

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2450–2457 | 2450

An Efficient Computer Vision AI Powered Application based Fast

Harris Corner Detection Accelerator on Zynq-7000 FPGA

Taoufik Saidani1,Mohammad H Algarni2

Submitted: 29/01/2024 Revised: 07/03/2024 Accepted: 15/03/2024

Abstract: Tools for rapid prototyping have been crucial in the race to market. A frequently-used computer vision, object detection and

Artificial Intelligence tool for image processing, real-time contrast enhancement, is the focus of our study as we investigate the possibility

of developing an intellectual property core using a fast prototyping technique. In this research paper, we provide a new method that uses

HDL Coder-based high-level synthesis (HLS) rapidly to prototype fast corner detection on FPGAs. Implementing image processing

algorithms on FPGAs using traditional RTL-based design approaches may prove a tedious, error-prone procedure. By providing a more

abstract level of description, HLS frees up designers to concentrate on algorithmic functionality rather than writing inefficient hardware

specifications by hand. We employ this feature by using the Harris corner detection method in MATLAB/Simulink, then using the HDL

Coder methodology automatically to transform it into generated VHDL code that can be synthesized on Zynq7000 FPGA. Compared to

the conventional RTL method, this design flow drastically reduces the development time and complexity. The suggested method for rapid

FPGA prototyping in image processing applications is demonstrated to be successful by our practical findings, which indicate that the

HLS-based Harris corner detector achieves the performance of real time video processing on a Xilinx Zynq7000 FPGA platform.

Keywords: HDL, HDL Coder, Fast Harris corner detection, Computer vision, Artificial Intelligence, Object Detection

1. Introduction

For various computer vision applications, including object

localization, video tracking, motion estimation, image

retrieval, and object detection, corner detection is an

essential pre-processing step. Accurate, repeatable corner

detection is critical for real-time computer vision

applications, such as online visual localization, motion

estimation, and 3D reconstruction. Although software

solutions provide greater leeway, the parallel processing

capabilities of FPGAs make them the go-to choice for

applications that require a real-time response and have

limited resources. It may require huge efforts, a knowledge

of hardware description languages, and manual optimization

approaches to apply typical RTL-based design processes to

FPGAs. A potential solution to this problem is high-level

synthesis (HLS), which allows algorithm implementation in

well-known environments, like C/C++ or

MATLAB/Simulink, thereby speeding up FPGA design

[1,2].

Mobile intelligent systems, especially the recent mobility

aids for the visually impaired, rely on corner or point of

interest recognition as a critical vision operation [1].

Without doubt, when it comes to the safety of the visually

impaired, the computational and spatial complexity of

embedded and wearable systems in real time are crucial

characteristics. Thus, it is important, when building such

systems, to tailor their complexity level to suit the desired

system's performance. Due to its superior accuracy, high

quality identified corners, and invariance to scale and

rotation geometric transformations, the Harris-Stephen

method is widely employed for corner recognition [2], but

the algorithm's temporal complexity is its biggest flaw.

Numerous laborious procedures must be applied to each

picture pixel (pixel level processing), such as gradient

derivatives, Gaussian smoothing, Harris response corner

calculation, etc. Since real-time constraints are a significant

concern, it may not be feasible to implement software-based

sequential solutions [3].

By using field-programmable gate arrays (FPGAs), it is

possible to shorten the development cycle of modern

designs and decrease the computational complexity of any

operation. Additionally, FPGA-based boards facilitate the

discovery of the optimal design for the intended application

in terms of software and hardware sufficiency. Indeed,

various hardware-software partition strategies may be used,

resulting in systems with varying processing speeds and

lower resource needs, but a new way to create vision

systems is to use FPGAs for complicated processing, such

as corner detection.

Boards constructed around the latest generation of field-

programmable gate array (FPGA) devices allow the

implementation of various hardware/software partition

strategies, leading to varying degrees of performance [4-5].

