

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1711–1720 | 1711

Impact of Different Data Management Frameworks on Common Data

Management Tasks in Information System (R Language Perspective)

Anant Prakash Awasthi1, Niraj Kumar Singh2, Masood H Siddiqui3, Aanchal A Awasthi4

Submitted: 04/02/2024 Revised: 13/03/2024 Accepted: 17/03/2024

Abstract: To maximize data processing and analysis, effective data management is essential. It ensures that data is efficiently processed,

readily accessible, secure, and well-organized. This enhances data integrity, reduces the amount of redundancy, and it makes decision-

making more prompt. In an era where data is a valued asset that drives innovation and strategic decision-making, effective data management

techniques are essential.

The two essential data management activities for improving data processing are joining and sorting. By combining datasets based on

common characteristics, joining makes thorough analysis easier. Sorting data well enhances search and retrieval. When combined, these

processes enhance the accuracy and speed of data processing, simplifying workflows and enabling sound decision-making. Database

management systems depend on joining and sorting to enable the creation of value, the extraction of significant insights, and the

identification of trends from massive datasets.

The performance of native R, tidyverse, and data.table when merging data in R varies. Large datasets may cause Native R to lag, despite

its versatility. Known for its readability, Tidyverse strikes a balance between performance and simplicity. Because of its exceptional speed,

Data.table is a very effective option for large-scale data joins. The decision is based on the complexity and amount of the dataset. The best

option for maximum performance, particularly for complex and large-scale jobs, is Data.table. Native R and Tidyverse work well with

smaller, more manageable datasets when code readability is crucial. Every method addresses particular requirements in R data analysis.

Similarly, when it comes to sorting data in R, Native R, tidyverse, and data.table behave differently. While Native R provides a standard

method, it might not be as effective with larger datasets. Although readability is given priority in Tidyverse's user-friendly syntax, it may

not be as fast as more efficient options. Once more, Data.table runs faster and uses less memory when sorting large amounts of data than

the competition. The decision is based on the needs of the analysis: data.table for best performance, especially with large datasets and

computationally intensive tasks; tidyverse for readability; and Native R for simplicity.

Hence, in order to sum up, effective data management is essential for businesses to fully utilize their data and make wise decisions.

Optimizing data processing and analysis requires careful consideration of joining, sorting, and tool selection.

Keywords: Memory Management in R, Performance in R, Native R, Tidyverse, Data.Table

1. Introduction:

In the contemporary landscape of information systems,

the significance of data as a pivotal asset for driving

innovation and strategic decision-making cannot be

overstated. Effective data management serves as the

linchpin in maximizing the processing and analysis of

data, ensuring its efficiency, accessibility, security, and

organization. This imperative practice not only enhances

data integrity but also streamlines workflows, reduces

redundancy, and facilitates prompt decision-making.

Two fundamental data management activities, namely

joining and sorting, play a crucial role in improving data

processing capabilities. Joining, by amalgamating

datasets based on common characteristics, simplifies

thorough analysis, while sorting data optimally enhances

search and retrieval processes. The synergy of these

activities contributes to the accuracy and speed of data

processing, empowering information systems to extract

meaningful insights and identify trends from vast datasets.

In the realm of data management within the R language,

the performance of different frameworks – namely Native

R, Tidyverse, and Data.table – significantly influences the

outcome of data processing tasks. The choice among these

frameworks hinges on the complexity and scale of the

dataset at hand. Native R, known for its versatility, may

experience lag with large datasets. Tidyverse, renowned

for its readability, strikes a balance between performance

and simplicity, making it suitable for smaller, more

manageable datasets. On the other hand, Data.table

emerges as a powerful option for large-scale data

operations, excelling in speed and efficiency.

