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Abstract: Pm2.5 time series prediction is a very important task; in the literature, many approaches have been implemented, but just two 

use data augmentation to improve results. In this work, three data augmentation techniques are implemented and analyzed, two of them 

typical of the state of the art, thus the first (DA1) is time-warping + jittering, the second (DA2) is linear interpolation, and the third DA3 is 

polynomial interpolation which is proposed in this work. The performance of the data augmentation techniques is evaluated through four 

deep learning techniques including Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Gated Recurrent Unit (GRU), 

and Bidirectional GRU (BiGRU). In terms of RMSE, MAPE, and R2, the results show that DA2 and DA3 are superior to DA1, between 

3.62% to 4.04% respectively. While DA2 and DA3 present similar performances, the main difference between them is the higher 

computational cost of DA3 concerning DA2. 
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1. Introduction 

Air pollution is the contamination of the environment by any 

chemical, physical or biological agent that modifies the 

natural characteristics of the atmosphere [1]. One type of air 

pollutant is particulate matter 2.5 (pm2.5), which are very 

small airborne particles with a diameter of around 2.5 

micrometers, which is less than the thickness of human hair. 

Many studies show that pm2.5 can induce a variety of 

chronic diseases [2], such as respiratory system damage [3], 

cardiovascular dysfunction [4], lung damage [5], and 

diabetes mellitus [6] among others. 

Therefore, it is important to implement PM2.5 prediction 

models that allow estimating the future values of this 

pollutant in order to support the timely decision-making [7] 

of the corresponding responsible entities. 

On the other hand, data augmentation is a strategy to 

increase the number of training instances from the existing 

ones to overcome underfitting [8],[9] and 

overfitting[10],[11] problems due to scarcity of data. It 

arose in the field of computer vision through techniques 

such as flipping, zooming, scaling, cropping, and rotation 

among others. Then it spread to other fields such as natural 

processing language (NLP) until it reached time series. In 

time series was initially applied to time series classification 

and later to time series regression. 

In this study data augmentation techniques for time series 

regression are compared, thus three data augmentation 

techniques are implemented. The first DA1 is based on 

time-warping and jittering from the works [7] and [8] for 

short-term and solar radiation time series prediction. The 

second DA2 is based on linear interpolation implemented in 

the work [9] for solar radiation forecasting. Finally, the third 

DA3 has not been used yet, so this technique is proposed in 

this work, which consists of polynomial interpolation. 

The Deep learning architectures that are implemented in this 

work are similar to those implemented in other related 

works. Thus, in this work, four deep learning models are 

implemented including LSTM, Bidirectional LSTM 

(BiLSTM), GRU, and Bidirectional GRU (BiGRU), for 

which pm2.5 time series of an environmental monitoring 

station located in the city of Ilo in southern Peru is used. 

The main contributions of this work are summarized 

below: 

- The proposal of a new data augmentation technique for 

pm2.5 time series forecasting based on polynomial 

interpolation. 

- A comparative analysis of data augmentation techniques 

for pm2.5 time series forecasting including time-warping + 

jittering, linear interpolation, and polynomial interpolation. 

- A comparative analysis of the performance of deep 

learning models with and without the use of the data 

augmentation techniques implemented for pm2.5 time series 

forecasting. 
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The rest of the paper has been organized in a Related Work 

section where the pm2.5 time series regression works are 

described; then a Methodology section, where the activities 

in detail to implement data augmentation and deep learning 

models are described; next Results a Discussion section, 

where achieved results are described and discussed; and 

finally, a Conclusion section that concludes de research 

work. 

2. Related Work 

This section briefly describes chronologically related work 

to pm2.5 time series prediction. 

Most of the related works have used LSTM, among them 

[12]–[18] and [18] some of them include decomposition 

techniques, and others are implemented combined with 

other techniques. In [12] and [14] Bidirectional LSTM 

(BiLSTM) and LSTM are used respectively. In [15]  the 

authors added a decomposition technique named Singular 

Spectrum Analysis (SSA). In [16] LSTM is hybridized with 

Convolutional Neural Networks (CNN). In [19] LSTM is 

hybridized with a Genetic Algorithm (GA) and an Encoder-

Decoder (ED) model. In  [17] a Bidirectional LSTM model 

combined with a CNN model are used. And in [18], it is 

combined with decomposition techniques such as 

CEEMDAN and FCM. Similar to LSTM, GRU has also 

been used in [20] and [21], in the first case with data 

augmentation and in the second in a hybrid way with Q-

Learning. 

