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Abstract: Diabetic retinopathy is a degenerative eye disease associated with uncontrolled diabetes, high blood pressure, blood sugar, 

cholesterol, and body weight. If diabetes-related diabetic retinopathy is not detected and treated in its early stages, it might result in visual 

impairment. Traditional methods of diagnosis often require manual examination by trained ophthalmologists, which can be time-consuming 

and subjective. Deep learning models called Convolutional Neural Networks (CNNs) are renowned for their capacity to recognize small 

patterns and features in images, which makes them very useful for challenging medical imaging applications. In this study, we proposed 

two CNN architectures, namely CNN-Plain and CNN-BN-D to automate and enhance the diagnostic process for diabetic retinopathy (DR) 

detection. The model's effectiveness is assessed using a range of criteria, such as accuracy, precision, recall, and F1Score, to confirm that 

it is as effective as current diagnostic techniques. The results demonstrate the CNN-BN-D model with 0.94 accuracy on train and test data 

exhibits superior performance and generalization compared to the simpler CNN-Plain architecture with 0.89 accuracy in the task of diabetic 

retinopathy detection. 

Keywords: Diabetic retinopathy, Ocular ailment, Uncontrolled diabetes, Elevated blood, sugar, Convolutional Neural Networks (CNN), 

Deep learning models, Medical imaging 

1. Introduction 

Diabetes frequently results in diabetic retinopathy (DR), a 

common consequence that, if not promptly detected and 

treated in its early stages, can cause vision impairment and 

blindness. This presents a serious public health concern. The 

current diagnostic landscape relies heavily on manual 

examination by trained ophthalmologists, a process that is 

both time-consuming and inherently subjective. As the 

prevalence of diabetes continues to rise globally, there is an 

urgent need for more efficient and objective methods of DR 

detection. 

The degenerative eye condition known as diabetic 

retinopathy is linked to uncontrolled diabetes, high blood 

pressure, cholesterol, and sugar and blood sugar levels, as 

well as weight gain. In its early stages, called non-

proliferative retinopathy, damage to the retina's blood 

vessels may lead to swelling and leakage, causing macular 

edema [1]. While vision is usually unaffected at this stage, 

close monitoring is essential to prevent progression to the 

more severe proliferative stage. 

Proliferative diabetic retinopathy is characterized by 

neovascularization, where abnormal blood vessels grow in 

response to the retina's deprived oxygen and nutrients [2]. 

Due to their fragility, these veins run the risk of leaking 

blood into the vitreous, which could lead to visual 

distortions like floaters or poor vision. Complications can 

include scar tissue formation, leading to retinal wrinkling or 

detachment. Additionally, abnormal blood vessel growth 

may block the eye's drainage angle, resulting in increased 

eye pressure and neovascular angle-closure glaucoma. 

Timely intervention and regular monitoring are crucial to 

prevent further vision loss. 

Enhancements in computer-aided design and analysis have 

been achieved through the integration of advanced machine-

learning algorithms and processing techniques, aiming to 

improve the accuracy of detection. One notable machine 

learning approach employed for diverse applications in 

image processing is the CNN [3]. The CNN, known for its 

effectiveness in recognizing patterns and features in visual 

data, has proven to be a valuable tool in various domains, 

contributing to the refinement of automated detection 

systems. By leveraging the capabilities of CNN and other 

sophisticated techniques, the field of computer-aided design 
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and analysis continues to evolve, offering more robust and 

precise solutions for detecting various phenomena and 

patterns within digital imagery [4]. 

Overfitting is a common issue with CNN models in deep 

learning, where the model performs remarkably well on the 

training data but finds it difficult to generalize to new, 

unseen data. Regularization strategies are essential for 

resolving this problem and enhancing the model's overall 

performance and generalizability [5]. Regularization in 

traditional machine learning typically involves adding 

penalty terms to the coefficients of features to control model 

complexity and prevent overfitting. However, 

regularization is applied to the weight matrices of neural 

network nodes in deep learning. By doing this, the scope of 

potential solutions is constrained, overfitting is deterred, and 

generalization performance is enhanced. Different 

regularization strategies impose different types of 

restrictions on the weight matrices [5]. 

