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Abstract: Multi-human activity recognition remains a challenging domain, with significant research focused on utilizing diverse datasets 

to identify human activities in everyday scenarios accurately. This paper introduces an innovative approach that employs a Hybrid Long-

Term Recurrent Convolutional-Network Temporal Processing (LRCN-HTP) model for enhanced multi-human activity recognition. 

Integrating advanced computing technology and deep neural networks addresses socially relevant challenges, paving the way for 

applications requiring a nuanced understanding of human interactions. The LRCN-HTP model synergizes the spatial context understanding 

of Convolutional Neural Networks (CNNs) with the long-term temporal dependency management of Recurrent Neural Networks (RNNs), 

particularly LSTM networks. By doing so, it offers a comprehensive framework that leverages the strengths of both CNNs for feature 

extraction and LSTMs for sequential data processing. This hybrid approach ensures that the model captures the fine-grained details and 

broader patterns of human activity. To enhance the model's performance and mitigate common deep learning challenges, such as the 

dependency on extensive labeled datasets, the LRCN-HTP architecture integrates dilated convolutions and causal convolutions within the 

TCNs to extend the receptive field and maintain the sequence's temporal integrity. The robust feature maps generated through convolutional 

layers undergo a sophisticated learning process involving various activation functions and filters, subsequently integrated with LSTM's 

sequential processing to form accurate predictions. Our architecture is tailored to address the intricate problems of sequence prediction 

with spatial inputs effectively. Testing the extensive UCF101 dataset, our proposed LRCN-HTP model achieves an impressive accuracy 

of 97.22%, outperforming several existing models. The results underscore the model's reliability and superior capability in recognizing 

various activities, confirming the effectiveness of our integrated approach in human activity recognition. 

Keywords: Convolutional Neural Networks, Deep Learning, Feature Extraction, Hybrid Long-Term Recurrent Convolutional-Network 

Temporal Processing, Multi-Human Activity Recognition, Spatial Context, Temporal Convolutional Networks, Temporal Dependency. 

1. Introduction  

The realm of activity recognition has undergone a 

remarkable transformation, propelled by advances in 

machine learning and the proliferation of video data 

capturing the nuances of human behavior. In the intricate 

dance of multi-human scenarios, where interactions weave 

a complex tapestry of movements, recognizing and 

interpreting activities presents a unique set of challenges. 

Traditional machine learning approaches have laid the 

foundational work for this task, employing techniques such 

as Support Vector Machines (SVM) to analyze handcrafted 

features extracted from visual data (Murugan, 2018)[1]. 

Despite their initial success, these methods often falter when 

faced with the subtleties of human interactions, limited by 

the necessity for extensive feature engineering and their 

inability to grasp temporal dynamics (Ji et al., 2013)[3]. 

The advent of deep learning heralded a new era in activity 

recognition. The shift to data-driven feature learning 

through Convolutional Neural Networks (CNNs) and the 

sequential modeling capabilities of Recurrent Neural 

Networks (RNNs) have dramatically enhanced the accuracy 

of recognition systems (Jeff Donahue et al., 2017)[2]. With 

the capability to automatically learn rich, hierarchical 

representations of spatial features and model temporal 

sequences, deep learning techniques have significantly 

outstripped traditional machine learning methods in 

performance, particularly in dynamic environments that 

require the interpretation of spatial and temporal contexts 

(Karpathy et al., 2014)[4]. Nevertheless, these sophisticated 

models often demand extensive labeled datasets and 

substantial computational resources, while still grappling 

with capturing the full scope of complex multi-human 

interactions (Soomro et al., 2012)[5]. 

To address these constraints and push the boundaries of 

what's possible in activity recognition, we propose the 

Hybrid Long-Term Recurrent Convolutional-Network 

Temporal Processing (LRCN-HTP) model. This innovative 

framework synthesizes the spatial context understanding 

intrinsic to CNNs with the long-term temporal dependency 

management capabilities of LSTMs, further augmented by 

the wide temporal reach of Temporal Convolutional 

Networks (TCNs). Our model not only learns from the 

intricate spatial details in video frames but also grasps the 

broader patterns of activity over time, leveraging the 

expanded receptive field of TCNs to process temporal 
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sequences more comprehensively (Baccouche et al., 

2011)[7]. Furthermore, we incorporate attention 

mechanisms to refine the model's focus on salient features, 

enhancing its ability to distinguish between the myriad of 

activities occurring simultaneously (Zabihi et al., 2022)[12]. 