Utilizing the accessible parallelism of computational

resources, FPGA SoCs (Systems on Chip) enable the

implementation of parallel applications with various

1Department of Computer Sciences, Faculty of Computing and

Information Technology, Northern Border University, Rafha, Saudi Arabia

* Taoufik.Saidan@nbu.edu.sa
2Department of Computer Science,Al-Baha University, Saudi Arabia

* malgarni@bu.edu.sa

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2450–2457 | 2451

programming models (e.g., grids, trees, and pyramids) and

whole processing control modes (e.g., SIMD, true MIMD,

and variations thereof). Additionally, BRAMs allow for

hard real-time processing, and DDR3 SDRAM has an

extremely large memory (up to one gigabyte). Sustainable

design is aided by these technologies, which also create new

markets for large data processing, image processing, and

computer vision in particular [6-7].

A new paradigm, High-Level Synthesis (HLS), has arrived,

bringing with it a new way of thinking and doing things.

Bypassing the complexity of RTL, HLS allows us to write

the Harris corner detector approach in MATLAB/Simulink

or any familiar Tools environments, utilizing simple visual

blocks and prebuilt image processing tools. The translator in

HLS, the HDL Coder, efficiently converts this high level

picture into synthesizable generated VHDL or Verilog code,

thereby connecting the gap between the algorithms and the

hardware [9].

This research seeks to demonstrate that HLS can

revolutionize fast FPGA detection prototyping. Using

MATLAB/Simulink for the algorithm modeling and an

FPGA platform for the real-time edge detection, we propose

a streamlined design process. By running thorough tests, we

wish to demonstrate how our approach outperforms the

traditional RTL paradigm in terms of development speed,

resource use, and real-time performance [10].

The subsequent sections of this work are structured as

follows: the following section. Section 2 introduces a

sophisticated synthesis technique for picture and video

prototyping using a model-based design with HDL coder. It

addresses the challenges encountered during the prototyping

process and provides corresponding solutions to these. The

proposed method's prototype and experiment results are

shown in Section 3. Ultimately, this work is concluded in

Section 4.

2. Real Time image and video system design

based on the Zyn7000 Platform

According to [11], the Zedboard, which is a Zynq-7000

development board, the Avnet FMC-HDMI-CAM module,

and a Python 1300-C camera were all confirmed to be

mutually compatible. The "FPGA Mezzanine Card," or

FMC, is a kind of standardized interface that enables fast

connections between FPGAs and other devices [12]. Since

this interface is universal, all of the cards using it can work

together seamlessly. It is possible to monitor the system

over the serial port using an UART communication with a

computer, or it can be run as standalone.

To facilitate the recording of video data, an integrated video

system was employed, consisting of a display and a camera,

called a comprehensive vision system. The system's

capacity to process data in real-time depends on the

application domain. In order to develop a vision system, this

research suggests a platform-based architecture that

incorporates processing modules and video capture. Using

DDR3 memory and FPGA-based hardware processing, this

method allows the sensor to transmit live video data to the

display seamlessly [13]. The video processing system, based

on an embedded system architecture, is shown in Figure 1.

An HDMI display for viewing the video output, the Xilinx

ZedBoard platform, an image sensor from VITA-2000, an

FMC module, and the Xilinx ZedBoard platform, comprise

the system [14].

Application development for the XilinxTM Zynq family of

integrated circuits is facilitated by the use of these boards.

Equipped with a XilinxTM FPGA and a dual-core ARMTM

Cortex-A9TM processor, the circuit makes use of an "AP

SoC" (All Programmable System-on-Chip) architecture.

Armed with this equipment, it is possible to create a plethora

of efficient applications in fields like embedded Linux,

motor control, software acceleration, and video processing

[15].

The filter and other settings may be changed using the

buttons and switches on the Zedboard. The general layout

of the system is shown in Figure 1.

Fig. 1. Full presentation of the video processing system based on the Fast Corner Detectio System

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2450–2457 | 2452

An integrated circuit (ICU) from the Zynq-7020 family and

other peripherals constitute the Zedboard experimental

board, which is the heart of the experiment [11]. Zynq-7000

is a revolutionary microprocessor that combines a dual-core

ARM Cortex-A9 CPU with FPGA fabrics on a single die.