The chosen methodology for this research involves initially 

preparing a base model for CNN training. Subsequently, 

experimentation with various regularization techniques is 

conducted, followed by performance evaluation and fine-

tuning of the model. 

2. Related Work 

Untreated diabetic retinopathy can result in vascular 

bleeding, retinal detachment, and blindness from glaucoma. 

It is caused by high blood sugar levels destroying retinal 

blood vessels. Diagnosis in crucial areas is hindered by a 

lack of expertise and technology [6]. R Vignesh et., al. 

Utilized retinal images from the eyepacs diabetic 

retinopathy database, achieved accuracy above 90%, 

providing a more efficient and cost-effective alternative to 

manual tests. In order to solve the difficult and time-

consuming manual identification process carried out by 

specialists, the research [7] investigates the use of a CNN 

for the detection of diabetic retinopathy in retinal pictures. 

The CNN algorithm underwent training using a dataset 

comprising over 1000 fundus images, followed by testing 

on an additional set of more than 50 images. The achieved 

accuracy of the CNN model was approximately 93.8%. The 

paper [8] introduces a specialized deep learning approach, 

the Customized Convolutional Neural Network (CCNN), 

designed for detecting Diabetic Retinopathy (DR) in 

individuals with diabetes through the analysis of fundus 

images. The CCNN model proposed attains an impressive 

test accuracy of 97.24% on the MESSIDOR Dataset, 

surpassing the performance of existing algorithms. 

Neural networks have found success in diverse applications; 

however, the concern of overfitting arises due to the 

substantial number of parameters involved. To mitigate 

overfitting, regularization is a widely adopted strategy, 

involving the imposition of penalties on neural network 

weights. The paper [9] endeavors to present a 

comprehensive framework for neural networks 

incorporating regularization, establishing its consistency 

through theoretical proofs. The method of sieves and 

insights from minimal neural network theory is applied to 

address the challenge of parameter unidentifiability. To 

improve neural networks' verified robustness against 

adversarial cases, the research [10] presents the 

Misclassification Aware Adversarial Regularization 

(MAAR) defense technique. Unlike existing provable 

defense methods that treat all examples equally during 

training, the discrepancy in certified robustness between 

cases that are correctly and incorrectly identified is 

addressed by MAAR. By introducing a novel consistency 

regularization term, MAAR significantly improves the 

certified robustness of a network by ensuring consistency in 

the constraint of misclassified and correctly classified 

examples. Results from experiments on the CIFAR-10 and 

MNIST datasets show that, while keeping comparable 

accuracy, when it comes to proven robustness, MAAR 

outperforms several other cutting-edge algorithms. 

3. Methodology 

The proposed methodology outlines a systematic approach 

for developing a CNN model. It begins with defining the 

CNN architecture, specifying layers, activation functions, 

and relevant parameters, tailored to the task or problem 

domain. Data preprocessing follows, involving proper 

formatting and division into training, validation, and test 

sets, with input data normalization or standardization. 

Baseline model training without regularization establishes 

initial performance, evaluated on the validation set to detect 

potential overfitting. Subsequent steps involve 

experimenting with various regularization techniques, such 

as dropout and L1/L2 regularization, each assessed 

separately with different strengths. Performance evaluation 

compares models using metrics like accuracy, precision, and 

recall, considering the impact of regularization on 

generalization to unseen data. Fine-tuning incorporates 

insights from experimentation, adjusting chosen 

regularization techniques and other hyperparameters. 

Validation on the validation set ensures generalization and 

testing on an unseen dataset assesses the final model's 

overall performance. 

