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Abstract: Tools for rapid prototyping have been crucial in the race to market. A frequently-used computer vision, object detection and 

Artificial Intelligence tool for image processing, real-time contrast enhancement, is the focus of our study as we investigate the possibility 

of developing an intellectual property core using a fast prototyping technique. In this research paper, we provide a new method that uses 

HDL Coder-based high-level synthesis (HLS) rapidly to prototype fast corner detection on FPGAs. Implementing image processing 

algorithms on FPGAs using traditional RTL-based design approaches may prove a tedious, error-prone procedure. By providing a more 

abstract level of description, HLS frees up designers to concentrate on algorithmic functionality rather than writing inefficient hardware 

specifications by hand. We employ this feature by using the Harris corner detection method in MATLAB/Simulink, then using the HDL 

Coder methodology automatically to transform it into generated VHDL code that can be synthesized on Zynq7000 FPGA. Compared to 

the conventional RTL method, this design flow drastically reduces the development time and complexity. The suggested method for rapid 

FPGA prototyping in image processing applications is demonstrated to be successful by our practical findings, which indicate that the 

HLS-based Harris corner detector achieves the performance of real time video processing on a Xilinx Zynq7000 FPGA platform. 
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1. Introduction 

For various computer vision applications, including object 

localization, video tracking, motion estimation, image 

retrieval, and object detection, corner detection is an 

essential pre-processing step. Accurate, repeatable corner 

detection is critical for real-time computer vision 

applications, such as online visual localization, motion 

estimation, and 3D reconstruction. Although software 

solutions provide greater leeway, the parallel processing 

capabilities of FPGAs make them the go-to choice for 

applications that require a real-time response and have 

limited resources. It may require huge efforts, a knowledge 

of hardware description languages, and manual optimization 

approaches to apply typical RTL-based design processes to 

FPGAs. A potential solution to this problem is high-level 

synthesis (HLS), which allows algorithm implementation in 

well-known environments, like C/C++ or 

MATLAB/Simulink, thereby speeding up FPGA design 

[1,2]. 

Mobile intelligent systems, especially the recent mobility 

aids for the visually impaired, rely on corner or point of 

interest recognition as a critical vision operation [1]. 

Without doubt, when it comes to the safety of the visually 

impaired, the computational and spatial complexity of 

embedded and wearable systems in real time are crucial 

characteristics. Thus, it is important, when building such 

systems, to tailor their complexity level to suit the desired 

system's performance. Due to its superior accuracy, high 

quality identified corners, and invariance to scale and 

rotation geometric transformations, the Harris-Stephen 

method is widely employed for corner recognition [2], but 

the algorithm's temporal complexity is its biggest flaw. 

Numerous laborious procedures must be applied to each 

picture pixel (pixel level processing), such as gradient 

derivatives, Gaussian smoothing, Harris response corner 

calculation, etc. Since real-time constraints are a significant 

concern, it may not be feasible to implement software-based 

sequential solutions [3]. 

By using field-programmable gate arrays (FPGAs), it is 

possible to shorten the development cycle of modern 

designs and decrease the computational complexity of any 

operation. Additionally, FPGA-based boards facilitate the 

discovery of the optimal design for the intended application 

in terms of software and hardware sufficiency. Indeed, 

various hardware-software partition strategies may be used, 

resulting in systems with varying processing speeds and 

lower resource needs, but a new way to create vision 

systems is to use FPGAs for complicated processing, such 

as corner detection. 

Boards constructed around the latest generation of field-

programmable gate array (FPGA) devices allow the 

implementation of various hardware/software partition 

strategies, leading to varying degrees of performance [4-5]. 

Utilizing the accessible parallelism of computational 

resources, FPGA SoCs (Systems on Chip) enable the 

implementation of parallel applications with various 
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programming models (e.g., grids, trees, and pyramids) and 

whole processing control modes (e.g., SIMD, true MIMD, 

and variations thereof). Additionally, BRAMs allow for 

hard real-time processing, and DDR3 SDRAM has an 

extremely large memory (up to one gigabyte). Sustainable 

design is aided by these technologies, which also create new 

markets for large data processing, image processing, and 

computer vision in particular [6-7]. 