Instead of being typically isolated, high-speed Advanced

Interface (AXI) buses allow the central processing unit

(CPU) and field-programmable gate array (FPGA) to work

together seamlessly to complete certain tasks. Figure 2

shows the basic layout of the Zynq architecture [9,11].

2.1. FPGA Model Based Design

The capacity digitally to design and test systems prior to

physically constructing them is the foundation of the Model-

Based Design (MBD) methodology. In this thesis, we

explore this concept using several HDLs, with a focus on

the adaptable MathWorks HDL Coder.

While these dedicated HLTs are optimized to suit particular

hardware, such as filter chains using hardwired blocks, the

HDL Coder provides a more comprehensive way, which

ensures that functionality takes precedence over platform

constraints. It easily produces synthesizable, portable

Verilog and VHDL code from MATLAB library functions,

Simulink models, and workflow charts. From scripting

FPGAs and analog-to-digital (ASIC) prototypes to

hardware-software co-design on platforms like an Intel

System on a Chip (SoC) and Xilinx Zynq, this code opens

up a world of possibilities [1].

The power of HDL Coder extends well beyond the creation

of code, however. For Xilinx, Microsemi, and Intel

platforms, its workflow adviser simplifies FPGA

programming. Pinpointing the essential pathways and

calculating resource use make it possible to control the HDL

design and implementation, as well as conduct a thorough

verification that satisfies even the most stringent

requirements, such as DO-254 and beyond, thanks to the

code's seamless traceability with the Simulink model [7].

As its name suggests, the HDL Coder is more than simply a

tool—it is an approach to design. Its proponents praise its

ability to allow experimentation, creation, and changes

without leaving the safety of a computer. The HDL Coder

allows users quickly to develop strong, adaptive systems,

that expedites their FPGA development journey and

uncovers the full potential of MBD,. To program with Zynq,

Mathworks provides two workflows: SoC Blockset and the

Embedded Coder Hardware Support Package. The model

architecture and capabilities vary between the two, but they

both provide connection between Zynq's FPGA and ARM

CPUs [7].

SoC Blockset: For granular control, it employs individual

Simulink models for the FPGA and CPU. An additional

model, with well-defined interfaces, is necessary for

communication. While this method enables powerful

capabilities, such as Direct Memory Access and

interruptions, it may be unsuitable for urgent tasks (<100

μs). It is less than optimal for power electronics prototyping,

as confirmed by Mathworks support [17].

Embedded Coder Hardware Support Package: This

creates a unified model in Simulink for both FPGA and

processor code, thereby simplifying the model

administration and communications. There are several

accessible basic communication routes, but these come at

the cost of control and flexibility.

It is recommended to develop a prototype design with the

potential to collect camera pictures before constructing the

actual system components [14, 16]. After the camera image

has been correctly acquired, the filters are created and tested

in the Matlab/Simulink environment, after which the HDL

Coder tool is used to encapsulate the filters as standard IP

blocks [17]. The IP blocks must be introduced into the

Vivado environment before they can be used in the camera

reference design. The system's software was finally written

in the Xilinx SDK environment. The final setup of the

system was achieved once the necessary drivers had been

integrated into it [12].

Building a robust system needs thorough planning and

execution. Here is how the referenced work approached this:

1. Reference Design:

An initial plan was drawn up for a reference design with an

ability to capture images from the camera [11]. This ensured

that, before anything was built, all the parts and functions

were specified.

2. Filter Design and Simulation:

To improve the recorded video, the next step was to create

and test the filters in the Matlab/Simulink environment.

These filters, which functioned as image processing

algorithms, were fine-tuned to ensure high-quality picture

capture [5].

3. IP Block Encapsulation:

The proposed filters were rendered into reusable Intellectual

Property (IP) blocks using the HDL Coder tool to ensure

smooth hardware integration. Thanks to this uniform

format, it was straightforward to include it in the Vivado

environment's camera reference design [7].

4. Software Development and Integration:

The software, or central processing unit, of the system was

then built using the Xilinx SDK. After finishing the

machine's configuration, the required drivers were installed

[11].

5.Visualization:

Pictures related to certain phases in the process were

included in order to improve the readers' understanding even

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2450–2457 | 2453

if the original text did not include any graphics or diagrams.