3.1. Convolutional Neural Network (CNN) 

A CNN is structured with multiple hidden layers designed 

to effectively extract meaningful information from images 

[11]. Figure 1 describes the common architecture of the 

CNN model. The four pivotal layers within a CNN are 

crucial for its image-processing capabilities. The 

Convolution layer plays a key role in applying filters to 

input images, capturing essential features and patterns. The 

fundamental component of CNN feature extraction is this 

convolution process, where filters are trained to identify 
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unique patterns or features in the input data [12]. 

 

Figure 1: CNN architecture 

For a two-dimensional convolution, commonly used in 

image processing in CNNs, the operation is extended to a 

double summation [13]: 

𝑌[𝑖, 𝑗] =   ∑ ∑ 𝑋[𝑖 − 𝑚, 𝑗 − 𝑛]. 𝐻[𝑚, 𝑛]N−1
n=0

M−1
m=0  

Here: 

H [m, n] signifies the filter value at the position (m, n). 

The input value at location (i-m, j-n) is indicated by X [i-

m, j-n]. 

The value of the output feature map at the point (i, j) is 

represented by Y [i, j].  

The summations are carried out over the dimensions of 

the filters (M) and (N). 

The Rectified Linear Unit (ReLU) layer enhances the 

network's non-linearity and helps the model understand 

complex correlations in the data by selectively activating 

neurons [14]. 

It is defined mathematically as: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

In this instance, f(x) represents the output of the ReLU 

activation function given an input of x. The function returns 

the maximum of zero and the input value x. After that, the 

Pooling layer helps to minimize the input data's spatial 

dimensions, preserving important information while 

lowering the computational burden [15].  

Mathematically, if we denote the input matrix as ( 𝑋 ) and 

the pooled output matrix as ( 𝑌 ), the max pooling operation 

is expressed as: 

𝑌[𝑖, 𝑗] = 𝑚𝑎𝑥(𝑋[2𝑖, 2𝑗], 𝑋[2𝑖, 2𝑗 + 1], 𝑋[2𝑖 + 1,2𝑗], 𝑋[2𝑖

+ 1,2𝑗 + 1]) 

In this case, the output value at position (𝑖, 𝑗) in the pooled 

matrix is 𝑌[𝑖, 𝑗], and the maximum value within the 2x2 

pooling window centered at (2𝑖, 2𝑗) is computed using the 

max function [16]. 

Lastly, a complete comprehension and classification of the 

input image are made possible by the connections between 

each neuron in the Fully Connected layer and every other 

neuron in the network [17]. 

The output vector 𝑌of the Fully Connected (FC) layer is 

given by: 

Y =  X . W +  b 

     

Here: 

The input vector from the layer above is represented by 

X  

W  comprises the weights that link every neuron in the 

input layer to the output layer, W weight matrix. 

 The bias vector b is added elementwise to the product of 

X and W. 

Collectively, these layers contribute to the hierarchical 

feature extraction process that makes CNNs particularly 

effective in image recognition tasks. Figure 1 describes the 

graphical representation of CNN architecture. 

3.2. Regularization techniques 

Regularization strategies are essential for reducing 

overfitting and enhancing CNNs' capacity for generalization 

[18,5]. Several key regularization techniques are commonly 

employed in CNNs to enhance their performance and 

prevent overfitting. A popular method called "dropout" 

involves arbitrarily excluding some neurons during training 

to reduce the network's dependence on neurons and 

encourage the learning of more robust features [19]. 

During each training iteration, each neuron's output is 

multiplied by a binary mask   𝑚𝑖 mi drawn from a Bernoulli 

distribution with probability 𝑝: 

dropout operation: 𝑦𝑖   =  𝑚𝑖 . 𝑥𝑖     

 Here: 

𝑥𝑖    is the original output of the neuron. 

A binary mask with probability  p  and 0 with probability 

1 − p is 𝑚𝑖. 

𝑦𝑖 is the final output after applying dropout. 

