

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2292–2300 | 2292

Task Scheduling Mechanism for MapReduce Framework using Inertia

Weight based Grey Wolf Optimization

Vasantha.M 1*, Dr. Chandramouli.H 2

Submitted: 27/01/2024 Revised: 05/03/2024 Accepted: 13/03/2024

Abstract: MapReduce is an admirable Hadoop technique for processing enormous information in cloud computing which runs programs

and instructions in equivalent employing computers or processors. It simplifies complex data processing tasks by breaking them down into

two basic operations mapping and reducing. Numerous scheduling algorithms are established for the Hadoop-MR model which varies in

behavior and design, managing various issues like user share impartiality, and data locality along with resource consciousness. This paper

proposed an innovative optimization algorithm such as Inertia Weight-based Grey Wolf Optimization (IW-GWO) Algorithm. The inertia

weight strategy is utilized for controlling the exploration and population growth capability which effectively enhances the algorithm search

capability and balance the connection between local development and global exploration. The obtained result shows that the IW-GWO

attains better results in terms of makespan, cost, execution time, and throughput of 2.82s, 59.75 tasks/s, 52$ and 381.62ms for 200 nodes

compared with existing algorithms like MOABCQ_LJF, HWACO, and IMOMVO.

Keywords: Cloud Computing, Grey Wolf Optimization, Inertia Weight, MapReduce Framework, Task Scheduling

1. Introduction

Task scheduling is a significant aspect of cloud computing

which plays a significant role in optimizing resource

consumption and ensuring effective task execution within a

cloud framework [1]. Task scheduling is the process of

allocating resources to various tasks, minimizing cost and

improving the overall system effectiveness [2]. The virtual

machines (VMs) deployment, data processing, handling of

user requests, and effective task scheduling approaches are

important for connecting the full potential cloud

environment [3]. Cloud computing is utilized to generate

user requirements for retrieving computing resources or

allowing users to buy cloud services as essential in on-

demand resource-sharing concept over internet-based

applications [4] [5]. It is a payment method for the capability

to use customizable computing sources across shared

networks like servers, applications, storage space, and

services [6]. This method is according to number of existing

requests and accessed network levels that were generated

rapidly through the smallest number of management and

interference from user service providers [7] [8]. Cloud

computing is a technique for allocating data and computing

through huge network nodes like cloud services, computers,

and data centers [9]. The cloud system is a procedure of

distributed and parallel systems that contains a collection of

VMs that contribute computing resources according to the

service-level agreement (SLA) and through an agreement

among clients and service providers [10]. Task scheduling

provides a computing environment where different sources

are distributed to customers through the Internet. In general,

cloud architecture has an intranet or internet-related back

and front end [11] [12]. It simplifies complex data

processing tasks by breaking them down into two basic

operations mapping and reducing [13]. In the mapping

phase, the data was divided into smaller chunks and

processed in parallel across multiple nodes [14].

The reducing phase aggregates and integrates the outputs,

generating a comprehensive solution to complex problems.

Wang et al. [16] introduced a Heterogeneous Throughput

Driven (HTD) task scheduling algorithm in MapReduce.

This model initially provided a formal description of TD

task scheduling in a heterogeneous network. Then, build

scheduling HTD rapidly attained the completion sequence

and enhanced scheduling information in a heterogeneous

network. Lastly, the sequence was taken to a heterogeneous

network to optimize the information of task assignment and

attain task execution system. This developed model had

some advantages like strong obtainability, huge reliability,

and minimized processing time. However, this model was

unable to resolve the idle resource problems.

Sharma et al. [17] developed an Ant Colony Optimization

(ACO) model for QoS-based task scheduling in a cloud

computing environment. The developed model functioned in

two stages, the primary stage utilized an event-based

scheduler to address the difficult planning problems. An

updated ACO method for optimal global search utilizing a

neural network to schedule numerous activities for

overcoming the complexity of multiple objectives was

suggested. The ACO model delivered high statistics mean

1 Research Scholar, East Point College of Engineering and Technology,

Bengaluru-560049, Karnataka, India.
2 Computer Science and Engineering, East Point College of Engineering

and Technology, Bengaluru-560049, Karnataka, India.

* Corresponding Author Email: vasantha.nhce@gmail.com,

vasanthavijendra@gmail.com

mailto:vasantha.nhce@gmail.com,%20vasanthavijendra@gmail.com
mailto:vasantha.nhce@gmail.com,%20vasanthavijendra@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2292–2300 | 2293

access times and reliable job assignments. However, this

model led to imbalance issues over the devices.

Jeyaraj and Paul [18] implemented an Optimized

MapReduce task scheduling on virtualized heterogeneous

environments using Ant Colony Optimization (ACO). It was

utilized to enhance exploitation by an accurate integration of

maps and minimizing tasks in every VM. The MR task

scheduling was transformed into a 2D-bin packing technique

and attained the optimum schedule by the ACO algorithm.

Each task combined the result in a single file, sorted, and

grouped according to key. The developed ACO-BP model

reduced the makespan for the batch of jobs. However, this

model was not able to reduce the makespan.

