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Abstract: To maximize data processing and analysis, effective data management is essential. It ensures that data is efficiently processed, 

readily accessible, secure, and well-organized. This enhances data integrity, reduces the amount of redundancy, and it makes decision-

making more prompt. In an era where data is a valued asset that drives innovation and strategic decision-making, effective data management 

techniques are essential. 

The two essential data management activities for improving data processing are joining and sorting. By combining datasets based on 

common characteristics, joining makes thorough analysis easier. Sorting data well enhances search and retrieval. When combined, these 

processes enhance the accuracy and speed of data processing, simplifying workflows and enabling sound decision-making. Database 

management systems depend on joining and sorting to enable the creation of value, the extraction of significant insights, and the 

identification of trends from massive datasets. 

The performance of native R, tidyverse, and data.table when merging data in R varies. Large datasets may cause Native R to lag, despite 

its versatility. Known for its readability, Tidyverse strikes a balance between performance and simplicity. Because of its exceptional speed, 

Data.table is a very effective option for large-scale data joins. The decision is based on the complexity and amount of the dataset. The best 

option for maximum performance, particularly for complex and large-scale jobs, is Data.table. Native R and Tidyverse work well with 

smaller, more manageable datasets when code readability is crucial. Every method addresses particular requirements in R data analysis. 

Similarly, when it comes to sorting data in R, Native R, tidyverse, and data.table behave differently. While Native R provides a standard 

method, it might not be as effective with larger datasets. Although readability is given priority in Tidyverse's user-friendly syntax, it may 

not be as fast as more efficient options. Once more, Data.table runs faster and uses less memory when sorting large amounts of data than 

the competition. The decision is based on the needs of the analysis: data.table for best performance, especially with large datasets and 

computationally intensive tasks; tidyverse for readability; and Native R for simplicity. 

Hence, in order to sum up, effective data management is essential for businesses to fully utilize their data and make wise decisions. 

Optimizing data processing and analysis requires careful consideration of joining, sorting, and tool selection. 

Keywords: Memory Management in R, Performance in R, Native R, Tidyverse, Data.Table 

1. Introduction: 

In the contemporary landscape of information systems, 

the significance of data as a pivotal asset for driving 

innovation and strategic decision-making cannot be 

overstated. Effective data management serves as the 

linchpin in maximizing the processing and analysis of 

data, ensuring its efficiency, accessibility, security, and 

organization. This imperative practice not only enhances 

data integrity but also streamlines workflows, reduces 

redundancy, and facilitates prompt decision-making. 

Two fundamental data management activities, namely 

joining and sorting, play a crucial role in improving data 

processing capabilities. Joining, by amalgamating 

datasets based on common characteristics, simplifies 

thorough analysis, while sorting data optimally enhances 

search and retrieval processes. The synergy of these 

activities contributes to the accuracy and speed of data 

processing, empowering information systems to extract 

meaningful insights and identify trends from vast datasets. 

In the realm of data management within the R language, 

the performance of different frameworks – namely Native 

R, Tidyverse, and Data.table – significantly influences the 

outcome of data processing tasks. The choice among these 

frameworks hinges on the complexity and scale of the 

dataset at hand. Native R, known for its versatility, may 

experience lag with large datasets. Tidyverse, renowned 

for its readability, strikes a balance between performance 

and simplicity, making it suitable for smaller, more 

manageable datasets. On the other hand, Data.table 

emerges as a powerful option for large-scale data 

operations, excelling in speed and efficiency. 

This paper delves into the impact of these data 

management frameworks on common data management 

tasks within the R language, focusing on joining and 

sorting operations. The assessment considers the 
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performance variations among Native R, Tidyverse, and 

Data.table, providing insights into their strengths and 

limitations in handling datasets of different complexities 

and sizes. By understanding the nuances of these 

frameworks, researchers, practitioners, and data analysts 

can make informed decisions in selecting the most 

appropriate tool for their specific data analysis needs. 

As businesses increasingly recognize the pivotal role of 

effective data management in harnessing the full potential 

of their data, this research seeks to contribute valuable 

insights into the optimization of data processing and 

analysis. The paper aims to guide practitioners in making 

informed decisions regarding joining, sorting, and tool 

selection, emphasizing the pivotal role these aspects play 

in achieving optimal performance and extracting 

meaningful insights from diverse datasets. 