Support Vector Regression (SVR) and Random Forest have 

been used in works such as [22], [23], and [24]. The first 

uses SVR in a hybrid way with Quantum Particle Swarm 

Optimization (QPSO), the second adds a decomposition 

technique named hybrid modified variational mode 

decomposition and the last one uses just Random Forest. 

Other related works such as [25]–[29] propose different 

models to those cited above. Thus in [25] is proposed a 

Hammerstein Recurrent Neural Networks (CHRNN), in 

[26] is proposed a Multiple Model Adaptive Unscented 

Kalman Filter (MMAUKF), in [24] a decomposition 

ensemble learning based on variation mode decomposition 

(VMD) and whale-optimization algorithm (IWOA) is 

proposed, in [28] an attention-based deep neural network is 

used and in [29]  a deep belief network using PM2.5 and 

temperature data is proposed. 

In [20] data augmentation with LSTM and GRU for pm2.5 

time series prediction are used and in [30] data 

augmentation and Resnet. These are the only works that use 

the generation of synthetic data to improve the performance 

of regression models. In the first case, linear interpolation is 

used, and, in the second case, random over-sampling (ROS). 

The results of related works are compared with the results 

of implemented models based on data augmentation and 

deep learning in this work's Results and Discussion section. 

3. Methodology 

This section describes in detail the developed methodology. 

3.1 Data Preparation 

The selected time series corresponds to the Pacocha station 

in Ilo City, located in the district of Pacocha, Province of 

Ilo, Moquegua region in southern Peru. 

The data range from 2022-06-03 15:00 to 2023-04-17 22:00 

and correspond to 7640 hours. The training data corresponds 

to 80% (6112 hours) and the remaining 20% (1528 hours) 

for testing. Fig. 1 shows training and test data graphically. 

 

Fig. 1. Training and test data 

3.2 Imputation 

For time series imputation, there are several options, but due 

to the missing values (NA) correspond to short-gaps, and 

gaps between 1 to 4 NA values, imputeTS [31][32] library 

was used. ImputeTS is an R language library that 

implements several techniques including interpolations 

(spline, stinneman) and several based on moving averages 

(SMA, LWMA, EWMA, ARIMA), from these, Single 

Moving Average (SMA) with k=2 was selected. In total 48 

missing values were filled.  

3.3 Data Augmentation 

In this phase, three data augmentation techniques are 

implemented: time-warping + jittering [33] (DA1), linear 

interpolation [20] (DA2), and polynomial interpolation 

(DA3) which is proposed in this work. Fig. 2 shows 

graphically these techniques with 5 synthetic features for the 

first couple of values in a time series. 

 

Fig. 2. Data augmentation techniques for time series 

regression: a) DA1 b) DA2 and c) DA3 
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3.3.1 Time-warping + jittering (DA1) 

This data augmentation technique for time series regression 

is a mix between linear interpolation and random values, 

some values are linear interpolated and the random ones are 

generated considering a range of values. The random values 

allow the generation of an irregular curve, enriching the 

information of the time series. Fig. 1 a) graphically shows 

this technique. 

In this work, the following parameters are used for this 

technique: 

Block size : 10 

Subblock size :  2 

Precision :  2 

Window size :  2 

From an original time series of 6112 items, these 

parameters produce 61110 synthetic items. 

3.3.2 Linear interpolation (DA2) 

Linear interpolation was used in DA1 mixed with random 

values. However, DA2 works just with linear interpolation. 

Given two points (x1,y1 and x2,y2), one y value can be 

interpolated at x position through Equation (1) 

𝒚 = 𝒚𝟏 + (𝒙 − 𝒙𝟏)(
𝒚𝟐−𝒚𝟏

𝒙𝟐−𝒙𝟏
) (1) 

Where:  

𝒔𝒍𝒐𝒑𝒆 = (
𝒚𝟐−𝒚𝟏

𝒙𝟐−𝒙𝟏
) (2) 

From Equation (1) n intermediate synthetic values can be 

generated, as can be seen in Fig 1 b). Equation (1) is 

implemented in Python language. Considering 9 synthetic 

items per pair of original time series values, 61110 synthetic 

values are generated. 

3.3.3 Polynomial interpolation (DA3) 

Inspired by linear interpolation, also polynomial 

interpolation can be used to generate synthetic values. 