For example, pictures of the original plan or schematics of

the filters' development and integration might prove helpful.

The use of HLS is increasing because it allows additional

abstraction levels to be reached while still ensuring

continuous verification throughout the design cycle. The

open-source instruments that are used for high-level

synthesis (HLS) include Vivado HLS [10] and MATLAB

HDL Coder [11]. They are often used by digital architects

and designers to create and execute algorithms in fields such

as communications, neural networks, deep learning, image

processing, and aerospace. The code complexity may be

reduced by a factor of seven to ten using HLS technology.

They facilitate the reuse of behavioral intellectual property

(IP) across several projects and enable verification teams to

apply sophisticated modeling approaches, such as

transaction-level modeling [12].

In addition, integrated processors are used by the vast

majority of modern chip systems. Additional software or

firmware must be included when creating a chip with

several ICs in order to manage the simultaneous activities of

the memory, digital signal processors (DSPs),

microprocessors, and customized logic. Architects and

designers may experiment with various algorithmic and

implementation options using Automated High-Level

Synthesis (HLS) based on a shared functional specification.

The space, power, and performance tradeoffs may be

assessed and improved in this way.

New methods for register transfer level synthesis have made

the commercial deployment of HLS technology a more

realistic proposal. Some of the best-known names in

semiconductor design have developed proprietary software:

IBM, Motorola, Philips, and Siemens. At this time, several

High-Level Synthesis (HLS) products are supported by the

prominent Electronic Design Automation (EDA)

companies. Introduced in 1995, Synopsys's "Behavioral

Compiler" tool exemplifies the process of creating RTL

implementation using behavioral hardware description

language (HDL) code and integrating it with later products

[17]. The "Catapult HLS" [4] from Mentor Graphics and the

"Stratus High Level Synthesis" [19] from Cadence are

similar tools. High-Level Synthesis (HLS) in VLSI designs

follows a conventional method, as shown in Figure 2.

Fig. 2 : System Design Flow based on a Simulink /HDL

coder

2.2. Development Workflow Setup

The development technique that has been discussed

requires many tools and components in order for it to be

set up correctly. Visual representations of the whole setup

process are provided in Figure 3 and the following

sections.

Transferring control algorithms built in

Matlab/Simulink to platforms based on FPGAZynq7000

requires the following software:

• A Simulink/HDL coder toolbox and embedded

coder toolbox tools in the environment

Matlab/Simulink.

• Xilinx Vivado tools setup based on MATLAB

Vivado compatibility

As mentioned in reference, a specific version of the Vivado

Designer Suite. The results were obtained using Vivado

2017.4 and Matlab R2018b [7]. Since the "System

Generator" tool is not officially compatible with the version

of Matlab needed for the HDL Coder in the Vivado System

Edition, to ensure that the tool works with Matlab, one must

manually change the list of compatible versions. Matlab

should be started using the System Generator tool when

Vivado System Edition is being used, since it will instantly

connect to Xilinx tools. Each time that Matlab is started

using the command, however, it will be necessary to

configure the HDL creation tool manually:

hdlsetuptoolpath('ToolName','XilinxVivado','ToolPath','C:\

Xilinx\Vivado\2017.4\bin\vivado.bat'). The following

Matlab Add-Ons must be pre-installed from the Add-On

Explorer:

• The HDL Coder Extension toolbox Packages for Fpga

Zynq-7000 Platform is available.

• Xilinx Zynq-7000 Platform Embedded Coder toolbox

Support Package.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2450–2457 | 2454

• You may install MinGW-w64, a compatible compiler,

directly from the Toolbox Add-On Explorer. This is

highly recommended.