During the inference or testing phase, when all neurons are 

used, the outputs are scaled by 𝑝 to ensure the expected 

value remains the same as during training: 

 

inference operation: �̂� =  p . 𝑥𝑖  

The purpose of dropout is to prevent co-adaptation of 

neurons and encourage the network to learn more robust 

features by reducing reliance on specific neurons. 
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Figure 2: Sample images from dataset 

Batch Normalization, another technique, normalizes layer 

inputs within mini-batches, mitigating internal covariate 

shifts and stabilizing the training process. This 

normalization reduces sensitivity to initial weights and 

hyperparameters.  

The normalized input 𝑌 is then given by: 

𝑌 = 
𝑋 − 𝜇

√𝜎2 + 𝜀
⁄  

Here: 

• The layer's input is 𝑋 

• The mean of 𝑋 over the mini-batch is represented 

by 𝜇. 

• The standard deviation of 𝑋 over the mini-batch is 

represented by  𝜎. 

• A little constant added for numerical stability is 𝜀 

Next, a learnable parameter 𝜎 is used to scale the normalized 

input 𝛾, and another learnable parameter 𝛽 is used to shift 

it: 

𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑋)  =  𝛾 . 𝑌 +  𝛽 

Here: 

• Scaling parameter 𝛾 

• Shifting parameter 𝛽 

   

During training, the mean and standard deviation are 

computed for each mini-batch, and the parameters 𝛾 and 𝛽 

are updated through backpropagation. Moving averages 

from the training phase are often used to calculate the mean 

and standard deviation during the inference step. 

Applying random changes, including flips and rotations, to 

training data improves the model's ability to generalize to 

many input variations and diversifies the dataset. This 

process is known as data augmentation. A random 

transformation function T to input sample 𝑋 to obtain 

augmented sample 𝑋′: 

𝑋′ =  𝑇(𝑋) 

Here, 𝑇 represents a transformation function. 

The common transformations include rotations, flips, 

zooms, and changes in brightness or contrast. These 

regularization techniques collectively contribute to creating 

more robust and effective CNN models. 

4. Experimental setup 

To evaluate the two models' performance, tests were 

conducted.  

4.1. Data set 

The data sets used consist of Gaussian-filtered retina scan 

images used for diabetic retinopathy detection. The main 

dataset originates from the APTOS 2019 Blindness 

Detection project, which focuses on identifying diabetic 

retinopathy using retinal images. This dataset can be found 

on Kaggle. Five classes of images represent different levels 

of severity of diabetic retinopathy, ranging from the absence 

of the condition (𝑁𝑜_𝐷𝑅) to various stages of severity, 

including Mild, Moderate, Severe, and ProliferateDR. Figure 

2 shows sample images from the data set. we perform binary 

classification to detect whether Diabetic retinopathy is 

present or not present.  

Figure 4, Table 1 provides the distribution of diabetic 

retinopathy levels of severity in the dataset based on the 

count of images for each severity level. The severity levels 

are typically assigned based on the progression of diabetic 

retinopathy, a medical condition affecting the retina due to 

diabetes. 

Levels 

of 

Severit

y of 

Diabet

ic 

Retino

pathy 

No

_D

R 

Moder

ate 
Mild 

Prolifera

te_DR 

Sever

e 

Count 
180

5 
999 370 295 193 

 

Table 1: Levels of Severity of Diabetic Retinopathy 

images count 

 

Figure 4: Diabetic retinopathy levels of severity image 

count 
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4.2. CNN-Plain Model 

A CNN model is built in this experimental setup with the 

TensorFlow and Keras packages. The definition of the 

model architecture is a layer-by-layer stack. Convolutional 

layer (Conv2D) with 8 filters of size (3,3) is the initial layer, 

which uses the ReLU activation function. A max-pooling 

layer (MaxPooling2D) that downsamples the spatial 

dimensions comes next, with a pool size of (2,2). The model 

also includes extra convolutional layers with max-pooling 

in between. There are 16 filters in the second convolutional 

layer, and 32 filters with different kernel sizes in the third. 

