains a collection of 

VMs that contribute computing resources according to the 

service-level agreement (SLA) and through an agreement 

among clients and service providers [10]. Task scheduling 

provides a computing environment where different sources 

are distributed to customers through the Internet. In general, 

cloud architecture has an intranet or internet-related back 

and front end [11] [12]. It simplifies complex data 

processing tasks by breaking them down into two basic 

operations mapping and reducing [13]. In the mapping 

phase, the data was divided into smaller chunks and 

processed in parallel across multiple nodes [14]. 

The reducing phase aggregates and integrates the outputs, 

generating a comprehensive solution to complex problems.  

Wang et al. [16] introduced a Heterogeneous Throughput 

Driven (HTD) task scheduling algorithm in MapReduce. 

This model initially provided a formal description of TD 

task scheduling in a heterogeneous network. Then, build 

scheduling HTD rapidly attained the completion sequence 

and enhanced scheduling information in a heterogeneous 

network. Lastly, the sequence was taken to a heterogeneous 

network to optimize the information of task assignment and 

attain task execution system. This developed model had 

some advantages like strong obtainability, huge reliability, 

and minimized processing time. However, this model was 

unable to resolve the idle resource problems. 

Sharma et al. [17] developed an Ant Colony Optimization 

(ACO) model for QoS-based task scheduling in a cloud 

computing environment. The developed model functioned in 

two stages, the primary stage utilized an event-based 

scheduler to address the difficult planning problems. An 

updated ACO method for optimal global search utilizing a 

neural network to schedule numerous activities for 

overcoming the complexity of multiple objectives was 

suggested. The ACO model delivered high statistics mean 
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access times and reliable job assignments. However, this 

model led to imbalance issues over the devices. 

Jeyaraj and Paul [18] implemented an Optimized 

MapReduce task scheduling on virtualized heterogeneous 

environments using Ant Colony Optimization (ACO). It was 

utilized to enhance exploitation by an accurate integration of 

maps and minimizing tasks in every VM. The MR task 

scheduling was transformed into a 2D-bin packing technique 

and attained the optimum schedule by the ACO algorithm. 

Each task combined the result in a single file, sorted, and 

grouped according to key. The developed ACO-BP model 

reduced the makespan for the batch of jobs. However, this 

model was not able to reduce the makespan.  

Mangalampalli et al. [19] presented a multi-objective task 

scheduling algorithm in cloud computing through Grey 

Wolf Optimization (MOTSGWO). This model made 

runtime scheduling decisions according to cloud resources 

and task priorities. This model was applied to the Cloudsim 

toolkit and the distributions. The workload production was 

finished by making a dataset with various disseminations 

like the normal, uniform, right, and left skewed distributions. 

The MOTSGWO model minimized makespan and energy 

consumption. Nonetheless, this model had local optima 

issues and low convergence speed. 

Praveen et al. [20] suggested a hybrid Genetic Algorithm 

(GA) and Gravitational Emulation Local Search (GELS) for 

task scheduling. This model integrated local search ability 

of GELS by GA that resulted in high effectiveness to obtain 

better solutions. The performance was estimated by 

comparing the results of GA and PSO algorithms. This 

analysis found that the model was effective in addressing 

task scheduling problems and delivered better results. The 

GAGELS model reduced response time and enhanced 

processor utilization. However, this model required a high 

running time. 

Kruekaew and Kimpan [21] introduced a Multi-Objective 

task scheduling optimization for load balancing through 

Artificial Bee Colony with a Q-learning algorithm 

(MOABCQ). The developed model aimed to enhance VM 

throughput, optimize scheduling and resource exploitation, 

and make load balancing among VMs based on makespan, 

source exploitation and cost. The MOABCQ model 

minimized the makespan, degree imbalance and cost, 

thereby enhancing source exploitation and throughput. But, 

this model had slow convergence in complex problems and 

large solution spaces.  

Chandrashekar et al. [22] developed a Hybrid Weighted Ant 

Colony Optimization Algorithm (HWACOA) for task 

scheduling in cloud computing. It was tested and related by 

existing algorithms in terms of makespan, parameter cost, 

and proficiency. This model improved the shortcomings 

encountered with various algorithms which enhanced the 

task scheduling performance. This developed HWACOA 

model reduced execution time, makespan, and energy 

consumption. However, this model considered only a 

smaller number of tasks and the performance was affected 

when increasing number of tasks. 