This paper delves into the impact of these data

management frameworks on common data management

tasks within the R language, focusing on joining and

sorting operations. The assessment considers the

1, 2, 4 Department of Statistics, Amity Institute of Applied Sciences, Amity

University, Noida, Uttar Pradesh
3 Department of Statistics, University of Lucknow, Lucknow, Uttar

Pradesh

anant.awasthi@outlook.com

nksingh5@gmail.com

mhsiddiqui@gmail.com

draanchalawasthi@gmail.com

mailto:nksingh5@gmail.com
mailto:mhsiddiqui@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1711–1720 | 1712

performance variations among Native R, Tidyverse, and

Data.table, providing insights into their strengths and

limitations in handling datasets of different complexities

and sizes. By understanding the nuances of these

frameworks, researchers, practitioners, and data analysts

can make informed decisions in selecting the most

appropriate tool for their specific data analysis needs.

As businesses increasingly recognize the pivotal role of

effective data management in harnessing the full potential

of their data, this research seeks to contribute valuable

insights into the optimization of data processing and

analysis. The paper aims to guide practitioners in making

informed decisions regarding joining, sorting, and tool

selection, emphasizing the pivotal role these aspects play

in achieving optimal performance and extracting

meaningful insights from diverse datasets.

2. Frameworks (Packages) in Scope:

a. Native R (utils)[1];

b. tidyverse_1.3.2/tibble_3.1.8[2];

c. data.table_1.14.2 [3]

3. Methodology

There was no significant work was found in the literature

for benchmarking of data management tasks using R

frameworks. We have discussed here approach to record

the memory utilization and execution time of frameworks

along with analysis approach which includes graphical

exploration to establish the benchmark and statistical

inference to support the evidences.

An initial sample of 102 records has been drawn randomly

with replacement from flight data from nycflight13

package and changed the data structure to data structure

in scope. Execution time was measured and results were

written to a file. In the next step, the sample size has been

stepped up by a multiple of 101 rows and execution time

was recorded for each task and frameworks in scope. The

sample size was increased to 105 records.

Fig 3.1 – Experiment Control Workflow

Fig 3.2 – Data management activities and sub-activities

Each dataset was processed for each task with different frameworks and cost value (execution time) has been recorded. The

environment get cleaned after each iteration to avoid any garbage in the environment. Each activity gets repeated 50 times

to avoid any bias in the execution cycle.

4. Methods:

Exploratory Data Analysis (EDA) is a crucial step in the

data analysis process that involves the initial examination

and exploration of a dataset to gain insights, detect

patterns, and identify potential trends or outliers. It serves

as the foundation for more in-depth analysis and helps

researchers and analysts understand the underlying

structure of the data.

An exploratory data analysis has been performed on

machine data for each activity, sub-activity and

framework. Numeric exploratory data analysis was

performed to get an overview of performance of data

management frameworks. Later the same has been

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1711–1720 | 1713

established with Graphical exploratory data analysis to

confirm, there is no misleading summary due to data

distribution.

Analysis of Variance (ANOVA) is a statistical technique

used to analyze the mean difference of memory utilization

between the groups (Frameworks). ANOVA allows to

determine whether the means of two or more groups are

significantly different from each other. Analysis of

variance is used to establish the fact whether three data

structure in scope have significant difference in memory

utilization or not for at least one set of frameworks.

Analysis of variance has been performed with null

hypothesis that there is no significant difference in

memory utilization of three frameworks (Native R,

Tidyverse and data.table).

H0: There is no significant difference in memory

utilization of three frameworks (Native R, Tidyverse and

data.table)

5. Analysis and Results

5.1 Analysis of frameworks performance in sorting

task:

The analysis was performed on machine data collected

for sorting task and sub-tasks defined in figure 3.2

5.1.1 Sorting of Numeric data and one variable task:

Table 5.1.1.1 – Mean execution time for sorting numeric data with one variable in seconds

Sample Size data.table Native R Tidyverse

100 0.0001092301 0.0002789582 0.0026437109

1,000 0.0001226501 0.0005052928 0.0031999175

10,000 0.0002534025 0.0023109786 0.0038007622

100,000 0.0007437662 0.0552861505 0.0223498222

1,000,000 0.0070738811 0.5270177412 0.4108667845

Table 5.1.1.2 – Performance comparison sorting numeric data with one variable in seconds (considering Native R as

standard)