Fig. 3: System Design Wroklow Flow setup

3. HARRIS CORNER DETECTION DESIGN

AND SIMULATION

3.1. OVERVIEW OF THE HARRIS CORNER

DETECTION ALGORITHM

The term "corners" refers to areas of an image where the

level of detail and resistance to distortion differ

significantly. To find the wedges, Harris points are created

according to the pixels’ brightness. The following intensity

variations are proposed as the basis for an autocorrelation-

based detector:

𝑴(𝒙, 𝒚) = ∑ 𝒘(𝒖, 𝒗)(𝒖,𝒗) . (
𝑰𝒙
𝟐(𝒙, 𝒚) 𝑰𝒙𝑰𝒚(𝒙, 𝒚)

𝑰𝒙𝑰𝒚(𝒙, 𝒚) 𝑰𝒙
𝟐(𝒙, 𝒚)

)

with Ix and Iy being the local derivatives in x and y, and w

(u, v) is a weighting on the window (u, v). The study of the

eigenvalues of the matrix M makes it possible to determine

whether a point is a corner, a homogeneous region, or an

outline. A final criterion is calculated from M, making it

possible to define the type of point found.

R=Det(M)- k∗Trace(M)2

3.2. Simulink HDL coder design

The full system (Figure 4) was designed using filters inside

the Simulink/HDL coder environment, according to the

paper. Every single HDL Toolbox block is custom-made.

First, MATLAB was turned into a subsystem. Our team

successfully modified the HDL work IP blocks to make

them compatible with the flux advisor, following extensive

simulations. To accomplish size reduction, the system's four

separate filter designs—all of which may be enabled

simultaneously—were combined into two IP blocks. In this

way, the design could remain simple while all of the filters

were activated at the same time [7].

Fig. 4 :Full video processing Design based on FAST Harris Corner Detection

3.3. DESIGN SYNTHESIS AND RESULTS

Using the Simulink program, we can simulate the designs.

At the end, the code for each filter system is converted into

HDL code separately. To test this process, we used the HDL

Workflow Advisor and Matlab/Simulink HDL Coder add-

ons. A specialist in HDL workflow provided expert

consulting services. During the conversion process, we set

up the necessary parameters and transformed the Matlab and

Simulink systems into HDL code to provide a graphical user

interface. Next, according to the Vivado Suite Camera

reference, the system was converted into an IP block. It is

impossible to separate this IP block from the design, so the

filter systems were constructed on the Zedboard in a

sequential fashion. In addition, future studies might focus

on optimizing the space consumption and simplifying the

software complexity by reducing the number of on-chip

components in the system. The originally developed IP

blocks were redesigned and integrated using Simulink.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2450–2457 | 2455

Fig. 5 :Simulink Design of FAST Harris Corner Detection

Consequently, a single IP block incorporates the smart edge

detection technologies. The additional IP blocks included

median and sharpening filters. All the required connections

were completed and the system was reassembled. Figure 16

shows a schematic of the system that was developed using

Vivado Suite. The IP blocks made specifically for this

research are shown in the figure.

3.3.1 Simulation results

To model the non-synthesisable testbed, we imported the

VHDL RTL code that we had created into the Vivado xSim

program. Figure 6 displays the results for the functional

simulations conducted using the Vivado xSim simulator.

The figure shows that both the reference and suggested

methods produce identical pixel values. It was also found

that they were identical to the optimum bit-width model's

high-level MATLAB simulation results. By comparing the

output images produced by the two pathways with the same

input picture, we were able to prove this. We also compared

the quantization error of the MATLAB-based double

precision model with that of the reduced "optimal" signal

widths. The mathWorks HDL Verifier's "FPGA in the

Loop" cosimulation tool was used to achieve this [7].

Fig. 5 :Fast Harris Corner Detection RTL Simulation

3.3.2 Synthesis Results

Table 1 displays the resource allocation following system

synthesis and chip integration. Clearly, we have only used up

to 12% of the resources that were available. Additionally, it

should be noted that no optimization attempts were made in

this particular situation. The main clock speed of the system

is 150 MHz, while the image processing and camera blocks

run at 110 MHz for each pixel. With the help of Formula 8,

we can calculate the system's operating speed. The screen

refresh rate (EYH) and total horizontal and vertical pixel

values (including the active, gap, and synchronization pixels)

all form part of the equation [12].