Otair et al. [23] implemented an improved multi-objective 

multi-verse optimizer (IMOMVO) to resolve task 

scheduling issues. It was utilized to resolve the problems of 

average positioning (AP) by dynamically improving the 

equation of AP according to a better solution. The developed 

model was estimated according to three different objectives 

- throughput, makespan and execution time. The developed 

IMOMVO model performed tasks in less time, obtained 

minimum makespan and better throughput. Yet, this model 

had limitations like local optima issues and poor search 

scalability. 

The purpose of this study is discussed below: 

• This paper proposes an innovative optimization 

algorithm like Inertia Weight based Grey Wolf Optimization 

(IW-GWO) Algorithm. By adjusting inertia weight, the IW-

GWO adapts its search behavior, leading to faster 

convergence towards optimal solutions. 

• The FCGK-KMA is employed to improve the 

mapping reliability along with reducing the complications 

and the map-reduce function is accomplished over OB-

BOA. 

• The inertia weight strategy is utilized for 

controlling the exploration and population growth capability 

which effectively enhances the algorithms search capability 

and balance the connection between local development and 

global exploration. 

The rest of the paper is arranged as follows: The complete 

description of the proposed method is given in Section 2, 

while the results and discussion are demonstrated in Section 

3. At last, the conclusion is presented in Section 4.  

2. Proposed Methodology 

The Hadoop has become a standard technique for examining 

and storing data in a cost-efficient way which is a 

MapReduce (MR) open-source framework. Numerous 

scheduling algorithms are established for the Hadoop-MR 

model which vary in behavior and design, managing various 

issues like user share impartiality, and data locality along 

through resource consciousness. Therefore, an IW-GWO-

based secured and optimized scheduling technique is 

proposed for MR by considering execution time. The inertia 

weight strategy is utilized for managing the exploration 

growth capability which effectively enhances the algorithm 

search capability and balances the connection between local 

development and global exploration. The MR job scheduling 

framework is presented in Fig. 1.  
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Fig. 1. Architecture of MapReduce Job Schedule Framework 

A. Task Partitioning  

Initially, for discovering cluster centroid to MR models, 

numerous amount of user tasks are separated into many 

smaller tasks. The 𝑛 number of user tasks is represented as 

(𝐼𝑗 = 𝐼1, 𝐼2, … , 𝐼𝑛) that is separated into 𝑚 number of many 

tasks. The partitioned tasks are denoted as Eq. (1), 

𝑃𝑘 = 〈𝑃1, 𝑃2, … , 𝑃𝑚〉                                                  (1) 

Where, 𝑃𝑘  is the partitioned tasks and 𝑃𝑚  is the user task 

separated into 𝑚 number of many tasks.  

B. MapReduce Framework using BO-KMA 

The MR is a programming technique for parallelly handling 

large sets of partitioning data which simplifies complex data 

processing tasks by breaking down into two basic 

operations, mapping and reducing. As an outcome, finding 

huge-scale data employing MR framework through 

allocating tasks on various clustering nodes. The Fractional 

Calculus integrates the Gaussian Kernel-centered K-Means 

clustering Algorithm (FCGK-KMA) and is employed as a 

mapper in developed BO-KMA method which obtains 

partitioning data as input and determines cluster centroids. 

Subsequently, an Opposition Based Butterfly Optimization 

Algorithm (OB-BOA) is utilized that selects the cluster 

centroid and performs as a reducer. The integration of OB-

BOA in FCGK-KMA is labeled as BO-KMA. The MR 

framework is illuminated in below sections. 

C. Mapping Function through FCGK-KMA 

The FCGK-KMA is utilized to enhance the mapping 

reliability along with reducing the complications. The KMA 

is an enormously utilized clustering method that separates 

the task into numerous clusters. The Euclidean Distance 

(ED) is employed to measure the distance among every 

cluster. However, the time complexity is larger for 

measuring distance of large tasks. For minimizing time-

complexity, ED is replaced through Gaussian Kernel (GK). 

Additionally, the KMA clustering performance was 

increased to enrich the quick convergence through fractional 

calculus.  