Sample Size data.table Native R Tidyverse

100 39.16% 100.00% 947.71%

1,000 24.27% 100.00% 633.28%

10,000 10.97% 100.00% 164.47%

100,000 1.35% 100.00% 40.43%

1,000,000 1.34% 100.00% 77.96%

Table 5.1.1.3 – Analysis of variance of execution time for sorting numeric data with one variable task

Sample Size F Statistic P-value

100 2847.198832 2.8763E-118

1,000 574.8956323 3.17595E-70

10,000 747.6547728 9.15968E-78

100,000 2206.374908 2.3209E-110

1,000,000 1816.748274 2.2284E-104

5.1.2 Sorting of Numeric data and Multiple variables task:

Table 5.1.2.1 – Mean execution time for sorting numeric data with multiple variables in seconds

Sample Size data.table Native R Tidyverse

100 0.0001362677 0.0003335794 0.0031702710

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1711–1720 | 1714

1,000 0.0001554895 0.0009022470 0.0039134508

10,000 0.0004225555 0.0023501227 0.0053115033

100,000 0.0013343456 0.0520894654 0.0222365700

1,000,000 0.0140660846 0.5260348940 0.4159666619

Table 5.1.2.2 – Performance comparison sorting numeric data with Multiple variables in seconds (considering Native R as

standard)

Sample Size data.table Native R Tidyverse

100 40.85% 100.00% 950.38%

1,000 17.23% 100.00% 433.74%

10,000 17.98% 100.00% 226.01%

100,000 2.56% 100.00% 42.69%

1,000,000 2.67% 100.00% 79.08%

Table 5.1.2.3 – Analysis of variance of execution time for sorting numeric data with multiple variables task

Sample Size F Statistic P-value

100 1024.195846 4.97383E-87

1,000 357.3077313 3.56683E-57

10,000 432.954885 2.44553E-62

100,000 1984.194987 4.3513E-107

1,000,000 1394.571983 2.60729E-96

5.1.3 Sorting of Text data and Single variable task:

Table 5.1.3.1 – Mean execution time for sorting text data with Single variable in seconds

Sample Size data.table Native R Tidyverse

100 0.0001048509 0.0004756379 0.0027897569

1,000 0.0001749017 0.0018483864 0.0055657809

10,000 0.0002171909 0.0230633976 0.0256044599

100,000 0.0007404266 0.3418253105 0.3145452813

1,000,000 0.0075406263 4.9952621417 4.9316663550

Table 5.1.3.2 – Performance comparison sorting text data with one variable in seconds (considering Native R as standard)

Sample Size data.table Native R Tidyverse

100 22.04% 100.00% 586.53%

1,000 9.46% 100.00% 301.12%

10,000 0.94% 100.00% 111.02%

100,000 0.22% 100.00% 92.02%

1,000,000 0.15% 100.00% 98.73%

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1711–1720 | 1715

Table 5.1.3.3 – Analysis of variance of execution time for sorting text data with one variable task

Sample Size F Statistic P-value

100 582.3752824 1.36696E-70

1,000 399.7928371 3.5487E-60

10,000 1245.256716 6.91855E-93

100,000 3569.386919 2.546E-125

1,000,000 3260.476957 1.7154E-122

5.1.4 Sorting of Text data and Multiple variables task:

Table 5.1.4.1 – Mean execution time for sorting text data with Multiple variables in seconds

Sample Size data.table Native R Tidyverse

100 0.0001536516 0.0004777348 0.0033136688

1,000 0.0001671399 0.0024942584 0.0051134566

10,000 0.0003902598 0.0297835725 0.0332884222

100,000 0.0013080937 0.4007011749 0.3499668288

1,000,000 0.0128390679 5.5760959891 5.5528008486

Table 5.1.4.2 – Performance comparison sorting text data with Multiple variables in seconds (considering Native R as

standard)

Sample Size data.table Native R Tidyverse

100 32.16% 100.00% 693.62%

1,000 6.70% 100.00% 205.01%

10,000 1.31% 100.00% 111.77%

100,000 0.33% 100.00% 87.34%

1,000,000 0.23% 100.00% 99.58%

Table 5.1.4.3 – Analysis of variance of execution time for sorting text data with multiple variables task