Table 1. Proposed Fast Harris corner detection Implementation Results

Resource Utilization Available Utilization (%)

LUT RAM 502 17400 11.05 %

LUT 5900 53200 2.86%

FF 10975 106400 10.30%

BRAM 36 140 26.76%

DSP 20 220 9.50%

IOs 102 200 50%

Frame Rate 125 FPS

According to the results, the image processing system

can handle 125 pictures per second at a resolution of 1280 x

1024, and a refresh rate of 120 Hz. This demonstrates that

the system can fulfil the operational needs in real-time.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2450–2457 | 2456

3.3.3 Implementation of the System Software

The system's software was advanced in tandem with the

hardware after the hardware design had been completed.

The idea was put into action by using the C programming

language and the Vivado Suite SDK tool. The software does

more than simply set up the filter and I/O device; it also runs

the IP blocks and prepares them for use. It is now possible

to adjust the filters in real time and run several filters

simultaneously, all thanks to the newest innovation. One

may access the system features via the buttons and switches

incorporated into the Zedboard. Furthermore, the

Zedboard's LEDs make it possible to test the filters'

operation. Figure 6 displays the software flow diagram for

the system. The system continuously selects the principal

application cycle filter, and may be set up to choose the

appropriate filter depending on the zedboard switches' states

using multiplexer logic. The keypad of the Zedboard is

shown in Figure 18. The technology automatically activates

the appropriate filter, based on the key condition. In terms

of bits, the least significant bit is DS0 and the most

significant bit is DS7.

Fig. 6 :RTL Design for the proposed System based Zynq7000

4. Conclusion

This research presents the first complete approach to

programming Zynq-based boards for power electronics

prototyping using Matlab/Simulink, the HDL Coder, and the

Embedded Coder tools. By employing the proposed method,

users are able to program Zynq processors via the Simulink

graphical user interface, which allows the development and

monitoring of power electronics systems. Even those

unfamiliar with HDL or C may use Zynq boards to construct

working prototypes of power electronics systems, if they are

familiar with Simulink.

The Zynq7000 development board is used in this work to

power a real-time image processing system that is model-

based. Due to the high processing power needs of the

research, the Zynq7000 architecture was used to construct

the hardware and software. The system's hardware and

software were designed using Xilinx's Vivado Suite and

associated tools, in compliance with Zynq. The image

processing systems were designed using Matlab/Simulink

and Mathworks' HDL Coder and Vision HDL Toolbox. This

method shortens the design cycle, as it eliminates the need to

create HDL code manually. For this research, a system that

could operate at 60 Hz and have a resolution of 1280 x 1024

pixels was designed using a Zedboard development board.

The system's input and output modules on the card facilitate

detection for video processing. The end result is a flexible

system that can be easily configured. After reviewing the

designs, it was found that the system can meet the criteria

and work in real-time. It is thought that the resource

consumption is rather low but, if the HDL Coder tool

receives the required improvements, the consumption may

drop considerably. We have successfully executed the idea

and ensured its complete reusability. This approach will

make it possible to reuse parts of or the whole IP system in

future studies, regardless of the system type. Future studies

may use this technique as a building block for more complex

real-time item identification and tracking applications.

The Xilinx Zynq-7000 SoC hardware platform was used to

provide acceleration in hardware for corner edge detection,

with a focus on a 1920 × 1080 picture definition. Vivado

2017.4 was used to obtain the results of the synthesis and

simulation.

References and Footnotes

Author contributions

Taoufik Saidani: Conceptualization, Methodology,

Modeling,Simulation, Paper writing, Peper formatting

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2450–2457 | 2457

Mohammad H Algarni: Conceptualization, Methodology,

Modeling,Simulation, Paper writing, Peper formatting

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You

only look once: Unified, real-time object detection. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Las Vegas, NV, USA,

27–30 June 2016; pp. 779–788.

[2] V.H. Schulz, F.G. Bombardelli, E. Todt, A Harris

corner detector implementation in SoC-FPGA for

visual SLAM, in: F. Santos Osorio, ´ R. Sales

Gonçalves (Eds.), Robotics. SBR 2016, LARS 2016.

Communications in Computer and Information

Science 619, Springer, Cham., 2016.

[3] Sui Xuyang, Chen Zhuo, Liu Yicong, et al. Real-time

Video Edge Detection System Based on FPGA.