Mangalampalli et al. [19] presented a multi-objective task

scheduling algorithm in cloud computing through Grey

Wolf Optimization (MOTSGWO). This model made

runtime scheduling decisions according to cloud resources

and task priorities. This model was applied to the Cloudsim

toolkit and the distributions. The workload production was

finished by making a dataset with various disseminations

like the normal, uniform, right, and left skewed distributions.

The MOTSGWO model minimized makespan and energy

consumption. Nonetheless, this model had local optima

issues and low convergence speed.

Praveen et al. [20] suggested a hybrid Genetic Algorithm

(GA) and Gravitational Emulation Local Search (GELS) for

task scheduling. This model integrated local search ability

of GELS by GA that resulted in high effectiveness to obtain

better solutions. The performance was estimated by

comparing the results of GA and PSO algorithms. This

analysis found that the model was effective in addressing

task scheduling problems and delivered better results. The

GAGELS model reduced response time and enhanced

processor utilization. However, this model required a high

running time.

Kruekaew and Kimpan [21] introduced a Multi-Objective

task scheduling optimization for load balancing through

Artificial Bee Colony with a Q-learning algorithm

(MOABCQ). The developed model aimed to enhance VM

throughput, optimize scheduling and resource exploitation,

and make load balancing among VMs based on makespan,

source exploitation and cost. The MOABCQ model

minimized the makespan, degree imbalance and cost,

thereby enhancing source exploitation and throughput. But,

this model had slow convergence in complex problems and

large solution spaces.

Chandrashekar et al. [22] developed a Hybrid Weighted Ant

Colony Optimization Algorithm (HWACOA) for task

scheduling in cloud computing. It was tested and related by

existing algorithms in terms of makespan, parameter cost,

and proficiency. This model improved the shortcomings

encountered with various algorithms which enhanced the

task scheduling performance. This developed HWACOA

model reduced execution time, makespan, and energy

consumption. However, this model considered only a

smaller number of tasks and the performance was affected

when increasing number of tasks.

Otair et al. [23] implemented an improved multi-objective

multi-verse optimizer (IMOMVO) to resolve task

scheduling issues. It was utilized to resolve the problems of

average positioning (AP) by dynamically improving the

equation of AP according to a better solution. The developed

model was estimated according to three different objectives

- throughput, makespan and execution time. The developed

IMOMVO model performed tasks in less time, obtained

minimum makespan and better throughput. Yet, this model

had limitations like local optima issues and poor search

scalability.

The purpose of this study is discussed below:

• This paper proposes an innovative optimization

algorithm like Inertia Weight based Grey Wolf Optimization

(IW-GWO) Algorithm. By adjusting inertia weight, the IW-

GWO adapts its search behavior, leading to faster

convergence towards optimal solutions.

• The FCGK-KMA is employed to improve the

mapping reliability along with reducing the complications

and the map-reduce function is accomplished over OB-

BOA.

• The inertia weight strategy is utilized for

controlling the exploration and population growth capability

which effectively enhances the algorithms search capability

and balance the connection between local development and

global exploration.

The rest of the paper is arranged as follows: The complete

description of the proposed method is given in Section 2,

while the results and discussion are demonstrated in Section

3. At last, the conclusion is presented in Section 4.

2. Proposed Methodology

The Hadoop has become a standard technique for examining

and storing data in a cost-efficient way which is a

MapReduce (MR) open-source framework. Numerous

scheduling algorithms are established for the Hadoop-MR

model which vary in behavior and design, managing various

issues like user share impartiality, and data locality along

through resource consciousness. Therefore, an IW-GWO-

based secured and optimized scheduling technique is

proposed for MR by considering execution time. The inertia

weight strategy is utilized for managing the exploration

growth capability which effectively enhances the algorithm

search capability and balances the connection between local

development and global exploration. The MR job scheduling

framework is presented in Fig. 1.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2292–2300 | 2294

Fig. 1. Architecture of MapReduce Job Schedule Framework

A. Task Partitioning

Initially, for discovering cluster centroid to MR models,

numerous amount of user tasks are separated into many

smaller tasks. The 𝑛 number of user tasks is represented as

(𝐼𝑗 = 𝐼1, 𝐼2, … , 𝐼𝑛) that is separated into 𝑚 number of many

tasks. The partitioned tasks are denoted as Eq. (1),

𝑃𝑘 = 〈𝑃1, 𝑃2, … , 𝑃𝑚〉 (1)

Where, 𝑃𝑘 is the partitioned tasks and 𝑃𝑚 is the user task

separated into 𝑚 number of many tasks.

B. MapReduce Framework using BO-KMA

The MR is a programming technique for parallelly handling

large sets of partitioning data which simplifies complex data

processing tasks by breaking down into two basic

operations, mapping and reducing. As an outcome, finding

huge-scale data employing MR framework through

allocating tasks on various clustering nodes. The Fractional

Calculus integrates the Gaussian Kernel-centered K-Means

clustering Algorithm (FCGK-KMA) and is employed as a

mapper in developed BO-KMA method which obtains

partitioning data as input and determines cluster centroids.