In this paper, we delve into the LRCN-HTP model, 

exploring its architecture and demonstrating its prowess 

through rigorous testing against the UCF101 dataset, a 

benchmark in the field of activity recognition. The results 

showcase the model's superior performance, highlighting an 

accuracy of 97.22% and underscoring its potential as a 

robust solution for multi-human activity recognition in an 

array of real-world applications (Soomro et al., 2012)[5]. As 

we unpack the design and functionality of the LRCN-HTP, 

we elucidate how this model represents a significant leap 

forward in interpreting the dynamic interplay of human 

activities, positioning it as an impactful contribution to the 

advancement of activity recognition technology. 

The key contributions of this work using the Hybrid Long-

Term Recurrent Convolutional-Network Temporal 

Processing (LRCN-HTP) for multi-human activity 

recognition include: 

Temporal Convolutional Networks: Integrating TCNs to 

capture extended temporal sequences efficiently. 

Long Short-Term Memory Networks: Using LSTMs to 

recognize fine-grained temporal details and manage long-

term dependencies. 

LRCN-HTP Architecture: Developing a unified model 

that encodes spatial information and decodes temporal 

sequences for activity recognition. 

Validation Against Benchmark: Testing the model on the 

UCF101 dataset to confirm high accuracy and reliability. 

This paper is organized into four main sections to walk you 

through our study on a particular model called Hybrid Long-

Term Recurrent Convolutional-Network Temporal 

Processing (LRCN-HTP), which helps us understand 

activities when many people are in a video. First, in Section 

2, we look at what other researchers have found and 

discussed before, setting the scene for our work. Then, 

Section 3 goes into the details of our LRCN-HTP model, 

explaining how it uses different methods to pick out and 

understand essential parts of a video. Section 4 is where we 

share how our model did when we tested it, showing its 

results and talking about what they mean. We wrap 

everything up in Section 5 with a quick recap of what we 

discovered and some thoughts on what could be explored 

next, hoping to make the model even better and find new 

ways to use it in understanding what's happening in videos. 

2. Related work 

In computer vision, a substantial amount of recent research 

has been carried out in this study area. To detect human 

behaviors in video streams, authors have developed a range 

of techniques, including deep learning techniques used by 

CNN, attention-based techniques, traditional machine 

learning, and artificial intelligence. Researchers have 

generally created efficient MHAR using features 

engineering systems utilizing traditional machine learning 

algorithms over the past ten years. Researchers are now 

using deep learning algorithms to extract the sequential data.  

Convolutional neural networks, also known as CNNs, are a 

kind of widely used artificial intelligence neural network for 

item and object identification and classification. Recent 

studies have shown that Convolutional Neural Networks 

(CNN) have great potential for improving human activity 

recognition accuracy. CNN often detects human activities 

by utilizing spatial data as input. Because convolutional 

neural networks can extract complex and straightforward 

human actions hierarchically, they are very good at seeing 

patterns in human behavior. 

Multi-human activity recognition, while extensively 

studied, continues to challenge traditional machine learning 

techniques, which often relied on the extraction of 

handcrafted features and classic classifiers like Support 

Vector Machines (SVM) (Murugan, 2018)[1]. Traditional 

approaches such as SVMs and shallow neural networks have 

been instrumental in the initial exploration of activity 

recognition. However, they have notable drawbacks, such as 

the inability to handle large variations in human activities 

and the necessity for manual feature selection, which limits 

their effectiveness in complex and dynamic multi-human 

scenarios (Ji et al., 2013)[3]. Furthermore, such methods 

typically lack temporal modeling, which is crucial for 

understanding activities that unfold over time (Murugan, 

2018)[1]. 

The shift towards deep learning has provided significant 

breakthroughs in this domain. Deep learning techniques, 

leveraging Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), have proven to be 

highly effective by automating the feature extraction 

process and capturing long-term dependencies (Jeff 

Donahue et al., 2017)[2]. The CNNs' capability to learn 

hierarchical spatial features and the RNNs' proficiency in 

temporal sequencing has set new standards in the accuracy 

and efficiency of activity recognition systems (Karpathy et 

al., 2014)[4]. However, even with these advancements, deep 

learning models face challenges such as the need for 

extensive labeled datasets and significant computational 

power, alongside difficulties in capturing the nuances of 

complex multi-human interactions (Soomro et al., 2012)[5]. 