Sample Size F Statistic P-value

100 509.8179751 7.55224E-67

1,000 950.8216765 8.03613E-85

10,000 607.8017308 8.34962E-72

100,000 1188.941418 1.71038E-91

1,000,000 3359.806345 1.9827E-123

5.1.5 Sorting of Alpha-numeric data and Single variable task:

Table 5.1.5.1 – Mean execution time for sorting Alpha-numeric data with Single variable in seconds

Sample Size data.table Native R Tidyverse

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1711–1720 | 1716

100 0.0002320735 0.0008733590 0.0045260824

1,000 0.0006350751 0.0068407380 0.0096418822

10,000 0.0020761554 0.0642521353 0.0544743591

100,000 0.0033552404 0.7980587956 0.7888056717

1,000,000 0.0111766409 10.7279374556 10.7455592345

Table 5.1.5.2 – Performance comparison sorting Alpha-numeric data with one variable in seconds (considering Native R

as standard)

Sample Size data.table Native R Tidyverse

100 26.57% 100.00% 518.24%

1,000 9.28% 100.00% 140.95%

10,000 3.23% 100.00% 84.78%

100,000 0.42% 100.00% 98.84%

1,000,000 0.10% 100.00% 100.16%

Table 5.1.5.3 – Analysis of variance of execution time for sorting alpha-numeric data with one variable task

Sample Size F Statistic P-value

100 2470.784849 7.2952E-114

1,000 450.0662526 2.12669E-63

10,000 559.694351 1.81613E-69

100,000 1457.216578 1.2088E-97

1,000,000 5405.244592 2.3937E-138

5.1.6 Sorting of Alpha-numeric data and Multiple variables task:

Table 5.1.6.1 – Mean execution time for sorting Alpha-numeric data with Multiple variables in seconds

Sample Size data.table Native R Tidyverse

100 0.0002079651 0.0005610256 0.0050519032

1,000 0.0005848977 0.0079561373 0.0112699413

10,000 0.0020820469 0.0599394282 0.0637417024

100,000 0.0037512825 0.6977975037 0.6710197818

1,000,000 0.0136423213 9.1822695426 9.4916779269

Table 5.1.6.2 – Performance comparison sorting Alpha-numeric data with Multiple variables in seconds (considering

Native R as standard)

Sample Size data.table Native R Tidyverse

100 37.07% 100.00% 900.48%

1,000 7.35% 100.00% 141.65%

10,000 3.47% 100.00% 106.34%

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1711–1720 | 1717

100,000 0.54% 100.00% 96.16%

1,000,000 0.15% 100.00% 103.37%

Table 5.1.6.3 – Analysis of variance of execution time for sorting alpha-numeric data with multiple variables task

Sample Size F Statistic P-value

100 7588.372324 4.7152E-149

1,000 776.6319064 7.15938E-79

10,000 693.1273543 1.42946E-75

100,000 2019.354389 1.2526E-107

1,000,000 5442.264376 1.4592E-138

5.2 Analysis of frameworks performance in joining/merging task:

The analysis was performed on machine data collected for joining/merging task and sub-tasks defined in figure 3.2

5.2.1 Adding columns to Dataframe:

Table 5.2.1.1 – Mean execution time for adding columns to dataframe in seconds

Sample Size data.table Native R Tidyverse

100 0.0000002080 0.0000667021 0.0003022237

1,000 0.0000002369 0.0000597766 0.0003120869

10,000 0.0000001573 0.0000609473 0.0002889712

100,000 0.0000001714 0.0000581416 0.0002806376

1,000,000 0.0000003590 0.0000582119 0.0002857252

Table 5.2.1.2 – Performance comparison adding columns to dataframe in seconds (considering Native R as standard)