A new paradigm, High-Level Synthesis (HLS), has arrived, 

bringing with it a new way of thinking and doing things. 

Bypassing the complexity of RTL, HLS allows us to write 

the Harris corner detector approach in MATLAB/Simulink 

or any familiar Tools environments, utilizing simple visual 

blocks and prebuilt image processing tools. The translator in 

HLS, the HDL Coder, efficiently converts this high level 

picture into synthesizable generated VHDL or Verilog code, 

thereby connecting the gap between the algorithms and the 

hardware [9]. 

This research seeks to demonstrate that HLS can 

revolutionize fast FPGA detection prototyping. Using 

MATLAB/Simulink for the algorithm modeling and an 

FPGA platform for the real-time edge detection, we propose 

a streamlined design process. By running thorough tests, we 

wish to demonstrate how our approach outperforms the 

traditional RTL paradigm in terms of development speed, 

resource use, and real-time performance [10]. 

The subsequent sections of this work are structured as 

follows: the following section. Section 2 introduces a 

sophisticated synthesis technique for picture and video 

prototyping using a model-based design with HDL coder. It 

addresses the challenges encountered during the prototyping 

process and provides corresponding solutions to these. The 

proposed method's prototype and experiment results are 

shown in Section 3. Ultimately, this work is concluded in 

Section 4. 

2. Real Time image and video system design 

based on the Zyn7000 Platform 

According to [11], the Zedboard, which is a Zynq-7000 

development board, the Avnet FMC-HDMI-CAM module, 

and a Python 1300-C camera were all confirmed to be 

mutually compatible. The "FPGA Mezzanine Card," or 

FMC, is a kind of standardized interface that enables fast 

connections between FPGAs and other devices [12]. Since 

this interface is universal, all of the cards using it can work 

together seamlessly. It is possible to monitor the system 

over the serial port using an UART communication with a 

computer, or it can be run as standalone. 

To facilitate the recording of video data, an integrated video 

system was employed, consisting of a display and a camera, 

called a comprehensive vision system. The system's 

capacity to process data in real-time depends on the 

application domain. In order to develop a vision system, this 

research suggests a platform-based architecture that 

incorporates processing modules and video capture. Using 

DDR3 memory and FPGA-based hardware processing, this 

method allows the sensor to transmit live video data to the 

display seamlessly [13]. The video processing system, based 

on an embedded system architecture, is shown in Figure 1. 

An HDMI display for viewing the video output, the Xilinx 

ZedBoard platform, an image sensor from VITA-2000, an 

FMC module, and the Xilinx ZedBoard platform, comprise 

the system [14].  

Application development for the XilinxTM Zynq family of 

integrated circuits is facilitated by the use of these boards. 

Equipped with a XilinxTM FPGA and a dual-core ARMTM 

Cortex-A9TM processor, the circuit makes use of an "AP 

SoC" (All Programmable System-on-Chip) architecture. 

Armed with this equipment, it is possible to create a plethora 

of efficient applications in fields like embedded Linux, 

motor control, software acceleration, and video processing 

[15]. 

The filter and other settings may be changed using the 

buttons and switches on the Zedboard. The general layout 

of the system is shown in Figure 1. 

 

 

Fig. 1.  Full presentation of the video processing system based on the Fast Corner Detectio System 
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An integrated circuit (ICU) from the Zynq-7020 family and 

other peripherals constitute the Zedboard experimental 

board, which is the heart of the experiment [11]. Zynq-7000 

is a revolutionary microprocessor that combines a dual-core 

ARM Cortex-A9 CPU with FPGA fabrics on a single die. 

Instead of being typically isolated, high-speed Advanced 

Interface (AXI) buses allow the central processing unit 

(CPU) and field-programmable gate array (FPGA) to work 

together seamlessly to complete certain tasks. Figure 2 

shows the basic layout of the Zynq architecture [9,11].  