However, unlike linear interpolation which requires at least 

two points, for polynomial interpolation at least three points 

are required. 

For this type of interpolation, it is necessary to determine 

the coefficients of the polynomial function, for this, there 

are different techniques, including the Lagrange method. 

Given the n points (x0,y0), … , (xn-1,yn-1), the Lagrange 

Polynomial is estimated through Eq. (3). 

𝒑(𝒙) = ∑ 𝒚𝒊

∏ (𝒙−𝒙𝒋)𝒋 ≠𝒊

∏ (𝒙𝒊−𝒙𝒋)𝒋 ≠𝒊

𝒏−𝟏
𝒊=𝟎    (3) 

From Equation (3) the polynomial coefficients are obtained 

and the polynomial function can be implemented, from it, 

any point can be estimated, in this case, the synthetics 

values. The polynomial function is similar to what is shown 

in Equation (4). 

𝒑(𝒙) = 𝒂𝟎 + 𝒂𝟏𝒙 + 𝒂𝟐𝒙𝟐 + ⋯ + 𝒂𝒏−𝟏𝒙𝒏−𝟏 (4) 

In this work, polynomial interpolation for data 

augmentation is implemented using the numpy library in 

Python language through the polyfit function.  

Similar to linear interpolation, considering 9 synthetic items 

per pair of original values, 61110 synthetic values are 

generated. 

Fig 2. shows the results of data augmentation techniques 

for the first 6 items of the selected pm2.5 time series. 

 

Fig. 3. Augmented pm2.5 time series 

3.4 Normalization 

Time series scaling has been performed using min-max 

normalization. Eq. (5) allows to implement min-max 

scaling between 0 and 1 values. 

𝒙′ =
𝒙−𝐦𝐢𝐧 (𝒙)

𝐦𝐚𝐱(𝒙)−𝐦𝐢𝐧 (𝒙)
 (5)  

Where: 

𝒙′ : normalized value 

𝒙 : value to be normalized 

𝐦𝐢𝐧 (𝒙) : min value in time series 

𝐦𝐚𝐱 (𝒙) : max value in time series 

3.4 Modeling 

In terms of the number of layers, neurons, and dropout rates, 

the same architecture was used for all the models, they only 

differed by the types of layers, Table 1 shows the 

hyperparameters of all architectures. For the compilation of 

the models, mse was used as the loss function and adam as 

optimizer, the learning rate of 0.001 was used. For model 

fitting, 100 epochs and batch_size=500.  

Table 1. Hyperparameters of deep learning models 

Model Hyperparameters 

LSTM layers [30, 30, 30, 1] 

activation [relu, relu, relu, sigmoid] 

dropout [0.0, 0.1, 0.1]  

BiLSTM 

GRU 

BiGRU 
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3.5 Evaluation 

The results evaluation of the implemented models is carried 

out in terms of Root Mean Squared Error (RMSE), Mean 

Absolute Percentage Error (MAPE) and R Squared (R2) that 

are estimated according to Equations (6), (7) and (8). 

𝑹𝑴𝑺𝑬 = √
∑ (𝑷𝒊−𝑶𝒊)𝟐𝒏

𝒊=𝟏

𝒏
 6) 

𝑴𝑨𝑷𝑬 =
𝟏

𝒏
∑ |

(𝑶𝒊−𝑷𝒊)

𝑶𝒊
∗ 𝟏𝟎𝟎|𝒏

𝒊=𝟏  (7) 

𝑹𝟐 = ∑ (𝑷𝒊 − 𝑶̅)𝟐𝒏
𝒊=𝟏 ∑ (𝑶𝒊 − 𝑶̅)𝟐𝒏

𝒊=𝟏⁄  (8) 

RMSE allows to evaluate the results in terms of ug/m3, 

while MAPE allows to do it in percentage terms (0-100%), 

in both cases the best results are those closest to 0. On the 

other hand, R2 measures the correlation between the original 

data and the predicted data, in this case, the best results are 

those closest to 1. 

4. Results and Discussions 

In this section, the achieved results are described in detail 

and discussed with related works. 