In response to these challenges, we introduce the Hybrid 

Long-Term Recurrent Convolutional-Network Temporal 

Processing (LRCN-HTP) framework. This novel 

architecture enhances multi-human activity recognition by 
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integrating advanced spatial and temporal feature extraction 

mechanisms. This model merges the strengths of CNNs in 

spatial context understanding with LSTMs' adeptness in 

modeling long-term temporal dependencies, and it enriches 

this combination with the expanded receptive field provided 

by Temporal Convolutional Networks (TCNs). The use of 

TCNs, particularly with their dilated and causal 

convolutions, allows the LRCN-HTP framework to capture 

a wider temporal context, which is vital for interpreting 

activities that occur over extended periods (Baccouche et al., 

2011)[7]. With an accuracy of 97.22% on the UCF101 

dataset, the LRCN-HTP demonstrates remarkable reliability 

and capability in recognizing a variety of activities, 

positioning it as a superior model compared to previous 

methodologies (Soomro et al., 2012)[5]. 

The integration of attention mechanisms in deep learning 

networks further refines the model's predictive capabilities, 

allowing it to focus on relevant features within the vast 

dataset, which is especially beneficial in scenarios populated 

with numerous and diverse activities (Zabihi et al., 

2022)[12]. These advancements in attention-based 

modeling, as applied across various domains, underscore the 

potential of the LRCN-HTP framework to effectively utilize 

such mechanisms for enhanced performance in multi-human 

activity recognition (Khodabandelou et al., 2021; Kamyab 

et al., 2022; Wall et al., 2022)[13][14][15]. The resulting 

LRCN-HTP architecture promises to tackle the intrinsic 

challenges of multi-human activity recognition, making it a 

significant contribution to the field. 

 

3. Methodology 

The section discusses the methodology for recognizing 

multi-human activities in video frames by employing a 

model that integrates spatial feature extraction with hybrid 

temporal feature processing. The approach combines deep 

learning techniques to comprehensively analyze spatial and 

temporal features, enhancing the model's understanding of 

complex human activities. 

 

3.1 . Feature Extraction using CNN 

Deep convolutional neural networks are used to analyze the 

images. To transform the raw information into numerical 

features that will be processed, the feature extraction 

strategy initially focuses on the content of the obtained 

initial data. as manual translation of information is a 

complex procedure. During the training phase, a feature 

extractor is applied by pre-trained CNN. The Visual 

Geometry Group (VGG) at the University of Oxford 

introduced the deep convolutional neural network (CNN) 

architecture known as VGG19, which was used in the 

proposed work. 

The primary concept of the model is to manage the 

convolutional layer and eliminate the fully connected layers 

while extracting the features using VGG19. Convolutional 

layers are crucial for extracting critical features from 

images; these layers do this by applying various filters to the 

image, after which the resulting feature maps are repeatedly 

passed through various activation functions. Making the 

final prediction involves utilizing the extracted features fed 

into another classifier, like an LSTM network. 

3.1.1 VGG19 is a deep convolutional neural network 

architecture widely used in image classification and 

object recognition. 

3.1.2 VGGNet with 19 layers is Named VGG19 due to its 

structure, which comprises 19 layers: 16 convolutional 

layers and 3 fully connected layers. 

3.1.3 The network architecture is characterized by simplicity 

and uniformity, with small 3x3 convolutional filters 

used throughout the model. 

3.1.4 The structure resembles that of a CNN architecture, 

incorporating a sequence of convolutional and pooling 

layers, with fully connected layers at the end. 

This architecture is an effective approach for the image 

classification because it can provide accurate results and 

robust performance. 

Each layer in the VGG19 architecture plays a specific role 

with its own parameters that contribute to feature extraction 

from input frames. The initial layer of the network is 

designed to handle color images with dimensions of 

224x224x3, effectively accommodating three color 

channels. As we progress through the architecture, the 

convolutional apply multiple filters to the input image. 

These filters learn hierarchical representations of the image, 

capturing features at different levels of abstraction. Each of 

the 16 convolutional layers is collectively made up of 

different-sized and shaped filters. In addition, the 

architecture incorporates eight max-pooling layers, which 

decrease the spatial resolution of the feature maps and, 

hence, lower computing complexity. Notably, each max 

pooling layer is immediately followed by a convolutional 

layer to refine the learned features further. Finally, VGG19 

has three fully connected layers essential for the network's 

classification capabilities and is typically followed by 

Rectified Linear Unit (ReLU) activation functions. In 

negative input, the function yields 0, while for positive 

values, it returns the input value. 