To transform the 3D tensor into a 1D tensor, a flattening 

layer (named Flatten) is inserted after the convolutional 

layers. Then, two fully connected dense layers (Dense) are 

added: one with two units and softmax activation for binary 

classification and the other with 32 units and ReLU 

activation. The model is put together using the Adam 

optimizer, binary cross-entropy loss function, and accuracy 

as the evaluation metric. Using the supplied training 

batches, the training is carried out for 30 epochs, and the 

validation is done on the validation batches. 

4.3. CNN-BN-D Model 

In this altered experimental setup, the CNN model 

undergoes modifications by adding certain layers for 

comparison purposes. The model architecture remains a 

sequential stack of layers implemented using TensorFlow 

and Keras. The first layer is a convolutional layer (Conv2D) 

with eight filters of size (3,3) and employs the ReLU 

activation function. A second max-pooling layer 

(MaxPooling2D) with a pool size of (2,2) is employed for 

downsampling. 

The architectural changes involve the addition of batch 

normalization layers (BatchNormalization) after each 

convolutional layer. To reduce overfitting, a dropout layer 

(Dropout) with a dropout rate of 0.15 is introduced after the 

first dense layer. The purpose of adding batch normalization 

and dropout layers to this modified CNN architecture is to 

see how these regularization approaches affect the model's 

performance in training and validation.  

 

Figure 3: CNN-BN-D Model 

Figure 3: shows the architecture of the CNN-BN-D Model. 

4.4. Training process 

The model architecture is chosen, and then it is assembled 

using the 1e-5 learning rate Adam optimizer. Using the 

binary cross-entropy loss function, accuracy is monitored as 

a statistic throughout the training phase. The Gaussian-

filtered retina scan pictures used for the diabetic retinopathy 

detection dataset are fed into the model for 30 iterations of 

training. Throughout this training phase, the model's 

internal parameters are dynamically adjusted through the 

optimization algorithm and computed loss, enhancing its 

proficiency in binary outcome classification. The training 

data is presented iteratively in batches to the model, and 

parameter updates are performed to minimize the loss. 

 

Figure 5 (a). CNN-BN-D Accuracy 

 

  

Figure 5 (b). CNN-Plain Accuracy 

 

Figure 5 (c). CNN-BN-D Loss  
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Figure 5 (d). CNN-Plain Loss 

Figure 5 Comparison of Accuracy and Loss for CNN-BN-

D and CNN-Plain Models. 

Table 2: summary of the model’s performance 

Metric Model 
Class 

DR No_DR 

Precision 

CNN-

Plain 
0.88 0.9 

CNN-

BN-D 
0.95 0.93 

Recall 

CNN-

Plain 
0.91 0.87 

CNN-

BN-D 
0.93 0.94 

F1-score 

CNN-

Plain 
0.9 0.89 

CNN-

BN-D 
0.94 0.94 

Support 

CNN-

Plain 
279 271 

CNN-

BN-D 
279 271 

Train 

accuracy 

CNN-

Plain 
0.89 

CNN-

BN-D 
0.94 

Test 

accuracy 

CNN-

Plain 
0.89 

CNN-

BN-D 
0.94 

 

5. Results and Discussion 

Table 2 provides a detailed summary of the performance 

metrics for two models, CNN-Plain (Convolutional Neural 

Network without Batch Normalization and Dropout) and 

CNN-BN-D (Convolutional Neural Network with Batch 

Normalization and Dropout), across two classes: 'DR' 

(Diabetic Retinopathy) and ' 𝑁𝑜_𝐷𝑅 ' (No Diabetic 

Retinopathy). The performance metrics measure highlights 

that CNN-BN-D performs better than CNN-Plain across 

precision, recall, 𝐹1 − 𝑆𝑐𝑜𝑟𝑒, and accuracy for both classes. 