Subsequently, an Opposition Based Butterfly Optimization

Algorithm (OB-BOA) is utilized that selects the cluster

centroid and performs as a reducer. The integration of OB-

BOA in FCGK-KMA is labeled as BO-KMA. The MR

framework is illuminated in below sections.

C. Mapping Function through FCGK-KMA

The FCGK-KMA is utilized to enhance the mapping

reliability along with reducing the complications. The KMA

is an enormously utilized clustering method that separates

the task into numerous clusters. The Euclidean Distance

(ED) is employed to measure the distance among every

cluster. However, the time complexity is larger for

measuring distance of large tasks. For minimizing time-

complexity, ED is replaced through Gaussian Kernel (GK).

Additionally, the KMA clustering performance was

increased to enrich the quick convergence through fractional

calculus.

Primarily, the partitioned task (𝑃𝑘) are randomly clustered,

then choose 𝐶 cluster centers (𝑆𝑘,𝑖) as primary cluster center

which is presented in Eq. (2),

𝑆𝑘,𝑖 = (𝑆𝑘,1, 𝑆𝑘,2, … , 𝑆𝑘,𝐶) (2)

Here, number of tasks is denoted through𝑘 = 1,2, … , 𝑛. The

objective function is formulated in Eq. (3),

𝜁 = ∑ ∑ ‖𝑃𝑘 − 𝑆𝑘,𝑖‖
2𝐶

𝑖=1
𝑛
𝑘=1 (3)

Where, GK Similarity (GKS) between portioned task input

(𝑃𝑘) and primary cluster centers (𝑆𝑖) are formulated

as‖𝑃𝑘 − 𝑆𝑖‖ = 𝑔(𝑃𝑘 , 𝑆𝑖). The GKS is calculated as Eqs. (4)

and (5),

𝑔(𝑃𝑘 , 𝑆𝑖) = 𝑒𝑥𝑝 [−
|𝑃𝑘−𝑆𝑘,𝑖|

2

2𝜎2] (4)

𝜎2 =
1

𝑛
∑ ‖𝑃𝑘 − (

1

𝐶
∑ 𝑆𝑘,𝑖

𝐶
𝑖=1)‖

2
𝑛
𝑘=1 (5)

Allocating every task for its adjacent cluster centroid

positioned on GKS calculations. There are no changes in the

cluster center, then it re-measured and assigns a task for each

cluster 1 ≤ 𝑖 ≤ 𝐶. Therefore, the cluster centroids (𝐿𝑖) are

formulated as Eq. (6),

𝑆𝑘,𝑖(𝑇 + 1) =
1

𝑛𝑖
∑ (

𝑔(𝑃𝑘,𝑆𝑘,𝑖)

∑ 𝑔(𝑃𝑘,𝑆𝑘,𝑖)𝐶
𝑖=1

)
𝑛𝑖
𝑘=1
𝑘∈𝑖

 (6)

Where, the number of tasks in 𝑖th mapper is denoted as𝑛𝑖,

the number of iterations is indicated as𝑇. Then, fractional

calculus is utilized to measure centroids which enriches

quick convergence and solves fractional-order calculations

through Laplace transform. At present iteration 𝑇 is

subtracted from (𝑇 + 1) iteration, then cluster centroid is

measured which is denoted in Eq. (7),

𝑆𝑘,𝑖
𝐻 (𝑇 + 1) = 𝑆𝑘,𝑖(𝑇 + 1) − 𝑆𝑘,𝑖(𝑇) (7)

Based on the derivation of order 𝜔, the Eq. (7) is indicated

as Eq. (8),

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2292–2300 | 2295

𝑑𝜔 〈𝑆𝑘,𝑖
𝐻 (𝑇 + 1) = 𝑆𝑘,𝑖

𝐻 (𝑇 + 1)[𝜔 − 1] +
1

2
𝜔. 𝑆𝑘,𝑖

𝐻 (𝑇 +

1)〉 +
1

6
𝜔(1 − 𝜔). 𝑆𝑘,𝑖

𝐻 (𝑇 − 2) +
1

24
𝜔(1 − 𝜔)(2 −

𝜔). 𝑆𝑘,𝑖
𝐻 (𝑇 − 3) + 𝑆𝑘,𝑖(𝑇 + 1) (8)

At iterations (𝑇 − 1), (𝑇 − 2) and (𝑇 − 3) , the cluster

centroids are 𝑆𝑘,𝑖
𝐻 (𝑇 − 1) , 𝑆𝑘,𝑖

𝐻 (𝑇 − 2) and 𝑆𝑘,𝑖
𝐻 (𝑇 − 3)

correspondingly. Hence, for calculating cluster centroid

through mapper, the Eq. (8) is employed. As an output, each

mapper result is dependent on the cluster center and input

task. The 𝑛 number of mapper output (𝑀) is formulated as

Eq. (9),

𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑛} (9)

Where, 𝑀 is the mapper output and the number of outputs is

denoted by 𝑚 = 1, 2, … . , 𝑛.