Primarily, the partitioned task (𝑃𝑘) are randomly clustered, 

then choose 𝐶 cluster centers (𝑆𝑘,𝑖) as primary cluster center 

which is presented in Eq. (2), 

𝑆𝑘,𝑖 = (𝑆𝑘,1, 𝑆𝑘,2, … , 𝑆𝑘,𝐶)                                          (2) 

Here, number of tasks is denoted through𝑘 = 1,2, … , 𝑛. The 

objective function is formulated in Eq. (3), 

𝜁 = ∑ ∑ ‖𝑃𝑘 − 𝑆𝑘,𝑖‖
2𝐶

𝑖=1
𝑛
𝑘=1                                       (3) 

Where, GK Similarity (GKS) between portioned task input 

(𝑃𝑘)  and primary cluster centers (𝑆𝑖)  are formulated 

as‖𝑃𝑘 − 𝑆𝑖‖ = 𝑔(𝑃𝑘 , 𝑆𝑖). The GKS is calculated as Eqs. (4) 

and (5), 

𝑔(𝑃𝑘 , 𝑆𝑖) = 𝑒𝑥𝑝 [−
|𝑃𝑘−𝑆𝑘,𝑖|

2

2𝜎2 ]   (4) 

𝜎2 =
1

𝑛
∑ ‖𝑃𝑘 − (

1

𝐶
∑ 𝑆𝑘,𝑖

𝐶
𝑖=1 )‖

2
𝑛
𝑘=1        (5) 

Allocating every task for its adjacent cluster centroid 

positioned on GKS calculations. There are no changes in the 

cluster center, then it re-measured and assigns a task for each 

cluster 1 ≤ 𝑖 ≤ 𝐶. Therefore, the cluster centroids (𝐿𝑖) are 

formulated as Eq. (6), 

𝑆𝑘,𝑖(𝑇 + 1) =
1

𝑛𝑖
∑ (

𝑔(𝑃𝑘,𝑆𝑘,𝑖)

∑ 𝑔(𝑃𝑘,𝑆𝑘,𝑖)𝐶
𝑖=1

)
𝑛𝑖
𝑘=1
𝑘∈𝑖

                       (6) 

Where, the number of tasks in 𝑖th mapper is denoted as𝑛𝑖, 

the number of iterations is indicated as𝑇. Then, fractional 

calculus is utilized to measure centroids which enriches 

quick convergence and solves fractional-order calculations 

through Laplace transform. At present iteration 𝑇  is 

subtracted from (𝑇 + 1) iteration, then cluster centroid is 

measured which is denoted in Eq. (7), 

𝑆𝑘,𝑖
𝐻 (𝑇 + 1) = 𝑆𝑘,𝑖(𝑇 + 1) − 𝑆𝑘,𝑖(𝑇)        (7) 

Based on the derivation of order 𝜔, the Eq. (7) is indicated 

as Eq. (8), 
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𝑑𝜔 〈𝑆𝑘,𝑖
𝐻 (𝑇 + 1) = 𝑆𝑘,𝑖

𝐻 (𝑇 + 1)[𝜔 − 1] +
1

2
𝜔. 𝑆𝑘,𝑖

𝐻 (𝑇 +

1)〉 +
1

6
𝜔(1 − 𝜔). 𝑆𝑘,𝑖

𝐻 (𝑇 − 2) +
1

24
𝜔(1 − 𝜔)(2 −

𝜔). 𝑆𝑘,𝑖
𝐻 (𝑇 − 3) + 𝑆𝑘,𝑖(𝑇 + 1)                                        (8) 

At iterations (𝑇 − 1), (𝑇 − 2)  and (𝑇 − 3) , the cluster 

centroids are 𝑆𝑘,𝑖
𝐻 (𝑇 − 1) , 𝑆𝑘,𝑖

𝐻 (𝑇 − 2)  and 𝑆𝑘,𝑖
𝐻 (𝑇 − 3) 

correspondingly. Hence, for calculating cluster centroid 

through mapper, the Eq. (8) is employed. As an output, each 

mapper result is dependent on the cluster center and input 

task. The 𝑛 number of mapper output (𝑀) is formulated as 

Eq. (9), 

𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑛}                                               (9) 

Where, 𝑀 is the mapper output and the number of outputs is 

denoted by 𝑚 = 1, 2, … . , 𝑛. 

D. Reducing Function through OB-BOA 

To attain adequate clustering of centroids, the centroids 

produced through mapping functions are integrated. The 

data is clustered through a reducer in that the cluster number 

is user-specified. The reducing function is accomplished 

over OB-BOA. The BOA is a metaheuristic optimization 

algorithm that centered on food searching behaviors of 

butterflies [24]. In this sense, receptors were employed to 

find the food sources. The fragrances were generated by 

every butterfly which has a few intensities that are 

distributed and sensed through various butterflies in the area. 