2.1. FPGA Model Based Design  

The capacity digitally to design and test systems prior to 

physically constructing them is the foundation of the Model-

Based Design (MBD) methodology. In this thesis, we 

explore this concept using several HDLs, with a focus on 

the adaptable MathWorks HDL Coder.  

While these dedicated HLTs are optimized to suit particular 

hardware, such as filter chains using hardwired blocks, the 

HDL Coder provides a more comprehensive way, which 

ensures that functionality takes precedence over platform 

constraints. It easily produces synthesizable, portable 

Verilog and VHDL code from MATLAB library functions, 

Simulink models, and workflow charts. From scripting 

FPGAs and analog-to-digital (ASIC) prototypes to 

hardware-software co-design on platforms like an  Intel 

System on a Chip (SoC) and Xilinx Zynq, this code opens 

up a world of possibilities [1]. 

The power of HDL Coder extends well beyond the creation 

of code, however. For Xilinx, Microsemi, and Intel 

platforms, its workflow adviser simplifies FPGA 

programming. Pinpointing the essential pathways and 

calculating resource use make it possible to control the HDL 

design and implementation, as well as conduct a thorough 

verification that satisfies even the most stringent 

requirements, such as DO-254 and beyond, thanks to the 

code's seamless traceability with the Simulink model [7]. 

As its name suggests, the HDL Coder is more than simply a 

tool—it is an approach to design. Its proponents praise its 

ability to allow experimentation, creation, and changes 

without leaving the safety of a computer. The HDL Coder 

allows users quickly to develop strong, adaptive systems, 

that expedites their FPGA development journey and 

uncovers the full potential of MBD,. To program with Zynq, 

Mathworks provides two workflows: SoC Blockset and the 

Embedded Coder Hardware Support Package. The model 

architecture and capabilities vary between the two, but they 

both provide connection between Zynq's FPGA and ARM 

CPUs [7].  

SoC Blockset: For granular control, it employs individual 

Simulink models for the FPGA and CPU. An additional 

model, with well-defined interfaces, is necessary for 

communication. While this method enables powerful 

capabilities, such as Direct Memory Access and 

interruptions, it may be unsuitable for urgent tasks (<100 

μs). It is less than optimal for power electronics prototyping, 

as confirmed by Mathworks support [17]. 

Embedded Coder Hardware Support Package: This 

creates a unified model in Simulink for both FPGA and 

processor code, thereby simplifying the model 

administration and communications. There are several 

accessible basic communication routes, but these come at 

the cost of control and flexibility. 

It is recommended to develop a prototype design with the 

potential to collect camera pictures before constructing the 

actual system components [14, 16]. After the camera image 

has been correctly acquired, the filters are created and tested 

in the Matlab/Simulink environment, after which the HDL 

Coder tool is used to encapsulate the filters as standard IP 

blocks [17]. The IP blocks must be introduced into the 

Vivado environment before they can be used in the camera 

reference design. The system's software was finally written 

in the Xilinx SDK environment. The final setup of the 

system was achieved once the necessary drivers had been 

integrated into it [12]. 

Building a robust system needs thorough planning and 

execution. Here is how the referenced work approached this: 

1. Reference Design: 

An initial plan was drawn up for a reference design with an 

ability to capture images from the camera [11]. This ensured 

that, before anything was built, all the parts and functions 

were specified. 

2. Filter Design and Simulation: 

To improve the recorded video, the next step was to create 

and test the filters in the Matlab/Simulink environment. 

These filters, which functioned as image processing 

algorithms, were fine-tuned to ensure high-quality picture 

capture [5]. 

3. IP Block Encapsulation: 

The proposed filters were rendered into reusable Intellectual 

Property (IP) blocks using the HDL Coder tool to ensure 

smooth hardware integration. Thanks to this uniform 

format, it was straightforward to include it in the Vivado 

environment's camera reference design [7]. 

4. Software Development and Integration: 

The software, or central processing unit, of the system was 

then built using the Xilinx SDK. After finishing the 

machine's configuration, the required drivers were installed 

[11]. 