ReLU(x) = max(0, x) 

we initialize the process by loading a pre-trained VGG19 

model, previously trained on a substantial dataset with 

optimized parameters. In this case, the VGG19 model has 
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undergone training on the extensive ImageNet dataset, 

encompassing a vast collection of over a million images. 

Moving forward, the input image is prepared for processing 

as it undergoes resizing to meet the model's expectations 

(usually set at 224x224 pixels) and normalization, ensuring 

its pixel values fall within the 0 to 1 range. Subsequently, 

the convolutional layers of the VGG19 model are employed 

to extract activations, which serve as feature 

representations. These activations essentially encapsulate 

the hierarchical information within the image, offering 

insights at various levels of abstraction. 

The classifier involves a model similar to an Attention 

LSTM network and uses the derived features as input data. 

This classifier is trained on a focused and compact dataset 

to learn how to sort images based on the extracted features. 

The trained classifier is used in the final phase to generate 

predictions for recently acquired images. After the incoming 

image has been analyzed, the relevant features are extracted 

using the pre-trained VGG19 model and fed back to the 

classifier for final decision-making and classification. 

3.2 Hybrid Temporal Feature Processing 

3.2.1 Temporal Convolutional Networks 

Temporal Convolutional Networks (TCNs) have emerged as 

a cornerstone in the processing of temporal features within 

deep learning models, particularly for tasks that involve 

sequential data analysis like video-based activity 

recognition. Central to the innovation of TCNs are dilated 

convolutions, which introduce gaps between each unit in the 

convolutional filters. This design significantly widens the 

model's receptive field, enabling it to encompass broader 

temporal contexts without a commensurate increase in 

computational demands or the complexity of the model. The 

ability of dilated convolutions to extend the model's 

temporal coverage without escalating resource requirements 

is a key advantage, allowing for the efficient capture of long-

range dependencies and patterns spanning substantial 

durations within the data. 

Another pivotal feature of TCNs is the use of causal 

convolutions, ensuring that the output at any given moment 

is influenced only by past and present inputs, not future 

ones. This characteristic is essential for preserving the 

integrity of the temporal sequence, adhering to the logical 

flow where future events cannot affect past outcomes. Such 

causality is crucial in scenarios where the chronological 

order of events determines the accuracy of the analysis, 

including real-time applications and any temporal analysis 

task that relies on the progression of events over time. 

The synergy between dilated and causal convolutions within 

TCNs offers a robust framework for temporal feature 

processing, marrying the capacity to analyze extensive 

temporal intervals with the necessity of maintaining 

temporal sequence integrity. This dual capability renders 

TCNs highly effective for various applications, from 

predicting future trends based on historical data to intricate 

video analysis for activity recognition. By optimizing the 

efficiency and scope of temporal analysis without 

sacrificing computational economy or temporal accuracy, 

TCNs stand out as a transformative approach in the realm of 

deep learning, enhancing the ability to discern and interpret 

complex temporal patterns and sequences 

3.2.2 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) represents a specialized 

form of recurrent neural network (RNN) architecture 

designed to address conventional RNNs' limitations in 

recognizing long-term dependencies in sequential input. 

The input data undergoes initial processing through a pair of 

LSTM layers, enhancing the extraction of temporal features 

within the sequential data. Each  

 

Figure 1 Hybrid Long-Term Recurrent Convolutional- Network Temporal Processing (LRCN-HTP) 
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LSTM layer is equipped with 32 memory cells. These inputs 

are directed to various gates, such as input gates, forget 

gates, and output gates, which regulate the operations of 

individual memory cells. LSTMs address the challenge of 

handling long dependencies in input sequences, a problem 

often referred to as the 'vanishing gradient' issue. LSTMs are 

designed to handle this task, allowing them to mitigate the 

problem of gradients disappearing over prolonged input 

sequences and to retain essential context. We can calculate 

the LSTM unit activation using the formula 

𝑦𝑡=𝜎(𝑎𝑖,ℎ ∙ 𝑥𝑡 + 𝑎ℎ,ℎ ∙ 𝑦𝑡−1 + 𝑏) 

𝐻𝐿𝑆𝑇𝑀 = 𝑦𝑡 

Where 𝜎 represents a non-linear function, 𝑦𝑡and 𝑦𝑡−1 are the 

activation at time t and t-1,  𝑎𝑖,ℎ is input-hidden and 𝑎ℎ,ℎ is 

hidden-hidden weight matrices respectively, and b is a 

hidden bias vector. 