4.1 Results 

Table 3. RMSE of implemented models 

Model None DA1 DA2 DA3 

LSTM 7.0335 0.7715 0.3705 0.4583 

BiLSTM 6.7946 0.7883 0.3651 0.3485 

GRU 7.2350 1.2042 0.1748 0.3080 

BiGRU 6.9727 0.9844 0.4430 0.3836 

Avg 7.0089 0.9371 0.3383 0.3746 

 

 

Fig. 4: RMSE 

According to Table 3 and Fig. 4, it can be seen that in terms 

of RMSE, the use of data augmentation techniques allows 

for greatly improve the error of the implemented models, 

thus, on average, the models improve between 6.2940 ug/m3 

and 6.6726 ug/m3. Being BiLSTM the model that improves 

the most, followed by LSTM, GRU, and BiGRU. According 

to RMSE the best data augmentation technique is based on 

linear interpolation (DA2) followed by polynomial 

interpolation (DA3). 

Table 4. MAPE of implemented models 

Model None DA1 DA2 DA3 

LSTM 0.5384 0.0441 0.0365 0.0402 

BiLSTM 0.4686 0.0439 0.0342 0.0372 

GRU 0.5110 0.1342 0.0193 0.0244 

BiGRU 0.3706 0.0727 0.0598 0.0314 

Avg 0.4721 0.0737 0.0375 0.0333 

 

 

Fig. 5. MAPE 

In terms of MAPE, according to Table 4 and Fig. 5, it can 

be seen that in percentage terms, in the same way as with 

the RMSE, the models with data augmentation greatly 

outperform the models without data augmentation. On 

average, models with data augmentation outperform models 

without data augmentation between 31.60% and 49.81%. 

According to MAPE, on average the best data augmentation 

is DA3 followed by DA2. 

Table 5. R2 of implemented models 

Model None DA1 DA2 DA3 

LSTM 0.5288 0.9939 1.0000 0.9983 

BiLSTM 0.5331 0.9941 0.9988 0.9991 

GRU 0.5368 0.9922 0.9999 1.0000 

BiGRU 0.5174 0.9936 0.9996 1.0000 

Avg 0.5290 0.9936 0.9996 0.9993 

 

0 2 4 6 8

LSTM

BiLSTM

GRU

BiGRU

Avg

DA3 DA2 DA1 None

0 0.1 0.2 0.3 0.4 0.5 0.6

LSTM

BiLSTM

GRU

BiGRU

Avg

DA3 DA2 DA1 None
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Fig. 6. R2 

Similar to what happened with the RMSE and the MAPE, 

according to Table 5 and Fig. 6 with the R2 the superiority 

of the models with data augmentation is appreciated, 

surpassing the models without data augmentation on 

average between 46.12% and 47.98%. According to R2, the 

best data augmentation technique is based on linear 

interpolation (DA2) followed by polynomial interpolation 

(DA2). 

 

Fig. 7. Average RMSE 

 

Fig. 8. Average MAPE 

 

Fig. 9. Average R2 

 

According to the results, it can be seen that there is a 

significant difference between DA2, and DA3 with respect 

to DA1. 

According to Fig. 7, in terms of RMSE, DA2 beats DA1 by 

0.5987ug/m3, and DA3 by 0.5625ug/m3. Comparing DA2 

with DA3, DA2 outperforms DA3 by 0.0362 ug/m3. 

According to Fig. 8, in terms of MAPE, DA2 outperforms 

DA1 by 3.62%, while DA3 outperforms DA1 by 4.04%. 

DA2 exceeds DA3 by 0.0362ug/m3. In terms of MAPE, 

DA3 outperforms DA2 by 0.42%. And, according to Fig. 9, 

in terms of R2, DA2 outperforms DA1 by 0.599%, while 

DA3 outperforms it by 0.576%. comparing DA2 with DA3, 

the difference is minimal, DA2 exceeds DA3 by 0.024%. 

 

a) 

 

b) 

 

c) 

 

d) 

Fig. 10. Comparison of predicted values a) LSTM, b) 

BiLSTM, c) GRU, and d) BiGRU 

Fig. 9 shows graphically predicted values by each 

implemented model with data augmentation for the first 24 

hours of the test data. As can be seen for all implemented 

deep learning models it is a bit difficult to visually find the 

difference between each data augmentation technique. 

4.2 Discussions 

The main difference between DA2 and DA3 is the 

computational cost due to the higher complexity of the 

polynomial interpolation compared to the linear 

interpolation. Considering the training data with 6112 items, 

the required time to estimate 10, 50, and 100 synthetics 

values is shown in Table 6 for each pair of pm2.5 time series 

values. Spyder 4.1.4 is used as IDE with Python 3.8 and 

AMD Ryzen 7.4700U processor.  