D. Reducing Function through OB-BOA

To attain adequate clustering of centroids, the centroids

produced through mapping functions are integrated. The

data is clustered through a reducer in that the cluster number

is user-specified. The reducing function is accomplished

over OB-BOA. The BOA is a metaheuristic optimization

algorithm that centered on food searching behaviors of

butterflies [24]. In this sense, receptors were employed to

find the food sources. The fragrances were generated by

every butterfly which has a few intensities that are

distributed and sensed through various butterflies in the area.

If the butterfly changes their region, the fragrance intensity

varies. If the butterfly changes to a stronger fragrance, it

obtains a stronger fragrance produced through various

butterflies. The OB-BOA procedure is presented as

following:

Step 1: The primary population of butterflies is {𝑟𝑗 =

𝑟1, 𝑟2, … , 𝑟𝑁} that is attained through clustering 𝑀 , where

some clusters in reducer are symbolized by 𝑟𝑁 . The

butterfly’s fragrance magnitude (𝑓𝑏) is expressed as sensor

modality function (𝑠) , stimulus intensity (𝛼), and power

exponent (𝑜) which is formulated as Eq. (10),

𝑓𝑏 = (𝑠𝛼)𝑜 (10)

Where, (𝑠) is the procedure of assessing butterfly energy,

the physical stimulus magnitude is illuminated through (𝛼)

and the exponent to which butterfly intensity was high is

defined by (𝑜).

Step 2: The stimulus intensity (𝛼) is related to butterfly

fitness function and cluster centroids are discovered

positioned on examined fitness. The fitness positioned on

database index (𝜏) is formulated in Eq. (11),

𝜏 =
1

𝑁
∑ 𝑋𝑗 𝑁

𝑗=1 (11)

Where, the function that selects the largest similarity score

between 𝑟𝑗 is indicated by 𝑥𝑗 which is articulated as Eq. (12),

𝑥𝑗 = 𝑚𝑎𝑥
𝑖≠𝑗

𝑦𝑗,𝑖 (12)

Where, the similarity measure among 𝑟𝑗 centered on ED

measure between the clusters is specified as 𝑦𝑗,𝑖 which is

indicated through Eq. (13),

𝑦𝑗,𝑖 =
𝑝𝑗+𝑞𝑖

𝑑𝑗,𝑖
 (13)

The scattering measures between two butterflies is denoted

as 𝑝𝑗 and𝑞𝑖. The highest clustering performance is denoted

by the smallest distance among data points and the cluster

centroid. The ED is measured as Eq. (14),

𝑑𝑗,𝑖 = ‖𝐶𝑗 − 𝐶𝑖‖ (14)

Where, cluster centroid is demonstrated through 𝐶𝑗 , 𝐶𝑖 .

According to ED, 𝑝𝑗 is measured cluster centered which is

indicated as Eq. (15),

𝑝𝑗 =
1

𝑁
∑ ‖𝑀 − 𝐶𝑗‖𝑁

𝑗=1 (15)

For food searching procedure, the global solution is

designated on positioned fitness function.

Step 3: Butterflies travel towards fitness (𝑏′′′) and global

searching happens and the formula is indicated in Eq. (16),

𝑟𝑗
𝑡+1 = 𝑟𝑗

′ + 𝑙𝑒𝑣𝑦(𝛾) × (𝑏′′′ − 𝑟𝑗
𝑡) × 𝑓𝑗

𝑏 (16)

Here, solution vector of 𝑡 th iteration in 𝑗 th butterfly is

designated as𝑟𝑗
𝑡 , the 𝑗 th butterfly fragrance is illustrated

through 𝑓𝑗
𝑏 and 𝑙𝑒𝑣𝑦(𝛾) is the levy flight distribution step

size.

Step 4: The butterflies' local search is indicated as Eq. (17),

𝑟𝑗
𝑡+1 = 𝑟𝑗

′ + 𝑙𝑒𝑣𝑦(𝛾) × (𝑟𝑗
𝑡 − �̂�𝑗

𝑡) × 𝑓𝑗
𝑏 (17)

Where, the butterflies are designated through Quasi

opposition-based learning method that is denoted as �̃�𝑗
𝑡

which is formulated in Eq. (18),

�̃�𝑗
𝑡 = 𝛽𝑗 + 𝛿𝑗 − 𝑟𝑗

𝑡 (18)

Where, the corresponding butterfly interval is denoted as

𝛽𝑗 , 𝛿𝑗 and the Quasi opposition number �̂�𝑗
𝑡
 is formulated as

Eq. (19),

�̂�𝑗
𝑡 = 𝑟𝑎𝑛𝑑 (

𝛽𝑗+𝛿𝑗

2
, �̃�𝑗

𝑡) (19)

Where, 𝛽𝑗 , 𝛿𝑗 is the corresponding butterfly interval and �̃�𝑗
𝑡

is the quasi opposition-based learning method.

Step 5: Here, the distribution of Levy flight is calculated

which is indicated in Eq. (20),

𝑙𝑒𝑣𝑦(𝛾) = {
1, 𝛾 < 1

𝛾−𝑡 , 𝛾 ≥ 1
 (20)

To quicken butterflies in local search, the levy flight is

employed by providing new solutions among the produced

better solutions.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2292–2300 | 2296

Step 6: By applying the above fitness function, the

innovative solution was generated and estimated following

the searching procedure. Then, lowest fitness is substituted

through dominant solution and develops optimum solutions.