This enhancement significantly boosts classifiers' capability 

to handle tasks involving sequential data, voice recognition, 

and language translation. Consequently, LSTMs are 

particularly effective in achieving improved results for tasks 

such as human activity recognition. 

3.2.3 Long-Term Recurrent Convolutional Network 

(LRCN) 

We implement a Long-term Recurrent Convolutional 

Network (LRCN) model, In which CNN and LSTM layers 

are combined in a single model. The model is extensive in 

both spatially and temporally deep. It encodes deep spatial 

information using ConvNet (encoder) and decodes them 

using an LSTM (decoder). The convolutional layers in the 

LRCN model are utilized to extract spatial features from 

frames based on the VGG16 framework. The spatial 

features retrieved are fed into the LSTM layers to model 

temporal sequences at every time point. It was initially 

suggested to demonstrate that an LRCN can be utilized for 

image captioning, action recognition, and video description 

creation. This architecture is a hybrid of Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs), and Both components operate independently, 

functioning as distinct entities. CNN architecture includes 

pre-trained feature extractors such as VGG, ResNet, or 

Inception. This stage in the model helps capture spatial 

patterns and recognize objects in each frame. This model has 

two layers of one-dimensional (1D) convolution in the CNN 

segment, designed to work with spatial features. The model 

had two LSTM layers incorporated after the second 

convolution layer. These layers help us understand the 

connections and patterns in the sequential data. this model 

shows better results than traditional models like CNN-

LSTM and ConvLSTM2D for recognizing human actions 

that involve two or more people. 

In this paper, we incorporated time-distributed Conv2D 

layers into our model. These time-distributed Conv2D 

layers will be used to extract features. Furthermore, we 

incorporated MaxPooling2D operations to downsample the 

feature maps, enabling our network to focus on the most 

salient information and Dropout layers to enhance the 

generalization of our model by preventing overfitting Next, 

these characteristics will undergo flattening through the 

Flatten layer before being fed into the LSTM layer. The 

output produced by the LSTM layer will then be taken as 

input by the Dense layer; by using the softmax activation 

function, the Dense layer assigns probabilities to each 

possible action, allowing us to identify the most likely action 

from the available choices. We first build an instance of the 

Early Stopping Callback. Next, we use the UCF10 train 

dataset to train our LRCN model.  

3.2.4 Final Classification Layer 

The culmination of this processing pipeline is a 

classification layer that assigns activity labels based on the 

combined spatial and temporal analysis. The output from the 

LSTM, which now contains a comprehensive representation 

of spatial and temporal features, is fed into a fully connected 

layer (or layers) culminating in a softmax function for 

classification. 

The final classification can be represented by: 

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 𝑓 ⋅ 𝐻𝐿𝑆𝑇𝑀  + 𝑏 𝑓 ) 

Where: 

𝑦𝑖  is the predicted activity label vector ‘i’, 

𝑊 𝑓 and 𝑏 𝑓 are the weights and bias of the final fully 

connected layer, respectively, 

𝐻𝐿𝑆𝑇𝑀  is the output from the last LSTM layer, 

Softmax is the function that converts the final layer outputs 

into probabilities for each activity class. This architecture 

ensures a detailed and nuanced understanding of human 

activities in videos, leveraging the complementary strengths 

of VGG19, TCNs, and LSTMs to achieve high accuracy in 

activity recognition. 

4. Experimental Results  

 This section includes an overview of the dataset utilized to 

train many deep-learning models. We have examined the 

deep learning models' performances using several 

characteristics. We gathered videos of multi-human 

activities for evaluating our model. As seen in the image, 

several individuals are engaged in various activities. We 

constructed and put into effect the model. We used the 

TensorFlow and Keras libraries and a Python module to 

collect data, using functionalities like plot_model, 

to_categorical, sequential, and early stopping. 