2. Frameworks (Packages) in Scope: 

a. Native R (utils)[1];  

b. tidyverse_1.3.2/tibble_3.1.8[2];  

c. data.table_1.14.2 [3] 

3. Methodology 

There was no significant work was found in the literature 

for benchmarking of data management tasks using R 

frameworks. We have discussed here approach to record 

the memory utilization and execution time of frameworks 

along with analysis approach which includes graphical 

exploration to establish the benchmark and statistical 

inference to support the evidences. 

An initial sample of 102 records has been drawn randomly 

with replacement from flight data from nycflight13 

package and changed the data structure to data structure 

in scope. Execution time was measured and results were 

written to a file. In the next step, the sample size has been 

stepped up by a multiple of 101 rows and execution time 

was recorded for each task and frameworks in scope. The 

sample size was increased to 105 records. 

Fig 3.1 – Experiment Control Workflow  

 

Fig 3.2 – Data management activities and sub-activities 

 

Each dataset was processed for each task with different frameworks and cost value (execution time) has been recorded. The 

environment get cleaned after each iteration to avoid any garbage in the environment. Each activity gets repeated 50 times 

to avoid any bias in the execution cycle.  

4. Methods: 

Exploratory Data Analysis (EDA) is a crucial step in the 

data analysis process that involves the initial examination 

and exploration of a dataset to gain insights, detect 

patterns, and identify potential trends or outliers. It serves 

as the foundation for more in-depth analysis and helps 

researchers and analysts understand the underlying 

structure of the data. 

An exploratory data analysis has been performed on 

machine data for each activity, sub-activity and 

framework. Numeric exploratory data analysis was 

performed to get an overview of performance of data 

management frameworks. Later the same has been 
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established with Graphical exploratory data analysis to 

confirm, there is no misleading summary due to data 

distribution.  

Analysis of Variance (ANOVA) is a statistical technique 

used to analyze the mean difference of memory utilization 

between the groups (Frameworks). ANOVA allows to 

determine whether the means of two or more groups are 

significantly different from each other. Analysis of 

variance is used to establish the fact whether three data 

structure in scope have significant difference in memory 

utilization or not for at least one set of frameworks.  

Analysis of variance has been performed with null 

hypothesis that there is no significant difference in 

memory utilization of three frameworks (Native R, 

Tidyverse and data.table). 

H0: There is no significant difference in memory 

utilization of three frameworks (Native R, Tidyverse and 

data.table) 

5. Analysis and Results 

5.1 Analysis of frameworks performance in sorting 

task: 

The analysis was performed on machine data collected 

for sorting task and sub-tasks defined in figure 3.2 

5.1.1 Sorting of Numeric data and one variable task: 

Table 5.1.1.1 – Mean execution time for sorting numeric data with one variable in seconds 

Sample Size data.table Native R Tidyverse 

100 0.0001092301 0.0002789582 0.0026437109 

1,000 0.0001226501 0.0005052928 0.0031999175 

10,000 0.0002534025 0.0023109786 0.0038007622 

100,000 0.0007437662 0.0552861505 0.0223498222 

1,000,000 0.0070738811 0.5270177412 0.4108667845 

 

Table 5.1.1.2 – Performance comparison sorting numeric data with one variable in seconds (considering Native R as 

standard) 

Sample Size data.table Native R Tidyverse 

100 39.16% 100.00% 947.71% 

1,000 24.27% 100.00% 633.28% 

10,000 10.97% 100.00% 164.47% 

100,000 1.35% 100.00% 40.43% 

1,000,000 1.34% 100.00% 77.96% 

 

Table 5.1.1.3 – Analysis of variance of execution time for sorting numeric data with one variable task 

Sample Size F Statistic P-value 

100 2847.198832 2.8763E-118 

1,000 574.8956323 3.17595E-70 

10,000 747.6547728 9.15968E-78 

100,000 2206.374908 2.3209E-110 

1,000,000 1816.748274 2.2284E-104 

5.1.2 Sorting of Numeric data and Multiple variables task: 

Table 5.1.2.1 – Mean execution time for sorting numeric data with multiple variables in seconds 

Sample Size data.table Native R Tidyverse 

100  0.0001362677   0.0003335794   0.0031702710  
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1,000  0.0001554895   0.0009022470   0.0039134508  

10,000  0.0004225555   0.0023501227   0.0053115033  

100,000  0.0013343456   0.0520894654   0.0222365700  

1,000,000  0.0140660846   0.5260348940   0.4159666619  

 