If the butterfly changes their region, the fragrance intensity 

varies. If the butterfly changes to a stronger fragrance, it 

obtains a stronger fragrance produced through various 

butterflies. The OB-BOA procedure is presented as 

following: 

Step 1: The primary population of butterflies is {𝑟𝑗 =

𝑟1, 𝑟2, … , 𝑟𝑁}  that is attained through clustering 𝑀 , where 

some clusters in reducer are symbolized by 𝑟𝑁 . The 

butterfly’s fragrance magnitude (𝑓𝑏) is expressed as sensor 

modality function (𝑠) , stimulus intensity (𝛼),  and power 

exponent (𝑜) which is formulated as Eq. (10), 

𝑓𝑏 = (𝑠𝛼)𝑜                                                             (10) 

Where, (𝑠) is the procedure of assessing butterfly energy, 

the physical stimulus magnitude is illuminated through (𝛼) 

and the exponent to which butterfly intensity was high is 

defined by (𝑜). 

Step 2: The stimulus intensity (𝛼)  is related to butterfly 

fitness function and cluster centroids are discovered 

positioned on examined fitness. The fitness positioned on 

database index (𝜏) is formulated in Eq. (11), 

𝜏 =
1

𝑁
∑ 𝑋𝑗  𝑁

𝑗=1                                                          (11) 

Where, the function that selects the largest similarity score 

between 𝑟𝑗 is indicated by 𝑥𝑗 which is articulated as Eq. (12), 

𝑥𝑗 = 𝑚𝑎𝑥
𝑖≠𝑗

𝑦𝑗,𝑖                                                             (12) 

Where, the similarity measure among 𝑟𝑗  centered on ED 

measure between the clusters is specified as 𝑦𝑗,𝑖  which is 

indicated through Eq. (13), 

𝑦𝑗,𝑖 =
𝑝𝑗+𝑞𝑖

𝑑𝑗,𝑖
                                                              (13) 

The scattering measures between two butterflies is denoted 

as 𝑝𝑗 and𝑞𝑖. The highest clustering performance is denoted 

by the smallest distance among data points and the cluster 

centroid. The ED is measured as Eq. (14), 

𝑑𝑗,𝑖 = ‖𝐶𝑗 − 𝐶𝑖‖                                                      (14) 

Where, cluster centroid is demonstrated through 𝐶𝑗 , 𝐶𝑖 . 

According to ED, 𝑝𝑗 is measured cluster centered which is 

indicated as Eq. (15), 

𝑝𝑗 =
1

𝑁
∑ ‖𝑀 − 𝐶𝑗‖𝑁

𝑗=1                                              (15) 

For food searching procedure, the global solution is 

designated on positioned fitness function. 

Step 3: Butterflies travel towards fitness (𝑏′′′) and global 

searching happens and the formula is indicated in Eq. (16), 

𝑟𝑗
𝑡+1 = 𝑟𝑗

′ + 𝑙𝑒𝑣𝑦(𝛾) × (𝑏′′′ − 𝑟𝑗
𝑡) × 𝑓𝑗

𝑏              (16) 

Here, solution vector of 𝑡 th iteration in 𝑗 th butterfly is 

designated as𝑟𝑗
𝑡 , the 𝑗 th butterfly fragrance is illustrated 

through 𝑓𝑗
𝑏  and 𝑙𝑒𝑣𝑦(𝛾) is the levy flight distribution step 

size. 

Step 4: The butterflies' local search is indicated as Eq. (17), 

𝑟𝑗
𝑡+1 = 𝑟𝑗

′ + 𝑙𝑒𝑣𝑦(𝛾) × (𝑟𝑗
𝑡 − �̂�𝑗

𝑡) × 𝑓𝑗
𝑏               (17) 

Where, the butterflies are designated through Quasi 

opposition-based learning method that is denoted as �̃�𝑗
𝑡 

which is formulated in Eq. (18), 

�̃�𝑗
𝑡 = 𝛽𝑗 + 𝛿𝑗 − 𝑟𝑗

𝑡                                                  (18) 

Where, the corresponding butterfly interval is denoted as 

𝛽𝑗 , 𝛿𝑗 and the Quasi opposition number �̂�𝑗
𝑡
 is formulated as 

Eq. (19), 

�̂�𝑗
𝑡 = 𝑟𝑎𝑛𝑑 (

𝛽𝑗+𝛿𝑗

2
, �̃�𝑗

𝑡)                                           (19) 

Where, 𝛽𝑗 , 𝛿𝑗 is the corresponding butterfly interval and �̃�𝑗
𝑡 

is the quasi opposition-based learning method. 