5.1. Performance Metrics 

1. Precision: Precision assesses how well the model 

predicts favorable outcomes. 

PDR =
𝑇𝑃𝐷𝑅

𝑇𝑃𝐷𝑅 + 𝐹𝑃𝐷𝑅

 

     

PNo_DR =
𝑇𝑃𝑁𝑜_𝐷𝑅

𝑇𝑃𝑁𝑜_𝐷𝑅 + 𝐹𝑃𝑁𝑜_𝐷𝑅

 

• 𝑇𝑃𝐷𝑅  (True Positives for 'DR'): The number of 

cases that the model accurately identified as ' 

DR' 

• 𝐹𝑃𝐷𝑅 (False Positives for 'DR'): The number 

of cases where the model misclassified some 

occurrences as 'DR' when they actually belong 

to ' 𝑁𝑜_𝐷𝑅'. 

• 𝑇𝑃𝑁𝑜_𝐷𝑅 (True Positives for ' 𝑁𝑜_𝐷𝑅 '): The 

number of cases that the model accurately 

categorized as ′𝑁𝑜_𝐷𝑅'. 

• 𝐹𝑃𝑁𝑜_𝐷𝑅 (False Positives for ' 𝑁𝑜_𝐷𝑅 '): The 

number of cases when the model misclassified 

some occurrences as ' 𝑁𝑜_𝐷𝑅 when they 

actually fall under ' 𝐷𝑅 '. 

For ' 𝐷𝑅,' CNN-BN-D outperforms CNN-Plain with a 

precision of 0.95 compared to 0.88. For ' 𝑁𝑜_𝐷𝑅,' CNN-

Plain has a slightly higher precision of 0.9 compared to 

CNN-BN-D's 0.93. 

2. Recall: Also referred to as sensitivity, measures 

the model's ability to accept each positive example. 

RDR =
𝑇𝑃𝐷𝑅

𝑇𝑃𝐷𝑅 + 𝐹𝑁𝐷𝑅

 

RNo_DR =
𝑇𝑃𝑁𝑜_𝐷𝑅

𝑇𝑃𝑁𝑜_𝐷𝑅 + 𝐹𝑁𝑁𝑜_𝐷𝑅

 

• 𝑇𝑃𝐷𝑅  (True Positives for ' 𝐷𝑅 '): The number 

of cases that the model accurately categorized 

as ' 𝑁𝑜_𝐷𝑅 '. 

• 𝐹𝑁𝐷𝑅 (False Negatives for ' 𝐷𝑅 '): The number 

of cases where the model misclassified some 

occurrences as ' 𝐷𝑅 ' when they actually 

belong to ' 𝑁𝑜_𝐷𝑅 '. 

• 𝑇𝑃𝑁𝑜_𝐷𝑅 (True Positives for ' 𝑁𝑜_𝐷𝑅 '): The 

number of cases that the model accurately 

categorized as 𝑁𝑜_𝐷𝑅 '. 

• 𝐹𝑁𝑁𝑜_𝐷𝑅 (False Negatives for ' 𝑁𝑜_𝐷𝑅 '): The 

number of cases when the model misclassified 

some occurrences as ' 𝑁𝑜_𝐷𝑅 ' when they 

actually fall under ' 𝐷𝑅 '.    
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CNN-BN-D has higher recall values for both 'DR' (0.93) and   

' 𝑁𝑜_𝐷𝑅 ' (0.94) compared to CNN-Plain (0.91 and 0.87, 

respectively). 

3. F1-Score:  

  The F1-Score computes the harmonic mean of 

precision and recall achieving a balance. 