Sample Size data.table Native R Tidyverse

100 0.3118944% 100.0000000% 453.0950019%

1,000 0.3963421% 100.0000000% 522.0883609%

10,000 0.2580262% 100.0000000% 474.1329312%

100,000 0.2948321% 100.0000000% 482.6797905%

1,000,000 0.6167815% 100.0000000% 490.8367127%

Table 5.2.1.3 – Analysis of variance of execution time for add column task

Sample Size F Statistic P-value

100 319.6036982 2.9912E-54

1000 703.6291298 5.2586E-76

10000 1393.337743 2.77356E-96

100000 886.1248127 9.71989E-83

1000000 949.0999733 9.09379E-85

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1711–1720 | 1718

5.2.2 Adding Rows to Dataframe:

Table 5.2.2.1 – Mean execution time for adding rows to dataframe in seconds

Sample Size data.table Native R Tidyverse

100 0.0000002065 0.0006020982 0.0003262713

1,000 0.0000002039 0.0009595808 0.0005502062

10,000 0.0000001957 0.0065670171 0.0046304645

100,000 0.0000001948 0.0504913999 0.0284873130

1,000,000 0.0000002120 0.6300234609 0.4264532398

Table 5.2.2.2 – Performance comparison adding rows to dataframe in seconds (considering Native R as standard)

Sample Size data.table Native R Tidyverse

100 0.0343034% 100.0000000% 54.1890512%

1,000 0.0212447% 100.0000000% 57.3381832%

10,000 0.0029807% 100.0000000% 70.5109260%

100,000 0.0003858% 100.0000000% 56.4201291%

1,000,000 0.0000336% 100.0000000% 67.6884698%

Table 5.2.2.3 – Analysis of variance of execution time for add rows task

Sample Size F Statistic P-value

100 219.589801 7.03992E-45

1000 1728.53201 7.4744E-103

10000 332.7382215 2.67136E-55

100000 196.7492013 2.73801E-42

1000000 705.3809479 4.45651E-76

5.2.3 Left join:

Table 5.2.3.1 – Mean execution time for left join to dataframe in seconds

Sample Size data.table Native R Tidyverse

100 0.0000003047 0.0019212360 0.0048947043

1,000 0.0000003899 0.0041299382 0.0058566790

10,000 0.0000003161 0.0386587562 0.0070598526

100,000 0.0000003556 0.5244205575 0.0288984245

1,000,000 0.0000002032 5.7803973284 0.2307397870

Table 5.2.3.2 – Performance comparison left join to dataframe in seconds (considering Native R as standard)

Sample Size data.table Native R Tidyverse

100 0.0158596% 100.0000000% 254.7685116%

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1711–1720 | 1719

1,000 0.0094413% 100.0000000% 141.8103298%

10,000 0.0008176% 100.0000000% 18.2619756%

100,000 0.0000678% 100.0000000% 5.5105438%

1,000,000 0.0000035% 100.0000000% 3.9917634%

Table 5.2.3.3 – Analysis of variance of execution time for left join task

Sample Size F Statistic P-value

100 403.5866659 1.97342E-60

1000 504.0151501 1.57475E-66

10000 1346.427798 3.02377E-95

100000 4622.224936 2.0044E-133

1000000 5050.487086 3.2804E-136

5.2.4 Right join:

Table 5.2.4.1 – Mean execution time for right join to dataframe in seconds

Sample Size data.table Native R Tidyverse

100 0.0000002715 0.0015048951 0.0047442329

1,000 0.0000002172 0.0032576938 0.0036654969

10,000 0.0000003534 0.0348239021 0.0086731605

100,000 0.0000002602 0.3973108405 0.0234124074

1,000,000 0.0000004012 5.3114132951 0.2605791963

Table 5.2.4.2 – Performance comparison right join to dataframe in seconds (considering Native R as standard)

Sample Size data.table Native R Tidyverse

100 0.0180398% 100.0000000% 315.2533897%

1,000 0.0066685% 100.0000000% 112.5181538%

10,000 0.0010148% 100.0000000% 24.9057687%

100,000 0.0000655% 100.0000000% 5.8927180%

1,000,000 0.0000076% 100.0000000% 4.9060237%

Table 5.2.4.3 – Analysis of variance of execution time for right join task

Sample Size F Statistic P-value

100 1409.401 1.25E-96

1000 2822.611 5.4E-118

10000 1400.476 1.94E-96

100000 2834.344 4E-118

1000000 10295.62 1E-158

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1711–1720 | 1720

6. Conclusion & Discussion:

Analysis of performance data for the task of sorting shows

for the lower sample sizes (<104 rows) performance of

Tidyverse was not as per mark compared with Native R

and data.table. data.table performed better than native R

in all the sorting task. While in higher sample sizes (>105

rows) Tidyverse has performed better than Native R but

lacks in performance in comparison with data.table.