Therefore, the optimum solution i.e., better centroids is

observed in minimum task which is formulated in Eq. (21),

𝜙𝑗 = 〈𝜙1, 𝜙2, … , 𝜙𝑀〉 (21)

Where, 𝜙𝑗 is the better centroid and 𝑀 is the number of

reduced task.

E. Proposed Job Scheduling

The Inertia Weight based Grey Wolf Optimization (IW-

GWO) is utilized and 𝑀 number of tasks (𝜙𝑗 =

〈𝜙1, 𝜙2, … , 𝜙𝑀〉) are scheduled with minimum cost and

execution time. The inertia weight strategy is utilized for

controlling the exploration and population growth capability

which effectively enhances the algorithm search capability

and balance the connection between local development and

global exploration. The GWO algorithm displays iterative

optimization of grey wolves, present position individuals,

and historical optimum position information (𝛼, 𝛽, 𝛿) of

groups are taken and the search is shown through the

position of 𝛼, 𝛽 and 𝛿 . The position updating of GWO

ignores the exploration capability and easily falls into the

local optimum solution [25]. Because of this, the wolves are

based on 𝛼, 𝛽 and 𝛿 for justice the prey distance and the

speed of convergence are low in the upcoming stage.

To improve the exploration capability and convergence

speed, this paper proposed an IW-GWO algorithm. The

evaluation of inertia weights according to the performance

of real-time population in an iterative procedure. At every

iteration, each gray wolf in the population, inertia weight

scores are adjusted through the random factor, minimum,

maximum, and average fitness score of the exponential

function in the population. The inertia weight is

mathematically presented in Eq. (22),

𝜛𝑡 =
𝑓𝑎𝑣𝑔−𝑓𝑚𝑖𝑛

𝑓𝛼−𝑓𝑎𝑣𝑔
∙ 𝑒−𝑘 ∙ 𝑟1, 𝑓𝛼 − 𝑓𝑎𝑣𝑔 ≠ 0 (22)

Where, 𝜛𝑡 is inertia weight at iteration𝑡, 𝑓𝛼 , 𝑓𝑎𝑣𝑔 and 𝑓𝑚𝑖𝑛

is the maximum, average and minimum fitness scores of

present populations correspondingly. 𝑘 is the random

number in the range of [0,1] and 𝑟1 follows uniform

distribution of [0,1] . This inertia weight strategy is

presented for enhancing wolf pack position updating to

exchange actual behavior which is formulated as Eq. (23),

𝑋(𝑡 + 1) = 𝜛(𝑡) ∙
(𝑋1(𝑡)+𝑋2(𝑡)+𝑋3(𝑡))

3
 (23)

Initially, the iterative procedure of fitness score in every

individual gray wolf is estimated and arranged. According

to the maximum, average and minimum fitness scores of

individual populations, the inertia weight score was

dynamically adjusted and the variation of population fitness

was considered for improving the optimization accuracy.

Next, the inertia weights of GWO were affected through the

exponential function. Compared with GWO, the inertia

minimizes quickly at following iterations which highly

enhances the local development capability and obtains the

best optimization. Lastly, the inertia weight of GWO was

affected by random factors that assist in managing the

diverse population to a certain extent.

3. Experimental Results

The IW-GWO is simulated by utilizing a Python with the

system configuration: 16GB-RAM, Intel core i7-processor,

and Windows 10-operating system. The IW-GWO

performance is estimated based on the metrics of makespan,

throughput, execution time and cost, presented in Eqs. (24),

(25), (26), and (27).

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = ∑ ∑ 𝐸𝑖𝑗𝑋𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 (24)

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = ∑
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑡𝑎𝑠𝑘

𝑇

𝑚
𝑡=0 (25)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = ∑ 𝐸𝑛𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒(𝑡) −𝑚
𝑡=0

𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 (𝑡)

𝑚
 (26)

𝐶𝑜𝑠𝑡 = ∑ ∑ 𝐶𝑜𝑠𝑡(𝑡𝑗𝑖)
𝑚
𝑖=1

𝑛
𝑗=1 (27)

Where, 𝐸𝑖𝑗 and 𝑋𝑖𝑗 is the execution time and boolean

representation of the task. The 𝑛 and 𝑚 is the number of

tasks running in the system and 𝐶𝑜𝑠𝑡(𝑡𝑗𝑖) is the predictable

cost when 𝑡𝑗 is handled at 𝑣𝑖.

A. Quantitative and Qualitative Analysis

The IW-GWO performance is evaluated by four various

metrics namely, makespan, throughput, cost and execution

time and varied number of nodes 100-500, taken for

examining the IW-GWO. The Cat Swarm Optimization

(CSO), Whale Optimization Algorithm (WOA), Ant Colony

Optimization (ACO) and GWO are used for estimating

performance.

Table I and Fig. 2 display the performance of IW-GWO with

makespan, measured under varied number of tasks. The

proposed model attains a superior makespan of 2.37s, 2.82s,

4.86s, 6.95s and 8.49s for 100, 200, 300, 400 and 500 nodes,

respectively. The proposed IW-GWO model shows best

performance than CSO, WOA, ACO and GWO for various

nodes.