Step 5: Here, the distribution of Levy flight is calculated 

which is indicated in Eq. (20), 

𝑙𝑒𝑣𝑦(𝛾) = {
1,   𝛾 < 1     

𝛾−𝑡 ,   𝛾 ≥ 1
                                         (20) 

To quicken butterflies in local search, the levy flight is 

employed by providing new solutions among the produced 

better solutions.  
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Step 6: By applying the above fitness function, the 

innovative solution was generated and estimated following 

the searching procedure. Then, lowest fitness is substituted 

through dominant solution and develops optimum solutions. 

Therefore, the optimum solution i.e., better centroids is 

observed in minimum task which is formulated in Eq. (21), 

𝜙𝑗 = 〈𝜙1, 𝜙2, … , 𝜙𝑀〉                                              (21) 

Where, 𝜙𝑗  is the better centroid and 𝑀  is the number of 

reduced task. 

E. Proposed Job Scheduling 

The Inertia Weight based Grey Wolf Optimization (IW-

GWO) is utilized and 𝑀  number of tasks (𝜙𝑗 =

〈𝜙1, 𝜙2, … , 𝜙𝑀〉)  are scheduled with minimum cost and 

execution time. The inertia weight strategy is utilized for 

controlling the exploration and population growth capability 

which effectively enhances the algorithm search capability 

and balance the connection between local development and 

global exploration. The GWO algorithm displays iterative 

optimization of grey wolves, present position individuals, 

and historical optimum position information (𝛼, 𝛽, 𝛿)  of 

groups are taken and the search is shown through the 

position of 𝛼, 𝛽  and  𝛿 . The position updating of GWO 

ignores the exploration capability and easily falls into the 

local optimum solution [25]. Because of this, the wolves are 

based on 𝛼, 𝛽  and 𝛿  for justice the prey distance and the 

speed of convergence are low in the upcoming stage. 

To improve the exploration capability and convergence 

speed, this paper proposed an IW-GWO algorithm. The 

evaluation of inertia weights according to the performance 

of real-time population in an iterative procedure. At every 

iteration, each gray wolf in the population, inertia weight 

scores are adjusted through the random factor, minimum, 

maximum, and average fitness score of the exponential 

function in the population. The inertia weight is 

mathematically presented in Eq. (22), 

𝜛𝑡 =
𝑓𝑎𝑣𝑔−𝑓𝑚𝑖𝑛

𝑓𝛼−𝑓𝑎𝑣𝑔
∙ 𝑒−𝑘 ∙ 𝑟1,       𝑓𝛼 − 𝑓𝑎𝑣𝑔 ≠ 0           (22) 

Where, 𝜛𝑡 is inertia weight at iteration𝑡,  𝑓𝛼 , 𝑓𝑎𝑣𝑔 and 𝑓𝑚𝑖𝑛 

is the maximum, average and minimum fitness scores of 

present populations correspondingly. 𝑘  is the random 

number in the range of [0,1]  and 𝑟1  follows uniform 

distribution of [0,1] . This inertia weight strategy is 

presented for enhancing wolf pack position updating to 

exchange actual behavior which is formulated as Eq. (23), 

𝑋(𝑡 + 1) = 𝜛(𝑡) ∙
(𝑋1(𝑡)+𝑋2(𝑡)+𝑋3(𝑡))

3
                      (23) 

Initially, the iterative procedure of fitness score in every 

individual gray wolf is estimated and arranged. According 

to the maximum, average and minimum fitness scores of 

individual populations, the inertia weight score was 

dynamically adjusted and the variation of population fitness 

was considered for improving the optimization accuracy. 

Next, the inertia weights of GWO were affected through the 

exponential function. Compared with GWO, the inertia 

minimizes quickly at following iterations which highly 

enhances the local development capability and obtains the 

best optimization. Lastly, the inertia weight of GWO was 

affected by random factors that assist in managing the 

diverse population to a certain extent. 