Table 5.1.2.2 – Performance comparison sorting numeric data with Multiple variables in seconds (considering Native R as 

standard) 

Sample Size data.table Native R Tidyverse 

100 40.85% 100.00% 950.38% 

1,000 17.23% 100.00% 433.74% 

10,000 17.98% 100.00% 226.01% 

100,000 2.56% 100.00% 42.69% 

1,000,000 2.67% 100.00% 79.08% 

 

Table 5.1.2.3 – Analysis of variance of execution time for sorting numeric data with multiple variables task 

Sample Size F Statistic P-value 

100 1024.195846 4.97383E-87 

1,000 357.3077313 3.56683E-57 

10,000 432.954885 2.44553E-62 

100,000 1984.194987 4.3513E-107 

1,000,000 1394.571983 2.60729E-96 

 

5.1.3 Sorting of Text data and Single variable task: 

Table 5.1.3.1 – Mean execution time for sorting text data with Single variable in seconds 

Sample Size data.table Native R Tidyverse 

100  0.0001048509   0.0004756379   0.0027897569  

1,000  0.0001749017   0.0018483864   0.0055657809  

10,000  0.0002171909   0.0230633976   0.0256044599  

100,000  0.0007404266   0.3418253105   0.3145452813  

1,000,000  0.0075406263   4.9952621417   4.9316663550  

Table 5.1.3.2 – Performance comparison sorting text data with one variable in seconds (considering Native R as standard) 

Sample Size data.table Native R Tidyverse 

100 22.04% 100.00% 586.53% 

1,000 9.46% 100.00% 301.12% 

10,000 0.94% 100.00% 111.02% 

100,000 0.22% 100.00% 92.02% 

1,000,000 0.15% 100.00% 98.73% 
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Table 5.1.3.3 – Analysis of variance of execution time for sorting text data with one variable task 

Sample Size F Statistic P-value 

100 582.3752824 1.36696E-70 

1,000 399.7928371 3.5487E-60 

10,000 1245.256716 6.91855E-93 

100,000 3569.386919 2.546E-125 

1,000,000 3260.476957 1.7154E-122 

 

5.1.4 Sorting of Text data and Multiple variables task: 

Table 5.1.4.1 – Mean execution time for sorting text data with Multiple variables in seconds 

Sample Size data.table Native R Tidyverse 

100  0.0001536516   0.0004777348   0.0033136688  

1,000  0.0001671399   0.0024942584   0.0051134566  

10,000  0.0003902598   0.0297835725   0.0332884222  

100,000  0.0013080937   0.4007011749   0.3499668288  

1,000,000  0.0128390679   5.5760959891   5.5528008486  

 

Table 5.1.4.2 – Performance comparison sorting text data with Multiple variables in seconds (considering Native R as 

standard) 

Sample Size data.table Native R Tidyverse 

100 32.16% 100.00% 693.62% 

1,000 6.70% 100.00% 205.01% 

10,000 1.31% 100.00% 111.77% 

100,000 0.33% 100.00% 87.34% 

1,000,000 0.23% 100.00% 99.58% 

 

Table 5.1.4.3 – Analysis of variance of execution time for sorting text data with multiple variables task 

Sample Size F Statistic P-value 

100 509.8179751 7.55224E-67 

1,000 950.8216765 8.03613E-85 

10,000 607.8017308 8.34962E-72 

100,000 1188.941418 1.71038E-91 

1,000,000 3359.806345 1.9827E-123 

 

5.1.5 Sorting of Alpha-numeric data and Single variable task: 

Table 5.1.5.1 – Mean execution time for sorting Alpha-numeric data with Single variable in seconds 

Sample Size data.table Native R Tidyverse 
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100  0.0002320735   0.0008733590   0.0045260824  

1,000  0.0006350751   0.0068407380   0.0096418822  

10,000  0.0020761554   0.0642521353   0.0544743591  

100,000  0.0033552404   0.7980587956   0.7888056717  

1,000,000  0.0111766409   10.7279374556   10.7455592345  

 

Table 5.1.5.2 – Performance comparison sorting Alpha-numeric data with one variable in seconds (considering Native R 

as standard) 

Sample Size data.table Native R Tidyverse 

100 26.57% 100.00% 518.24% 

1,000 9.28% 100.00% 140.95% 

10,000 3.23% 100.00% 84.78% 

100,000 0.42% 100.00% 98.84% 

1,000,000 0.10% 100.00% 100.16% 

 