5.Visualization: 

Pictures related to certain phases in the process were 

included in order to improve the readers' understanding even 
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if the original text did not include any graphics or diagrams. 

For example, pictures of the original plan or schematics of 

the filters' development and integration might prove helpful. 

The use of HLS is increasing because it allows additional 

abstraction levels to be reached while still ensuring 

continuous verification throughout the design cycle. The 

open-source instruments that are used for high-level 

synthesis (HLS) include Vivado HLS [10] and MATLAB 

HDL Coder [11]. They are often used by digital architects 

and designers to create and execute algorithms in fields such 

as communications, neural networks, deep learning, image 

processing, and aerospace. The code complexity may be 

reduced by a factor of seven to ten using HLS technology. 

They facilitate the reuse of behavioral intellectual property 

(IP) across several projects and enable verification teams to 

apply sophisticated modeling approaches, such as 

transaction-level modeling [12].  

In addition, integrated processors are used by the vast 

majority of modern chip systems. Additional software or 

firmware must be included when creating a chip with 

several ICs in order to manage the simultaneous activities of 

the memory, digital signal processors (DSPs), 

microprocessors, and customized logic. Architects and 

designers may experiment with various algorithmic and 

implementation options using Automated High-Level 

Synthesis (HLS) based on a shared functional specification. 

The space, power, and performance tradeoffs may be 

assessed and improved in this way.  

New methods for register transfer level synthesis have made 

the commercial deployment of HLS technology a more 

realistic proposal. Some of the best-known names in 

semiconductor design have developed proprietary software: 

IBM, Motorola, Philips, and Siemens. At this time, several 

High-Level Synthesis (HLS) products are supported by the 

prominent Electronic Design Automation (EDA) 

companies. Introduced in 1995, Synopsys's "Behavioral 

Compiler" tool exemplifies the process of creating RTL 

implementation using behavioral hardware description 

language (HDL) code and integrating it with later products 

[17]. The "Catapult HLS" [4] from Mentor Graphics and the 

"Stratus High Level Synthesis" [19] from Cadence are 

similar tools. High-Level Synthesis (HLS) in VLSI designs 

follows a conventional method, as shown in Figure 2. 

 

Fig. 2 : System Design Flow based on a Simulink /HDL 

coder 

2.2. Development Workflow Setup 

The development technique that has been discussed 

requires many tools and components in order for it to be 

set up correctly. Visual representations of the whole setup 

process are provided in Figure 3 and the following 

sections. 

Transferring control algorithms built in 

Matlab/Simulink to platforms based on FPGAZynq7000 

requires the following software: 

• A Simulink/HDL coder toolbox and embedded 

coder toolbox tools in the environment  

Matlab/Simulink. 

• Xilinx Vivado tools setup based on MATLAB 

Vivado compatibility  

As mentioned in reference, a specific version of the Vivado 

Designer Suite. The results were obtained using Vivado 

2017.4 and Matlab R2018b [7]. Since the "System 

Generator" tool is not officially compatible with the version 

of Matlab needed for the HDL Coder in the Vivado System 

Edition, to ensure that the tool works with Matlab, one must 

manually change the list of compatible versions. Matlab 

should be started using the System Generator tool when 

Vivado System Edition is being used, since it will instantly 

connect to Xilinx tools. Each time that Matlab is started 

using the command, however, it will be necessary to 

configure the HDL creation tool manually: 

hdlsetuptoolpath('ToolName','XilinxVivado','ToolPath','C:\

Xilinx\Vivado\2017.4\bin\vivado.bat'). The following 

Matlab Add-Ons must be pre-installed from the Add-On 

Explorer: 

• The HDL Coder Extension toolbox Packages for Fpga 

Zynq-7000 Platform is available. 

• Xilinx Zynq-7000 Platform Embedded Coder toolbox 

Support Package. 
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• You may install MinGW-w64, a compatible compiler, 

directly from the Toolbox Add-On Explorer. This is 

highly recommended. 