TABLE I. THE PERFORMANCE OF IW-GWO IN MAKESPAN AND THROUGHPUT

No. of nodes Performance Metrics CSO WOA ACO GWO Proposed IW-GWO

100 Makespan (s) 9.53 7.62 5.88 4.79 2.37

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2292–2300 | 2297

Throughput (task/s) 28.92 32.45 35.72 40.57 45.91

200
Makespan (s) 13.68 10.24 8.93 5.70 2.82

Throughput (task/s) 42.61 45.73 49.45 55.45 59.75

300
Makespan (s) 15.34 12.73 10.65 6.36 4.86

Throughput (task/s) 47.92 52.51 56.59 60.43 64.53

400
Makespan (s) 18.29 15.82 12.51 9.77 6.95

Throughput (task/s) 61.79 65.48 69.81 72.56 76.39

500
Makespan (s) 23.75 19.58 15.83 11.64 8.49

Throughput (task/s) 69.39 73.67 77.66 82.49 85.42

Table I and Fig. 3 display the performance of the IW-GWO

with throughput, measured under various number of tasks.

The proposed model attains commendable throughput of

45.91 tasks/s, 59.75 tasks/s, 64.53 tasks/s, 76.39 tasks/s and

85.42 tasks/s respectively for 100, 200, 300, 400 and 500

nodes. The IW-GWO shows best performance than the CSO,

WOA, ACO and GWO for various nodes.

Fig. 3.The performance of IW-GWO in Makespan

Table II and Fig. 4 demonstrate the IW-GWO performance

with metrics of cost, measured under various number of

tasks. The proposed model achieves a preferable cost of 45$,

52$, 60$, 55$ and 70$ simultaneously for 100, 200, 300, 400

and 500 nodes. The IW-GWO model shows better

performance than the CSO, WOA, ACO and GWO for

various nodes.

Fig. 2. The performance of IW-GWO in Throughput

Fig. 4. The performance of the IW-GWO in Cost

TABLE II. THE PERFORMANCE OF IW-GWO IN COST AND EXECUTION TIME

No. of nodes Performance Metrics CSO WOA ACO GWO Proposed IW-GWO

100
Cost ($) 70 60 55 50 45

Execution time (ms) 192.71 245.92 363.86 240.62 169.58

200
Cost ($) 78 65 60 62 52

Execution time (ms) 520.55 559.73 458.42 395.51 381.62

300
Cost ($) 85 72 69 65 60

Execution time (ms) 568.49 580.44 520.87 470.64 446.29

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2292–2300 | 2298

400
Cost ($) 80 69 65 70 55

Execution time (ms) 720.92 680.39 650.93 665.69 639.46

500
Cost ($) 87 78 80 75 70

Execution time (ms) 865.83 870.65 846.93 880.63 823.75

Fig. 5. The performance of IW-GWO in Execution time

Table II and Fig. 5 represent the IW-GWO performance with

metrics of execution time, measured under various number

of tasks. The proposed model achieves commendable

execution time of 169.58ms, 381.62ms, 446.29ms,

639.46ms, and 823.75ms simultaneously for 100, 200, 300,

400 and 500 nodes. The proposed IW-GWO model

demonstrates preferable performance than the CSO, WOA,

ACO and GWO for various nodes.

B. Comparative Analysis

The comparative analysis of the proposed IW-GWO is

illustrated in this section with evaluation metrics of

makespan, throughput, cost and execution time as shown in

Table III. The existing result such as MOABCQ_LJF [21],

HWACO [22] and IMOMVO [23] are utilized to evaluate

the ability of classifier for 200 nodes. The MOABCQ_LJF

[21] method attains makespan of 3.78s, throughput of

55.28task/s and cost of 70$. The HWACO [22] method

attains makespan of 25.9s, cost of 61$ and the IMOMVO

[23] method attains execution time of 385.34ms. By

adjusting inertia weight, the IW-GWO adapts its search

behavior leading to faster convergence towards optimal

solutions. The inertia weight strategy is utilized for

controlling the exploration and population growth capability

which effectively enhances the algorithm’s search capability

and balance the connection between local development and

global exploration. The results obtained from Table III

evidence that the proposed IW-GWO attains better

performance like a makespan of 2.82s, throughput of

59.74tasks/s, cost of 52$ and execution time of 385.34ms for

200 nodes when compared with the existing methods.

TABLE III. COMPARATIVE ANALYSIS OF IW-GWO WITH EXISTING METHODS

Author Method
No. of

nodes

Makespan

(s)

Throughput

(tasks/s)

Cost

($)

Execution time

(ms)

Kruekaew and Kimpan

[21]
MOABCQ_LJF

200

3.78 55.28 70 N/A

Chandrashekar et al.

[22]
HWACO 25.9 N/A 61 N/A

Otair et al. [23] IMOMVO N/A N/A N/A 385.34

Proposed method IW-GWO 2.82 59.75 52 381.62

1) Discussion

Advantages of the IW-GWO and the drawback of previous

techniques are discussed in this section. The previous

technique has few drawbacks such as the following: the

MOABCQ_LJF [21] model has slow convergence,

particularly in complex problems and large solution space.