Table 5.1.5.3 – Analysis of variance of execution time for sorting alpha-numeric data with one variable task 

Sample Size F Statistic P-value 

100 2470.784849 7.2952E-114 

1,000 450.0662526 2.12669E-63 

10,000 559.694351 1.81613E-69 

100,000 1457.216578 1.2088E-97 

1,000,000 5405.244592 2.3937E-138 

 

5.1.6 Sorting of Alpha-numeric data and Multiple variables task: 

Table 5.1.6.1 – Mean execution time for sorting Alpha-numeric data with Multiple variables in seconds 

Sample Size data.table Native R Tidyverse 

100  0.0002079651   0.0005610256   0.0050519032  

1,000  0.0005848977   0.0079561373   0.0112699413  

10,000  0.0020820469   0.0599394282   0.0637417024  

100,000  0.0037512825   0.6977975037   0.6710197818  

1,000,000  0.0136423213   9.1822695426   9.4916779269  

Table 5.1.6.2 – Performance comparison sorting Alpha-numeric data with Multiple variables in seconds (considering 

Native R as standard) 

Sample Size data.table Native R Tidyverse 

100 37.07% 100.00% 900.48% 

1,000 7.35% 100.00% 141.65% 

10,000 3.47% 100.00% 106.34% 
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100,000 0.54% 100.00% 96.16% 

1,000,000 0.15% 100.00% 103.37% 

 

Table 5.1.6.3 – Analysis of variance of execution time for sorting alpha-numeric data with multiple variables task 

Sample Size F Statistic P-value 

100 7588.372324 4.7152E-149 

1,000 776.6319064 7.15938E-79 

10,000 693.1273543 1.42946E-75 

100,000 2019.354389 1.2526E-107 

1,000,000 5442.264376 1.4592E-138 

 

5.2 Analysis of frameworks performance in joining/merging task: 

The analysis was performed on machine data collected for joining/merging task and sub-tasks defined in figure 3.2 

5.2.1 Adding columns to Dataframe: 

Table 5.2.1.1 – Mean execution time for adding columns to dataframe in seconds 

Sample Size data.table Native R Tidyverse 

100  0.0000002080   0.0000667021   0.0003022237  

1,000  0.0000002369   0.0000597766   0.0003120869  

10,000  0.0000001573   0.0000609473   0.0002889712  

100,000  0.0000001714   0.0000581416   0.0002806376  

1,000,000  0.0000003590   0.0000582119   0.0002857252  

 

Table 5.2.1.2 – Performance comparison adding columns to dataframe in seconds (considering Native R as standard) 

Sample Size data.table Native R Tidyverse 

100 0.3118944% 100.0000000% 453.0950019% 

1,000 0.3963421% 100.0000000% 522.0883609% 

10,000 0.2580262% 100.0000000% 474.1329312% 

100,000 0.2948321% 100.0000000% 482.6797905% 

1,000,000 0.6167815% 100.0000000% 490.8367127% 

Table 5.2.1.3 – Analysis of variance of execution time for add column task 

Sample Size F Statistic P-value 

100 319.6036982 2.9912E-54 

1000 703.6291298 5.2586E-76 

10000 1393.337743 2.77356E-96 

100000 886.1248127 9.71989E-83 

1000000 949.0999733 9.09379E-85 
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5.2.2 Adding Rows to Dataframe: 

Table 5.2.2.1 – Mean execution time for adding rows to dataframe in seconds 

Sample Size data.table Native R Tidyverse 

100  0.0000002065   0.0006020982   0.0003262713  

1,000  0.0000002039   0.0009595808   0.0005502062  

10,000  0.0000001957   0.0065670171   0.0046304645  

100,000  0.0000001948   0.0504913999   0.0284873130  

1,000,000  0.0000002120   0.6300234609   0.4264532398  

 

Table 5.2.2.2 – Performance comparison adding rows to dataframe in seconds (considering Native R as standard) 

Sample Size data.table Native R Tidyverse 

100 0.0343034% 100.0000000% 54.1890512% 

1,000 0.0212447% 100.0000000% 57.3381832% 

10,000 0.0029807% 100.0000000% 70.5109260% 

100,000 0.0003858% 100.0000000% 56.4201291% 

1,000,000 0.0000336% 100.0000000% 67.6884698% 

 