 

Fig. 3: System Design Wroklow Flow setup 

3. HARRIS CORNER DETECTION DESIGN 

AND SIMULATION  

3.1. OVERVIEW OF THE HARRIS CORNER 

DETECTION ALGORITHM 

The term "corners" refers to areas of an image where the 

level of detail and resistance to distortion differ 

significantly. To find the wedges, Harris points are created 

according to the pixels’ brightness. The following intensity 

variations are proposed as the basis for an autocorrelation-

based detector: 

𝑴(𝒙, 𝒚) = ∑ 𝒘(𝒖, 𝒗)(𝒖,𝒗) . (
𝑰𝒙
𝟐(𝒙, 𝒚) 𝑰𝒙𝑰𝒚(𝒙, 𝒚)

𝑰𝒙𝑰𝒚(𝒙, 𝒚) 𝑰𝒙
𝟐(𝒙, 𝒚)

)  

with Ix and Iy being the local derivatives in x and y, and w 

(u, v) is a weighting on the window (u, v). The study of the 

eigenvalues of the matrix M makes it possible to determine 

whether a point is a corner, a homogeneous region, or an 

outline. A final criterion is calculated from M, making it 

possible to define the type of point found. 

R=Det(M)- k∗Trace(M)2 

3.2. Simulink HDL coder design 

The full system (Figure 4) was designed using filters inside 

the Simulink/HDL coder environment, according to the 

paper. Every single HDL Toolbox block is custom-made. 

First, MATLAB was turned into a subsystem. Our team 

successfully modified the HDL work IP blocks to make 

them compatible with the flux advisor, following extensive 

simulations. To accomplish size reduction, the system's four 

separate filter designs—all of which may be enabled 

simultaneously—were combined into two IP blocks. In this 

way, the design could remain simple while all of the filters 

were activated at the same time [7].

 

Fig. 4 :Full video processing Design based on FAST Harris Corner Detection 

 

3.3. DESIGN SYNTHESIS AND RESULTS 

Using the Simulink program, we can simulate the designs. 

At the end, the code for each filter system is converted into 

HDL code separately. To test this process, we used the HDL 

Workflow Advisor and Matlab/Simulink HDL Coder add-

ons. A specialist in HDL workflow provided expert 

consulting services. During the conversion process, we set 

up the necessary parameters and transformed the Matlab and 

Simulink systems into HDL code to provide a graphical user 

interface. Next, according to the Vivado Suite Camera 

reference, the system was converted into an IP block. It is 

impossible to separate this IP block from the design, so the 

filter systems were constructed on the Zedboard in a 

sequential fashion. In addition, future studies might focus 

on optimizing the space consumption and simplifying the 

software complexity by reducing the number of on-chip 

components in the system. The originally developed IP 

blocks were redesigned and integrated using Simulink. 
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Fig. 5 :Simulink Design of FAST Harris Corner Detection 

 

Consequently, a single IP block incorporates the smart edge 

detection technologies. The additional IP blocks included 

median and sharpening filters. All the required connections 

were completed and the system was reassembled. Figure 16 

shows a schematic of the system that was developed using 

Vivado Suite. The IP blocks made specifically for this 

research are shown in the figure. 

3.3.1 Simulation results 

To model the non-synthesisable testbed, we imported the 

VHDL RTL code that we had created into the Vivado xSim 

program. Figure 6 displays the results for the functional 

simulations conducted using the Vivado xSim simulator. 

The figure shows that both the reference and suggested 

methods produce identical pixel values. It was also found 

that they were identical to the optimum bit-width model's 

high-level MATLAB simulation results. By comparing the 

output images produced by the two pathways with the same 

input picture, we were able to prove this. We also compared 

the quantization error of the MATLAB-based double 

precision model with that of the reduced "optimal" signal 

widths. The mathWorks HDL Verifier's "FPGA in the 

Loop" cosimulation tool was used to achieve this [7]. 