The HWACO [22] model considers smaller number of tasks

only, and the performance is affected when enhancing the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2292–2300 | 2299

number of tasks. The IMOMVO [23] model has local optima

issues and poor search scalability. The proposed IW-GWO

model overcomes these existing model limitations. The

inertia weight strategy is deployed for controlling the

exploration and population growth capability, effectively

enhancing the algorithm search capability and balance the

connection between local development and global

exploration. By adjusting inertia weight, the IW-GWO

adapts its search behavior, leading to faster convergence

towards optimal solutions.

4. Conclusion

Hadoop has emerged as a widely adopted approach for cost-

effective data analysis and storage. As an open-source

MapReduce framework, it has enabled industries to process

an unprecedented volume of data on a daily basis. Numerous

scheduling algorithms are created for Hadoop-MR model

which varies in behavior and design, managing various

issues like user share impartiality, data locality along

resource consciousness. Therefore, as a secured and

optimized scheduling technique, this paper proposes an

innovative algorithm like Inertia Weight-based Grey Wolf

Optimization (IW-GWO). The obtained results prove that

the proposed IW-GWO attains superior outcomes in terms

of makespan, throughput, cost, and execution time of 2.82s,

59.75 tasks/s, 52$ and 381.62ms for 200 nodes respectively,

which is comparatively higher than the existing methods like

MOABCQ_LJF, HWACO and IMOMVO. In future, the

developed model can be deployed in a real-time

environment for monitoring the IW-GWO performance.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

For this research work, all authors' have equally contributed

in Conceptualization, methodology, validation, resources,

writing—original draft preparation, writing—review and

editing.

References

[1] T. Dreibholz and S. Mazumdar, “Towards a

lightweight task scheduling framework for cloud and

edge platform,” Internet Things, vol. 21, p. 100651,

Apr. 2023. https://doi.org/10.1016/j.iot.2022.100651

[2] R. Nath and A. Nagaraju, “Genetic algorithm based on-

arrival task scheduling on distributed computing

platform,” Int. J. Comput. Appl., vol. 44, number 9, pp.

887–896, 2022.

https://doi.org/10.1080/1206212X.2021.1974751

[3] Z. Peng, P. Pirozmand, M. Motevalli, and A. Esmaeili,

“Genetic Algorithm-Based Task Scheduling in Cloud

Computing Using MapReduce Framework,” Math.

Probl. Eng., vol. 2022, p. 4290382, Sep. 2022.

https://doi.org/10.1155/2022/4290382

[4] A.G. Gad, E.H. Houssein, M. Zhou, P.N. Suganthan,

and Y.M. Wazery, “Damping-Assisted Evolutionary

Swarm Intelligence for Industrial IoT Task Scheduling

in Cloud Computing,” IEEE Internet Things J., vol. 11,

number 1, pp. 1698-1710, Jan. 2024. DOI:

10.1109/JIOT.2023.3291367

[5] M. Subramanian, M. Narayanan, B. Bhasker, S.

Gnanavel, M.H. Rahman, and C.H.P. Reddy, “Hybrid

electro search with ant colony optimization algorithm

for task scheduling in a sensor cloud environment for

agriculture irrigation control system,” Complexity, vol.

2022, p. 4525220, Oct. 2022.

https://doi.org/10.1155/2022/4525220

[6] R. NoorianTalouki, M.H. Shirvani, and H. Motameni,

“A heuristic-based task scheduling algorithm for

scientific workflows in heterogeneous cloud

computing platforms,” J. King Saud Univ. Comput. Inf.

Sci., vol. 34, number 8A, pp. 4902–4913, Sep. 2022.

https://doi.org/10.1016/j.jksuci.2021.05.011

[7] M. Manikandan, R. Subramanian, M.S. Kavitha, and S.

Karthik, “Cost Effective Optimal Task Scheduling

Model in Hybrid Cloud Environment,” Computer

Systems Science & Engineering, vol. 42, number 3, pp.

935–948, Feb. 2022. DOI: 10.32604/csse.2022.021816

[8] A.-N. Zhang, S.-C. Chu, P.-C. Song, H. Wang, and J.-

S. Pan, “Task Scheduling in Cloud Computing

Environment Using Advanced Phasmatodea

Population Evolution Algorithms,” Electronics, vol. 11,

number 9, p. 1451, Apr. 2022.

https://doi.org/10.3390/electronics11091451

[9] C. Li, C. Zhang, B. Ma, and Y. Luo, “Efficient multi-

attribute precedence-based task scheduling for edge

computing in geo-distributed cloud environment,”

Knowl. Inf. Syst., vol. 64, number 1, pp. 175–205, Jan.

2022. https://doi.org/10.1007/s10115-021-01627-8

[10] S. Liu, X. Ma, Y. Jia, and Y. Liu, “An energy-saving

task scheduling model via greedy strategy under cloud

environment,” Wireless Commun. Mobile Comput., vol.