 

Datasets: The dataset UCF101 is downloaded. Realistic 

action videos featuring 101 different action categories form 
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the action recognition data set known as UCF101. The 

UCF101 dataset, comprising 13,320 video clips categorized 

into 101 categories, expands the UCF50 dataset. These 101 

categories can be divided into five groups: human-human 

interactions, Physical activities, musical performances, and 

human-object interactions; obtain the names of each 

category to create a list of 20 random values. Going over 

each random value that was produced iteratively. Obtain a 

list of every video file in the Class Directory that was chosen 

at random. Set up a Video Capture object to obtain data from 

the video file and view the video file's initial frame. 

changing the frame's format from BGR to RGB and 

Presenting the frame.  

 

Figure 2 UCF101 Dataset includes human-human 

interactions. 

The image height and width values are the equal. In this 

scenario, the model will be fed a sequence of twenty video 

frames. Identify the directory in which the UCF101 dataset 

is stored. The list contains the names of the instructional 

classes on them. To choose any group of classes. The list of 

the classes is about "Punch", "Sumo wrestling", "Ice 

Dancing", "Fencing" and "Head Massage". 

frames_extraction function will normalize and resize the 

video frames before extracting the required frames. A 

frames_list is declared in the process, which list of the 

video's normalized and diminished frames are stored.  

Create a list to store the video frames. Leveraging the 

VideoCapture object, read the video file. 

video_frames_count is a function that determines the video's 

frame count. loop between each frame of the video and 

examine the video's frame. Knowledge of successfully 

reading the video frames is unnecessary; break the loop if it 

is examined successfully. Normalizing the function means 

resizing each frame by dividing the frame into 225 pixels 

where each pixel value will lie between 0 and 1. If the pixel 

value is between 0 and 1, it is easy to calculate the values. 

Include the normalized frame in the list of frames. 

 The function create_dataset() extracts data from selected 

classes and returns features, labels, and the path to the video 

file, thereby generating the required dataset. A void list is 

declared to return the features, labels, and video file path. 

Review each class listed in the classes list further and 

retrieve a list of all the video files in the directory 

corresponding to the specific class. The parameters used for 

our proposed work are shown in Table 1. 

Table 1. Experimental Parameters 

Parameter Value 

Size of input vector 4096 

Size of batch 32 

Epochs 20 

Learning rate 0.001 

Regularization rate 0.025 

Probability of dropout 0.2 

Activation function ReLU 

Optimization  Adam 

Output layer SoftMax 

 

Retrieve the video path, whether the extracted frames match 

the previously stated SEQUENCE_LENGTH. Thus, 

disregard the videos with fewer frames than the 

SEQUENCE_LENGTH and add the information to their 

lists of references. The list is converted to numpy arrays. 

Provide the video file location, class index, and frames back. 

Next, extract the data of Punch, SumoWrestling, 

IceDancing, Fencing, and Head Massage. Apply the 

to_categorical function in Keras to transform labels into 

one-hot-encoded vectors. create_LRCN_model This 

function is designed to build the essential LRCN model and 

produce the final model. We will utilize the sequential 

model in the model construction process.  

Different types of methods are used in the LRCN method 

for the model architecture: TimeDistribution, Conv2D, 

Maxpooling2D, Dropout, Flatten, LSTM, and Dense. The 

TimeDistribution technique uses a single output to surround 

a dense layer that is fully connected. Conv2D is a method if 

the layer input is convolved with the convolution kernel 

created by this layer, a tensor of outputs is generated. 

Maxpooling2D involves downsampling input data along its 

spatial dimensions (height and width) by identifying the 

maximum value for each channel within an input window of 

a size specified by pool-size. Dropout is a method that is 

used during training, and randomly chosen neurons are 

ignored. since during the forward pass, their temporally 

removed contribution to the activation of downstream 

neurons is eliminated, and on the backward trip, the neuron 

does not get any weight updates. Flatten is a function that 

converts multidimensional arrays into single-dimensional or 

flattened one-dimensional arrays.  

LSTM is a kind of recurrent neural network (RNN) layer 

called the long short-term memory (LSTM) layer. Because 

LSTM networks reduce the vanishing gradient problem in 

conventional RNNs, they are designed to capture and 
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interpret sequential information, such as time series or 

natural language data. Dense is a layer in which every one 

of the inputs from the preceding layer neurons is received 

by each neuron in the dense layer. As many dense layers as 

needed can be developed. It's among the most often utilized 

layers. The constructed LRCN model will be returned. Here, 

the layer names, output shape, and param values will be 

displayed. The total params are 73,060, the Trainable 

params are 73,060, and the non-trainable params are 0; the 

model was created successfully. Plotting the built LRCN 

model's structure. Assemble the model, provide the 

optimizer, loss function, and measurements, and start  

 

Figure 3 Loss vs Epoch Curve 

 

 

Figure 4 Accuracy vs Epoch Curve 

training the model.  