Ordnance Industry Automation, 2021, 40(2): 58-60

[4] Jason Cong, Jason Lau, Gai Liu, Stephen

Neuendorffer, Peichen Pan, Kees Vissers, and Zhiru

Zhang. 2022. FPGA HLS today: Successes,

challenges, and opportunities. ACM Trans.

Reconfigurable Technol. Syst. 15, 4, Article 51 (Aug.

2022), 42 pages. https://doi.org/10.1145/3530775

[5] Z. Tan and J. S. Smith, "Real-time Detection on

FPGAs using High-level Synthesis,"2020 7th

International Conference on Information Science and

Control Engineering (ICISCE), 2020, pp. 1068-1071,

doi: 10.1109/ICISCE50968.2020.00217

[6] Fuentes-Alventosa, A., Gómez-Luna, J. & Medina-

Carnicer, R. GUD-Canny: a real-time GPU- based

unsupervised and distributed detector. J Real-Time

Image Proc 19, 591–605(2022).

https://doi.org/10.1007/s11554-022-01208-0

[7] T Saidani and R. Ghodhbani, "Hardware Acceleration

of Video Edge Detection with Hight Level Synthesis

on the Xilinx Zynq Platform," Engineering,

Technology & Applied Science Research, vol. 12, no.

1, pp. 8007–8012, Feb. 2022.

DOI: https://doi.org/10.48084/etasr.4615

[8] Fahad Siddiqui, Sam Amiri, Umar Ibrahim Minhas,

Tiantai Deng, Roger Woods, Karen Rafferty, and

Daniel Crookes. 2019. FPGA-based processor

acceleration for image processing applications. Journal

of Imaging 5, 1 (2019). https:

//doi.org/10.3390/jimaging5010016.

[9] Babu, P.; Parthasarathy, E. Hardware acceleration for

object detection using YOLOv4 algorithm on Xilinx

Zynq platform. J. Real-Time Image Process. 2022, 19,

931–940.

[10] Farah Naz Taher, Mostafa Kishani, and Benjamin

Carrion Schafer. “Design and Optimization of Reliable

Hardware Accelerators: Leveraging the Advantages of

High-Level Synthesis”. In: 2018 IEEE 24th

International Symposium on On-Line Testing And

Robust System Design (IOLTS). 2018, pp. 232–235.

doi: 10.1109/IOLTS.2018.8474222

[11] "AXI4-Stream Video IP and System Design

Guide", Xilinx Inc. Manual, Oct. 2019.

[12] S Neuendorffer, T. Li and D. Wang, "Accelerating

OpenCV Applications with Zynq-7000 All

Programmable SoC using Vivado HLS Video

Libraries", Xilinx Inc. Application Note, June

2015.Vivado Design Suite User Guide: High-Level

Synthesis," Xilinx, UG902 (v2018.3), 2018.

[13] Kintail, K., Gu, Y.: Model-based Design with

Simulink, HDL Coder, and Xilinx System Generator

for DSP, pp. 1–15. MathWorks, Inc (2012)

[14] S. Liu, Real time implementation of Harris corner

detection system based on FPGA, in: 2017 IEEE

International Conference on Real time Computing and

Robotics (RCAR), Okinawa, 2017, pp. 339–343,

https://doi.org/10.1109/ RCAR.2017.8311884.

[15] MMathWorks, “Limitations for MATLAB Loop

Optimization,” HDL coder user guide, pp. 8-30, 2023.

[16] S. Titri, C. Larbes and K. Y. Toumi, “Rapid

prototyping of PVS into FPGA: From Model-Based

Design to FPGA/ASICs Implementation,” 2014 9th

International Design and Test Symposium (IDT),

Algeries, Algeria, pp. 162-167, 2014.

[17] El Hajjouji, I., Mars, S., Asrih, Z., & El Mourabit, A.

(2020). A novel FPGA implementation of hough

transform for straight lane detection. Engineering

Science and Technology, an International Journal,

23(2), 274-280.

https://doi.org/10.1016/j.jestch.2019.05.0

https://doi.org/10.1007/s11554-022-01208-0
https://doi.org/10.48084/etasr.4615