Table 5.2.2.3 – Analysis of variance of execution time for add rows task 

Sample Size F Statistic P-value 

100 219.589801 7.03992E-45 

1000 1728.53201 7.4744E-103 

10000 332.7382215 2.67136E-55 

100000 196.7492013 2.73801E-42 

1000000 705.3809479 4.45651E-76 

 

5.2.3 Left join: 

Table 5.2.3.1 – Mean execution time for left join to dataframe in seconds 

Sample Size data.table Native R Tidyverse 

100  0.0000003047   0.0019212360   0.0048947043  

1,000  0.0000003899   0.0041299382   0.0058566790  

10,000  0.0000003161   0.0386587562   0.0070598526  

100,000  0.0000003556   0.5244205575   0.0288984245  

1,000,000  0.0000002032   5.7803973284   0.2307397870  

 

Table 5.2.3.2 – Performance comparison left join to dataframe in seconds (considering Native R as standard) 

Sample Size data.table Native R Tidyverse 

100 0.0158596% 100.0000000% 254.7685116% 
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1,000 0.0094413% 100.0000000% 141.8103298% 

10,000 0.0008176% 100.0000000% 18.2619756% 

100,000 0.0000678% 100.0000000% 5.5105438% 

1,000,000 0.0000035% 100.0000000% 3.9917634% 

 

Table 5.2.3.3 – Analysis of variance of execution time for left join task 

Sample Size F Statistic P-value 

100 403.5866659 1.97342E-60 

1000 504.0151501 1.57475E-66 

10000 1346.427798 3.02377E-95 

100000 4622.224936 2.0044E-133 

1000000 5050.487086 3.2804E-136 

 

5.2.4 Right join: 

Table 5.2.4.1 – Mean execution time for right join to dataframe in seconds 

Sample Size data.table Native R Tidyverse 

100  0.0000002715   0.0015048951   0.0047442329  

1,000  0.0000002172   0.0032576938   0.0036654969  

10,000  0.0000003534   0.0348239021   0.0086731605  

100,000  0.0000002602   0.3973108405   0.0234124074  

1,000,000  0.0000004012   5.3114132951   0.2605791963  

 

Table 5.2.4.2 – Performance comparison right join to dataframe in seconds (considering Native R as standard) 

Sample Size data.table Native R Tidyverse 

100 0.0180398% 100.0000000% 315.2533897% 

1,000 0.0066685% 100.0000000% 112.5181538% 

10,000 0.0010148% 100.0000000% 24.9057687% 

100,000 0.0000655% 100.0000000% 5.8927180% 

1,000,000 0.0000076% 100.0000000% 4.9060237% 

 

Table 5.2.4.3 – Analysis of variance of execution time for right join task 

Sample Size F Statistic P-value 

100 1409.401 1.25E-96 

1000 2822.611 5.4E-118 

10000 1400.476 1.94E-96 

100000 2834.344 4E-118 

1000000 10295.62 1E-158 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1711–1720 |  1720 

 

6. Conclusion & Discussion: 

Analysis of performance data for the task of sorting shows 

for the lower sample sizes (<104 rows) performance of 

Tidyverse was not as per mark compared with Native R 

and data.table.  data.table performed better than native R 

in all the sorting task. While in higher sample sizes (>105 

rows) Tidyverse has performed better than Native R but 

lacks in performance in comparison with data.table.  

Analysis of variance shows a significant (p-value < 0.05) 

difference in mean performance time of frameworks in 

different sorting task (specified under figure 3.2) 

considered in study. Post-hoc study (HSD-Tukey Test) of 

pairwise performance comparison shows the same 

findings and there were significant (p-value < 0.05) 

differences between the performance of pairs of 

frameworks. 

While analyzing the joining task data, adding columns to 

a dataset task data shows that performance of Native R is 

better than Tidyverse for all the dataset sizes in the scope 

but data.table performance found significantly better 

compared to native R. Analysis of variance shows there is 

a significant difference between the performance of all the 

platforms and pairwise comparison also shows the same. 

Adding rows to existing dataset task shows performance 

of Native R was lagging behind Tidyverse and 

performance of data.table was dominating other two 

frameworks. The performance difference was proven 

significant (p-value < 0.05) in analysis of variance and 

pair-wise comparisons. 

Joining tasks (Left & Right Join) performance data shows 

same patters like sorting task and for lower samples 

Tidyverse was performing inefficient then Native R but 

data.table has outperformed both the frameworks. The 

same established using analysis of variance and pairwise 

comparisons. 
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