Analysis of variance shows a significant (p-value < 0.05)

difference in mean performance time of frameworks in

different sorting task (specified under figure 3.2)

considered in study. Post-hoc study (HSD-Tukey Test) of

pairwise performance comparison shows the same

findings and there were significant (p-value < 0.05)

differences between the performance of pairs of

frameworks.

While analyzing the joining task data, adding columns to

a dataset task data shows that performance of Native R is

better than Tidyverse for all the dataset sizes in the scope

but data.table performance found significantly better

compared to native R. Analysis of variance shows there is

a significant difference between the performance of all the

platforms and pairwise comparison also shows the same.

Adding rows to existing dataset task shows performance

of Native R was lagging behind Tidyverse and

performance of data.table was dominating other two

frameworks. The performance difference was proven

significant (p-value < 0.05) in analysis of variance and

pair-wise comparisons.

Joining tasks (Left & Right Join) performance data shows

same patters like sorting task and for lower samples

Tidyverse was performing inefficient then Native R but

data.table has outperformed both the frameworks. The

same established using analysis of variance and pairwise

comparisons.

Conflict of Interest: Authors do not have any conflict

of interest as there is no external/internal funding used to

complete this work.

References:

[1] R Core Team (2022). R: A language and

environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. URL

https://www.R-project.org/.

[2] Wickham H, Averick M, Bryan J, Chang W,

McGowan LD, François R, Grolemund G, Hayes A,

Henry L, Hester J, Kuhn M, Pedersen TL, Miller E,

Bache SM, Müller K, Ooms J, Robinson D, Seidel

DP, Spinu V, Takahashi K, Vaughan D, Wilke C,

Woo K, Yutani H (2019). “Welcome to the

tidyverse.” _Journal of Open Source Software_,

4(43), 1686. doi:10.21105/joss.01686

<https://doi.org/10.21105/joss.01686>.

[3] Dowle M, Srinivasan A (2021). _data.table:

Extension of `data.frame`_. R package version

1.14.2, <https://CRAN.R-

project.org/package=data.table>.

[4] R Core Team. (2021). object.size: Estimate the Size

of R Objects (R version 4.1.0). R Foundation for

Statistical Computing.

https://www.rdocumentation.org/packages/base/ver

sions/4.1.0/topics/object.size

[5] Wickham, H., & Csárdi, G. (2020). nycflights13:

Flights that Departed NYC in 2013. R package

version 1.1.0. https://CRAN.R-

project.org/package=nycflights13

[6] Müller, K., Wickham, H., & François, R. (2021).

tibble: Simple Data Frames (R version 4.1.0).

RStudio. https://tibble.tidyverse.org

[7] Montgomery, D. C. (2017). Design and Analysis of

Experiments. John Wiley & Sons.

[8] Agresti, A., & Franklin, C. (2018). Statistics: The Art

and Science of Learning from Data

[9] Field, A., Miles, J., & Field, Z. (2012). Discovering

Statistics Using R. SAGE Publications

[10] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The

Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer Science &

Business Media.

[11] Montgomery, D. C., Peck, E. A., & Vining, G. G.

(2012). Introduction to Linear Regression Analysis.

John Wiley & Sons.

[12] Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W.

(2004). Applied Linear Statistical Models. McGraw-

Hill.

[13] Draper, N. R., & Smith, H. (1998). Applied

Regression Analysis (3rd ed.). Wiley-Interscience.

[14] Wickham, H. (2021). Memory. Advanced R.

http://adv-r.had.co.nz/memory.html

about:blank
about:blank
about:blank
about:blank
about:blank