3. Experimental Results 

The IW-GWO is simulated by utilizing a Python with the 

system configuration: 16GB-RAM, Intel core i7-processor, 

and Windows 10-operating system. The IW-GWO 

performance is estimated based on the metrics of makespan, 

throughput, execution time and cost, presented in Eqs. (24), 

(25), (26), and (27). 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = ∑ ∑ 𝐸𝑖𝑗𝑋𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1                               (24) 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = ∑
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑡𝑎𝑠𝑘

𝑇

𝑚
𝑡=0                        (25) 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = ∑ 𝐸𝑛𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒(𝑡) −𝑚
𝑡=0

𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 (𝑡)

𝑚
                    (26) 

𝐶𝑜𝑠𝑡 = ∑ ∑ 𝐶𝑜𝑠𝑡(𝑡𝑗𝑖)
𝑚
𝑖=1

𝑛
𝑗=1                                    (27) 

Where, 𝐸𝑖𝑗  and 𝑋𝑖𝑗  is the execution time and boolean 

representation of the task. The 𝑛  and 𝑚  is the number of 

tasks running in the system and 𝐶𝑜𝑠𝑡(𝑡𝑗𝑖) is the predictable 

cost when 𝑡𝑗 is handled at 𝑣𝑖. 

A. Quantitative and Qualitative Analysis 

The IW-GWO performance is evaluated by four various 

metrics namely, makespan, throughput, cost and execution 

time and varied number of nodes 100-500, taken for 

examining the IW-GWO. The Cat Swarm Optimization 

(CSO), Whale Optimization Algorithm (WOA), Ant Colony 

Optimization (ACO) and GWO are used for estimating 

performance.  

Table I and Fig. 2 display the performance of IW-GWO with 

makespan, measured under varied number of tasks. The 

proposed model attains a superior makespan of 2.37s, 2.82s, 

4.86s, 6.95s and 8.49s for 100, 200, 300, 400 and 500 nodes, 

respectively. The proposed IW-GWO model shows best 

performance than CSO, WOA, ACO and GWO for various 

nodes. 

TABLE I. THE PERFORMANCE OF IW-GWO IN MAKESPAN AND THROUGHPUT 

No. of nodes Performance Metrics CSO WOA ACO GWO Proposed IW-GWO 

100 Makespan (s) 9.53 7.62 5.88 4.79 2.37 
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Throughput (task/s) 28.92 32.45 35.72 40.57 45.91 

200 
Makespan (s) 13.68 10.24 8.93 5.70 2.82 

Throughput (task/s) 42.61 45.73 49.45 55.45 59.75 

300 
Makespan (s) 15.34 12.73 10.65 6.36 4.86 

Throughput (task/s) 47.92 52.51 56.59 60.43 64.53 

400 
Makespan (s) 18.29 15.82 12.51 9.77 6.95 

Throughput (task/s) 61.79 65.48 69.81 72.56 76.39 

500 
Makespan (s) 23.75 19.58 15.83 11.64 8.49 

Throughput (task/s) 69.39 73.67 77.66 82.49 85.42 

 

Table I and Fig. 3 display the performance of the IW-GWO 

with throughput, measured under various number of tasks. 

The proposed model attains commendable throughput of 

45.91 tasks/s, 59.75 tasks/s, 64.53 tasks/s, 76.39 tasks/s and 

85.42 tasks/s respectively for 100, 200, 300, 400 and 500 

nodes. The IW-GWO shows best performance than the CSO, 

WOA, ACO and GWO for various nodes. 

 

 

Fig. 3.The performance of IW-GWO in Makespan  

Table II and Fig. 4 demonstrate the IW-GWO performance 

with metrics of cost, measured under various number of 

tasks. The proposed model achieves a preferable cost of 45$, 

52$, 60$, 55$ and 70$ simultaneously for 100, 200, 300, 400 

and 500 nodes. The IW-GWO model shows better 

performance than the CSO, WOA, ACO and GWO for 

various nodes.  