 

 

Table 6. Required time to generate synthetics items 

0 0.2 0.4 0.6 0.8 1

LSTM

BiLSTM

GRU

BiGRU

Avg

DA3 DA2 DA1 None

0.9371

0.3383

0.3746

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

D A 1 D A 2 D A 3

0.0737

0.0375
0.0333

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

D A 1 D A 2 D A 3

0.9936

0.9996

0.9993

0.9900

0.9910

0.9920

0.9930

0.9940

0.9950

0.9960

0.9970

0.9980

0.9990

1.0000

DA1 DA2 DA3
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Interpolation Synthetic items 

10 50 100 

Linear 0.0218 0.0676 0.1242 

Polynomial  1.4145 5.6243 9.2318 

 

Table 7 shows the results achieved and reported by 

related works. In terms of RMSE, the implemented deep 

learning models exceed most of the results of the related 

works. The proposal DA+BiLSTM is only surpassed by the 

work [24] by Guo et al that uses daily pm2.5 time series with 

an RMSE=0.2291 ug/m3, and the work [20] by Flores et al, 

2021 that uses linear interpolation for data augmentation 

with RMSE=0.0556ug/m3. 

Table 7. Comparison with related-works 

Work Technique Freq. Trai

n 

Test Metric Valu

e 

Li et al, 2018 [22]  QPSO+SV

R 

Hour

ly 

1490 638 RMS

E 

14.05 

Liu et al, 2019 

[13]  

SSHL+LST

M  

Dail

y 

1000 100 MAE  

Pak et al, 2020 

[14] 

LSTM Dail

y 

1052

2 

2630 RMS

E 

8.11 

Chen et al, 2020 

[25]  

CHRNN Hour

ly 

  RMS

E 

4.373 

Chu et al, 2020 

[23] 

CVMD-

STASA-

SVR 

Hour

ly 

360 360 RMS

E 

3.940

9 

Zhang et al, 2020 

[15]  

SSA-LSTM Hour

ly 

6150 2634 RMS

E 

6.365 

Li et al, 2021[26] MMAUKF Hour

ly 

 24 RMS

E 

5.913

0 

Wang et al, 

2021[16]  

CNN+LST

M 

Hour

ly 

3155

0 

1051

6 

RMS

E 

14.21 

Guo et al, 

2021[27] 

VMD+IWO

A 

Dail

y 

572 191 RMS

E 

0.229

1 

Nguyen et al, 

2021 [19]  

ED+LSTM Hour

ly 

2409

6 

8760 MAE 3.592 

Shi et al, 2021 

[28] 

DSTP-FC Hour

ly 

6570 2190 RMS

E 

32.51 

Xing et al, 2021 

[29]  

TDBN Dail

y 

120 80 RMS

E 

11.19

78 

Zhang et al, 2021 

[12]  

BiLSTM Hour

ly 

1017

6 

1848 RMS

E 

6.86 

Li et al, 2021[24]  Random 

Forest 

Dail

y 

90% 10% R2 0.71 

Flores et al, 2021 

[20] 

DA+LSTM Hour

ly 

2000 775 RMS

E 

0.055

6 

Zheng et al, 2022 

[21] 

RL+GRU Hour

ly 

900 300 RMS

E 

1.819

2 

Tian et al, 2022 

[34] 

NN+MOO Hour

ly 

1500 100 RMS

E 

11.32 

Yin et al, 2022 

[30] 

DA + 

ResNet 

Hour

ly 

  RMS

E 

18.81 

Zhu et al, 2023 

[17]  

CNN+BiLS

TM 

Hour

ly 

 1150 RMS

E 

3.88 

Proposal DA1+BiLS

TM 

Hour

ly 

6112 1529 RMS

E 

0.788

3 

DA2+BiLS

TM 

RMS

E 

0.365

1 

DA3+BiLS

TM 

RMS

E 

0.348

5 

 

5. Conclusion 

The implemented data augmentation techniques allow to 

improve all the implemented deep learning models for 

pm2.5 time series prediction; there is a superiority of DA2 

and DA3 over DA1. However, between DA3 and DA2 there 

is no significant difference in terms of their results, for some 

models, DA2 produces better results than DA3, and vice 

versa for other models. The main difference between DA2 

and DA3 would lie in the computational cost, DA3 has a 

higher cost than DA2 since the polynomial interpolation is 

more complex than the linear interpolation. 

Numerals. 
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