2022, p. 8769674, Apr. 2022.

https://doi.org/10.1155/2022/8769674

[11] V. Seethalakshmi, V. Govindasamy, and V. Akila,

“Real-coded multi-objective genetic algorithm with

effective queuing model for efficient job scheduling in

heterogeneous Hadoop environment,” J. King Saud

Univ. Comput. Inf. Sci., vol. 34, number 6B, pp. 3178–

3190, Jun. 2022.

https://doi.org/10.1016/j.jksuci.2020.08.003

[12] S. Gupta, S. Iyer, G. Agarwal, P. Manoharan, A.D.

Algarni, G. Aldehim, and K. Raahemifar, “Efficient

Prioritization and Processor Selection Schemes for

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2292–2300 | 2300

HEFT Algorithm: A Makespan Optimizer for Task

Scheduling in Cloud Environment,” Electronics, vol.

11, number 16, p. 2557, Aug. 2022.

https://doi.org/10.3390/electronics11162557

[13] M. Yadav and A. Mishra, “An enhanced ordinal

optimization with lower scheduling overhead based

novel approach for task scheduling in cloud computing

environment,” J. Cloud Comput., vol. 12, p. 8, Jan.

2023. https://doi.org/10.1186/s13677-023-00392-z

[14] Y. Lu, L. Liu, J. Gu, J. Panneerselvam, and B. Yuan,

“EA-DFPSO: An intelligent energy-efficient

scheduling algorithm for mobile edge networks,”

Digital Commun. Networks, vol. 8, number 3, pp. 237–

246, Jun. 2022.

https://doi.org/10.1016/j.dcan.2021.09.011

[15] G. Saravanan, S. Neelakandan, P. Ezhumalai, and S.

Maurya, “Improved wild horse optimization with levy

flight algorithm for effective task scheduling in cloud

computing,” J. Cloud Comput., vol. 12, p. 24, Feb.

2023. https://doi.org/10.1186/s13677-023-00401-1

[16] X. Wang, C. Wang, M. Bai, Q. Ma, and G. Li, “HTD:

heterogeneous throughput-driven task scheduling

algorithm in MapReduce,” Distrib. Parallel Databases,

vol. 40, number 1, pp. 135–163, Mar. 2022.

https://doi.org/10.1007/s10619-021-07375-6

[17] N. Sharma, Sonal, and P. Garg, “Ant colony based

optimization model for QoS-Based task scheduling in

cloud computing environment,” Meas.: Sens., vol. 24,

p. 100531, Dec. 2022.

https://doi.org/10.1016/j.measen.2022.100531

[18] R. Jeyaraj and A. Paul, “Optimizing MapReduce Task

Scheduling on Virtualized Heterogeneous

Environments Using Ant Colony Optimization,” IEEE

Access, vol. 10, pp. 55842–55855, May 2022. DOI:

10.1109/ACCESS.2022.3176729

[19] S. Mangalampalli, G.R. Karri, and M. Kumar, “Multi

objective task scheduling algorithm in cloud

computing using grey wolf optimization,” Cluster

Comput., vol. 26, number 6, pp. 3803–3822, Dec. 2023.

https://doi.org/10.1007/s10586-022-03786-x

[20] S.P. Praveen, H. Ghasempoor, N. Shahabi, and F.

Izanloo, “A hybrid gravitational emulation local

search-based algorithm for task scheduling in cloud

computing,” Math. Probl. Eng., vol. 2023, p. 6516482,

Feb. 2023. https://doi.org/10.1155/2023/6516482

[21] B. Kruekaew and W. Kimpan, “Multi-objective task

scheduling optimization for load balancing in cloud

computing environment using hybrid artificial bee

colony algorithm with reinforcement learning,” IEEE

Access, vol. 10, pp. 17803–17818, Feb. 2022. doi:

10.1109/ACCESS.2022.3149955

[22] C. Chandrashekar, P. Krishnadoss, V.K. Poornachary,

B. Ananthakrishnan, and K. Rangasamy, “HWACOA

Scheduler: Hybrid Weighted Ant Colony Optimization

Algorithm for Task Scheduling in Cloud Computing,”

Appl. Sci., vol. 13, number 6, p. 3433, Mar. 2023.

https://doi.org/10.3390/app13063433

[23] M. Otair, A. Alhmoud, H. Jia, M. Altalhi, A.M.

Hussein, and L. Abualigah, “Optimized task

scheduling in cloud computing using improved multi-

verse optimizer,” Cluster Comput., vol. 25, number 6,

pp. 4221–4232, Dec. 2022.

https://doi.org/10.1007/s10586-022-03650-y

[24] W. Long, T. Wu, M. Xu, M. Tang, and S. Cai,

“Parameters identification of photovoltaic models by

using an enhanced adaptive butterfly optimization

algorithm,” Energy, vol. 229, p. 120750, Aug. 2021.

https://doi.org/10.1016/j.energy.2021.120750

[25] K. Li, S. Li, Z. Huang, M. Zhang, and Z. Xu, “Grey

Wolf Optimization algorithm based on Cauchy-

Gaussian mutation and improved search strategy,” Sci.

Rep., vol. 12, p. 18961, Nov. 2022.

https://doi.org/10.1038/s41598-022-23713-9