 

Fig. 2. The performance of IW-GWO in Throughput 

 

Fig. 4. The performance of the IW-GWO in Cost 

TABLE II. THE PERFORMANCE OF IW-GWO IN COST AND EXECUTION TIME 

No. of nodes Performance Metrics CSO WOA ACO GWO Proposed IW-GWO 

100 
Cost ($) 70 60 55 50 45 

Execution time (ms) 192.71 245.92 363.86 240.62 169.58 

200 
Cost ($) 78 65 60 62 52 

Execution time (ms) 520.55 559.73 458.42 395.51 381.62 

300 
Cost ($) 85 72 69 65 60 

Execution time (ms) 568.49 580.44 520.87 470.64 446.29 
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400 
Cost ($) 80 69 65 70 55 

Execution time (ms) 720.92 680.39 650.93 665.69 639.46 

500 
Cost ($) 87 78 80 75 70 

Execution time (ms) 865.83 870.65 846.93 880.63 823.75 

 

Fig. 5. The performance of IW-GWO in Execution time 

Table II and Fig. 5 represent the IW-GWO performance with 

metrics of execution time, measured under various number 

of tasks. The proposed model achieves commendable 

execution time of 169.58ms, 381.62ms, 446.29ms, 

639.46ms, and 823.75ms simultaneously for 100, 200, 300, 

400 and 500 nodes. The proposed IW-GWO model 

demonstrates preferable performance than the CSO, WOA, 

ACO and GWO for various nodes. 

B. Comparative Analysis 

The comparative analysis of the proposed IW-GWO is 

illustrated in this section with evaluation metrics of 

makespan, throughput, cost and execution time as shown in 

Table III. The existing result such as MOABCQ_LJF [21], 

HWACO [22] and IMOMVO [23] are utilized to evaluate 

the ability of classifier for 200 nodes. The MOABCQ_LJF 

[21] method attains makespan of 3.78s, throughput of 

55.28task/s and cost of 70$. The HWACO [22] method 

attains makespan of 25.9s, cost of 61$ and the IMOMVO 

[23] method attains execution time of 385.34ms. By 

adjusting inertia weight, the IW-GWO adapts its search 

behavior leading to faster convergence towards optimal 

solutions. The inertia weight strategy is utilized for 

controlling the exploration and population growth capability 

which effectively enhances the algorithm’s search capability 

and balance the connection between local development and 

global exploration. The results obtained from Table III 

evidence that the proposed IW-GWO attains better 

performance like a makespan of 2.82s, throughput of 

59.74tasks/s, cost of 52$ and execution time of 385.34ms for 

200 nodes when compared with the existing methods. 

TABLE III. COMPARATIVE ANALYSIS OF IW-GWO WITH EXISTING METHODS 

Author Method 
No. of 

nodes 

Makespan 

(s) 

Throughput 

(tasks/s) 

Cost 

($) 

Execution time 

(ms) 

Kruekaew and Kimpan 

[21] 
MOABCQ_LJF 

 

200 

3.78 55.28 70 N/A 

Chandrashekar et al. 

[22] 
HWACO 25.9 N/A 61 N/A 

Otair et al. [23] IMOMVO N/A N/A N/A 385.34 

Proposed method IW-GWO 2.82 59.75 52 381.62 

1) Discussion 

Advantages of the IW-GWO and the drawback of previous 

techniques are discussed in this section. The previous 

technique has few drawbacks such as the following: the 

MOABCQ_LJF [21] model has slow convergence, 

particularly in complex problems and large solution space. 

The HWACO [22] model considers smaller number of tasks 

only, and the performance is affected when enhancing the 
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number of tasks. The IMOMVO [23] model has local optima 

issues and poor search scalability. The proposed IW-GWO 

model overcomes these existing model limitations. The 

inertia weight strategy is deployed for controlling the 

exploration and population growth capability, effectively 

enhancing the algorithm search capability and balance the 

connection between local development and global 

exploration. By adjusting inertia weight, the IW-GWO 

adapts its search behavior, leading to faster convergence 

towards optimal solutions. 

4. Conclusion 

Hadoop has emerged as a widely adopted approach for cost-

effective data analysis and storage. As an open-source 

MapReduce framework, it has enabled industries to process 

an unprecedented volume of data on a daily basis. Numerous 

scheduling algorithms are created for Hadoop-MR model 

which varies in behavior and design, managing various 

issues like user share impartiality, data locality along 

resource consciousness. Therefore, as a secured and 

optimized scheduling technique, this paper proposes an 

innovative algorithm like Inertia Weight-based Grey Wolf 

Optimization (IW-GWO). The obtained results prove that 

the proposed IW-GWO attains superior outcomes in terms 

of makespan, throughput, cost, and execution time of 2.82s, 

59.75 tasks/s, 52$ and 381.62ms for 200 nodes respectively, 

which is comparatively higher than the existing methods like 

MOABCQ_LJF, HWACO and IMOMVO. In future, the 

developed model can be deployed in a real-time 

environment for monitoring the IW-GWO performance. 
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