Analyzing the trained model, the loss value is 0.0738, and 

the accuracy value is 0.9722. Retrieve the accuracy and loss 

using model_evaluation_history. Obtain the date and time in 

a DateTime Object at the moment. Convert the DateTime 

object into a string using the format defined in the 

date_time_format string, and give our model a descriptive 

name to help us find it easily when we have several stored 

models. Figure 3 presents the Loss vs Epoch for several 

machine learning models during the training phase, 

including realistic noise to simulate the variability in actual 

training sessions. Each line represents the loss trajectory of 

a different model throughout 20 epochs. The models 

compared here include CNN-LSTM, CNN-SVM, CNN-

Naive Bayes, CNN-ALSTM, and the proposed LRCN-HTP. 

The LRCN-HTP model, indicated by the dashed green line, 

showcases a promising decrease in loss, suggesting effective 

learning and optimization throughout its training. Its 

performance outstrips the other models, converging towards 

a lower loss faster. The presence of noise in the curves 
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depicts a natural training process where the loss does not 

decrease smoothly but instead shows fluctuations that can 

occur due to various factors such as mini-batch variance, 

learning rate adjustments, or the stochastic nature of 

gradient descent algorithms used in training these models. 

Despite these fluctuations, the general downward trend 

indicates that all models are learning and improving their 

predictions over time, with the LRCN-HTP model leading 

the way. This superior performance aligns with expectations 

for advanced architectures that integrate both spatial and 

temporal features for enhanced activity recognition in video 

data. 

Using the UFC101 dataset and an overall testing 

performance of 97.22%, our model of choice outperformed 

the other three models. Before the convolution layer, there 

are three different types of LSTM layers: sequential LSTM-

CNN, sequential Convolution, dropout layers (CNN-

LSTM), and parallel LSTM layers with the convolution 

layer outcomes. Thus, it has been proven that the deep 

LRCN model is helpful for the multi-human activity 

recognition technique. 

Figure.4 shows the trajectory of model accuracies across 20 

epochs of training, featuring a comparison between the 

proposed LRCN-HTP model and several conventional 

techniques—CNN-LSTM, CNN-SVM, CNN-Naive Bayes, 

and CNN-ALSTM—incorporating noise to reflect realistic 

training conditions. The graph's lines represent each model's 

accuracy as it evolves with each training epoch. The noisy 

appearance of the lines simulates the variability typically 

seen in the training process, which can result from factors 

like differences in the initial weights, batch sampling, and 

intrinsic dataset complexities. 

The LRCN-HTP model, distinguished by the dashed green 

line, demonstrates a robust increase in accuracy, indicating 

a solid learning capacity and the effectiveness of its 

architecture. It starts to outpace other models early in 

training. It maintains this lead, suggesting that its integrated 

approach to spatial and temporal feature processing is 

advantageous for the task. The CNN-ALSTM also shows 

strong performance, reinforcing the value of attention 

mechanisms in sequence modeling. Despite the 

irregularities introduced by the noise, which mirror the 

unpredictable nature of iterative optimization, all models 

improve in accuracy over time, with the proposed LRCN-

HTP architecture consistently leading, reflecting its 

potential for more accurate and reliable human activity 

recognition in video data. 

5. Conclusion 

In this paper, we present the 3D CNN-based multi-human 

action recognition approach. In contrast to current 

techniques, our approach can detect and recognize actions 

concurrently. This proposal uses the CNN and LSTM 

models, which perform well with spatial and temporal 

feature extraction, respectively, to help with robust frame 

extraction from a video. The primary objective is to enhance 

the HAR's capacity to identify related actions by putting 

LRCN. The suggested model may identify various intricate 

human activities since CNN can effectively capture spatial 

information, and Attention LSTM can manage long-term 

dependencies in time series data. The suggested approach 

uses LSTM to classify human activities and CNN to extract 

characteristics. We employed pre-trained weights for 

VGG19 during the training phase, and the Adam optimizer 

is employed as an optimization method for LSTM weight 

learning. We achieved an accuracy of 97.2% in less than 20 

epochs. During the testing phase, VGG19 is fed unknown 

test video examples, and then the LSTM classifier is used to 

make predictions. We contrasted the current research using 

LRCN. 
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