 

Fig. 5 :Fast Harris Corner Detection RTL Simulation  

3.3.2 Synthesis Results 

Table 1 displays the resource allocation following system 

synthesis and chip integration. Clearly, we have only used up 

to 12% of the resources that were available. Additionally, it 

should be noted that no optimization attempts were made in 

this particular situation. The main clock speed of the system 

is 150 MHz, while the image processing and camera blocks 

run at 110 MHz for each pixel. With the help of Formula 8, 

we can calculate the system's operating speed. The screen 

refresh rate (EYH) and total horizontal and vertical pixel 

values (including the active, gap, and synchronization pixels) 

all form part of the equation [12]. 

Table 1. Proposed Fast Harris corner detection Implementation Results 

Resource Utilization  Available Utilization (%) 

LUT RAM 502 17400 11.05 % 

LUT 5900 53200 2.86% 

FF 10975 106400 10.30% 

BRAM 36 140 26.76% 

DSP 20 220 9.50% 

IOs 102 200 50% 

Frame Rate  125 FPS 

 

According to the results, the image processing system 

can handle 125 pictures per second at a resolution of 1280 x 

1024, and a refresh rate of 120 Hz. This demonstrates that 

the system can fulfil the operational needs in real-time. 
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3.3.3 Implementation of the System Software 

The system's software was advanced in tandem with the 

hardware after the hardware design had been completed. 

The idea was put into action by using the C programming 

language and the Vivado Suite SDK tool. The software does 

more than simply set up the filter and I/O device; it also runs 

the IP blocks and prepares them for use. It is now possible 

to adjust the filters in real time and run several filters 

simultaneously, all thanks to the newest innovation. One 

may access the system features via the buttons and switches 

incorporated into the Zedboard. Furthermore, the 

Zedboard's LEDs make it possible to test the filters' 

operation. Figure 6 displays the software flow diagram for 

the system. The system continuously selects the principal 

application cycle filter, and may be set up to choose the 

appropriate filter depending on the zedboard switches' states 

using multiplexer logic. The keypad of the Zedboard is 

shown in Figure 18. The technology automatically activates 

the appropriate filter, based on the key condition. In terms 

of bits, the least significant bit is DS0 and the most 

significant bit is DS7. 

 

Fig. 6 :RTL Design for the proposed System based Zynq7000 

4. Conclusion 

This research presents the first complete approach to 

programming Zynq-based boards for power electronics 

prototyping using Matlab/Simulink, the HDL Coder, and the 

Embedded Coder tools. By employing the proposed method, 

users are able to program Zynq processors via the Simulink 

graphical user interface, which allows the development and 

monitoring of power electronics systems. Even those 

unfamiliar with HDL or C may use Zynq boards to construct 

working prototypes of power electronics systems, if they are 

familiar with Simulink. 

The Zynq7000 development board is used in this work to 

power a real-time image processing system that is model-

based. Due to the high processing power needs of the 

research, the Zynq7000 architecture was used to construct 

the hardware and software. The system's hardware and 

software were designed using Xilinx's Vivado Suite and 

associated tools, in compliance with Zynq. The image 

processing systems were designed using Matlab/Simulink 

and Mathworks' HDL Coder and Vision HDL Toolbox. This 

method shortens the design cycle, as it eliminates the need to 

create HDL code manually. For this research, a system that 

could operate at 60 Hz and have a resolution of 1280 x 1024 

pixels was designed using a Zedboard development board. 

The system's input and output modules on the card facilitate 

detection for video processing. The end result is a flexible 

system that can be easily configured. After reviewing the 

designs, it was found that the system can meet the criteria 

and work in real-time. It is thought that the resource 

consumption is rather low but, if the HDL Coder tool 

receives the required improvements, the consumption may 

drop considerably. We have successfully executed the idea 

and ensured its complete reusability. This approach will 

make it possible to reuse parts of or the whole IP system in 

future studies, regardless of the system type. Future studies 

may use this technique as a building block for more complex 

real-time item identification and tracking applications. 

The Xilinx Zynq-7000 SoC hardware platform was used to 

provide acceleration in hardware for corner edge detection, 

with a focus on a 1920 × 1080 picture definition. Vivado 

2017.4 was used to obtain the results of the synthesis and 

simulation. 
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