     

F1DR =
𝑃𝐷𝑅  . 𝑅𝐷𝑅

𝑃𝐷𝑅  +  𝑅𝐷𝑅

 

F1𝑁𝑜_𝐷𝑅 =
𝑃𝑁𝑜_𝐷𝑅 . 𝑅𝑁𝑜_𝐷𝑅

𝑃𝑁𝑜_𝐷𝑅  +  𝑅𝑁𝑜_𝐷𝑅

 

• 𝑃𝐷𝑅  (Precision for ' 𝐷𝑅 ') 

• 𝑅𝐷𝑅 (Recall for ' 𝐷𝑅 ') 

• 𝑃𝑁𝑜_𝐷𝑅 (Precision for ' 𝑁𝑜_𝐷𝑅 ') 

• 𝑅𝑁𝑜_𝐷𝑅 (Recall for  '𝑁𝑜_𝐷𝑅 ') 

    CNN-BN-D shows improvements in F1-Score for both 

'DR' (0.94) and '𝑁𝑜_𝐷𝑅' (0.94) compared to CNN-Plain (0.9 

and 0.89, respectively). 

4. Support: The number of actual instances of each class 

in the test dataset is represented by the term "support." 

Both models have the same support values for ' 𝐷𝑅 ' 

(279) and '𝑁𝑜_𝐷𝑅' (271), indicating a balanced 

dataset. 

5. Train Accuracy: Training accuracy assesses the 

model's accuracy specifically on the training dataset. 

CNN-BN-D achieves a higher train accuracy of 0.94 

compared to CNN-Plain's 0.89. 

6. Test Accuracy: Test accuracy measures how well the 

model works on untrained data, and CNN-BN-D 

performs better than CNN-Plain, scoring 0.94 against 

0.89 for CNN-Plain. 

The inclusion of Batch Normalization and Dropout in CNN-

BN-D contributes to improved model performance [20]. 

From the accuracy curves shown in Figure 5(a) and Figure 

5(b), it is evident that CNN-BN-D consistently outperforms 

CNN-Plain in terms of accuracy throughout the training 

epochs. CNN-BN-D has demonstrated smoother 

convergence and higher overall accuracy, which suggests 

that it has a superior ability to learn and generalize from the 

training set. 

The loss depicted in Figure 5(c) and Figure 5(d) CNN-BN-

D exhibits a more favorable reduction in loss compared to 

CNN-Plain. The steeper decline and lower final loss value 

for CNN-BN-D suggest that it converges more effectively 

during training, emphasizing its better optimization and 

generalization capabilities. 

The presented graphs strongly support the superiority of the 

CNN-BN-D model over CNN-Plain in terms of both 

accuracy and loss. The integration of batch normalization 

and dropout in CNN-BN-D contributes to its enhanced 

performance, making it a robust and reliable model for the 

classification problem under consideration. 

6. Conclusion 

In this work, we assessed how well two CNN architectures 

CNN-Plain and CNN-BN-D performed in the task of 

detecting diabetic retinopathy (DR). The models were 

trained and tested on a dataset with multiple severity levels, 

including '𝑁𝑜_𝐷𝑅,' 'Mild,' 'Moderate,' 'Severe,' and 

'ProliferateDR.' Our findings indicate that CNN-BN-D, 

which incorporates batch normalization and dropout layers, 

outperforms CNN-Plain across various evaluation metrics. 

CNN-BN-D shows improved F1-score, recall, and precision 

for both the 'DR' and 'No_DR' classes. Additionally, it 

achieves superior overall accuracy on the test set compared 

to CNN-Plain. The experiment results suggest that the 

regularization techniques, namely batch normalization and 

dropout, contribute to the robustness and generalization 

capability of the CNN model in the context of diabetic 

retinopathy detection. These methods improve the model's 

capacity to generalize to new data and help avoid 

overfitting. The CNN-BN-D model with 0.94 accuracy on 

train and test data exhibits superior performance and 

generalization compared to the simpler CNN-Plain 

architecture with 0.89 accuracy in the task of diabetic 

retinopathy detection. 
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