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Abstract: CVD detection strategies encompass statistical, image-based, and audio-based approaches, emphasizing analyzing systolic and 

diastolic sounds. While statistical methods rely on traditional risk factors, image-based techniques utilize deep learning, particularly CNNs, 

for early detection by analyzing Electrocardiogram data. Audio-based methods, including time-frequency analysis of phonocardiogram 

signals, show promise in detecting cardiovascular abnormalities, yet specific sound disorders remain insufficiently addressed. Real-time 

monitoring of systolic and diastolic sound irregularities holds potential for mitigating heart attack risks. Recent observations underscore 

the critical need for dynamic, real-time monitoring, shifting from conventional systematic assessments to ongoing observations. This paper 

introduces a Bi-LSTM model to detect abnormal heart sound patterns, achieving an accuracy of 0.74 and demonstrating a favorable ROC 

curve across all classes. 
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1. Introduction 

CVDs remain one of the leading causes of morbidity and 

mortality worldwide, underscoring the critical need for 

effective methods of early detection and intervention. 

Among the various modalities for cardiovascular health 

monitoring, the analysis of heart sounds presents a 

promising avenue for detecting abnormalities indicative 

of underlying cardiac conditions. Recent advancements in 

deep learning techniques have enabled researchers to 

leverage vast amounts of heart sound data to develop 

accurate and efficient automated analysis and prediction 

models. 

Sound analysis plays a crucial role in the early detection 

of heart diseases, especially during critical events like 

heart attacks. Traditional diagnostic methods, relying on 

statistical data such as blood pressure, age, and cholesterol 

levels, have limitations in capturing heart conditions' 

dynamic and intricate nature. By scrutinizing the rhythmic 

"Lub" and "Dub" sounds, medical professionals can 

discern subtle changes in the heart's function and 

structure, facilitating early diagnosis and intervention. 

Researchers, such as Pant, A [3], [4], and [27], have 

leveraged ECG images to train machine learning or deep 

learning models for disease segmentation in various heart-

related conditions. Using CNN models, they successfully 

classified diseases based on ECG patterns. However, a 

significant challenge remains, particularly in addressing 

the sudden onset of heart attacks, which may occur 

without typical symptoms. 

In a comparative study, researchers like Bao X et al. [9] 

explored time-frequency-based analysis methods for 

diagnosing heart-related diseases. While image-based 

approaches have been effective, challenges persist in 

addressing the sudden onset of heart-related conditions. 

Additionally, Alkayyali Z et al. [11] investigated 

statistical-based approaches, highlighting the robustness 

of machine learning models in heart disease diagnosis 

when considering various statistical features. 

Ren, Z. et al. [12] took a distinctive approach by exploring 

sound-based analysis of heart diseases, focusing on 

different heart sounds like systolic and diastolic sounds. 

Subsequent studies [13], [14], [15], and [16] extended this 

work by extracting various features from sound signals, 

including frequency, Mel spectrogram, and time-

frequency characteristics. These features were then used 

to train deep learning models, showcasing the potential of 

sound-based methods in advancing healthcare 

diagnostics. 

The primary objective is to develop an automated system 

that detects heart diseases by analyzing distinctive 

patterns present in heart sounds. Consistency is crucial, 

aiming for reliable performance across diverse cases and 

real-world healthcare situations. This advanced 

methodology holds substantial potential to transform early 

diagnosis, enhance accuracy in identifying heart-related 
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conditions, and ultimately improve overall cardiovascular 

health outcomes. 

Contributions 

• The implemented Bi-LSTM deep learning model 

achieves an impressive accuracy of 0.69, 

showcasing consistent proficiency in identifying 

heart-related disorders through various methods. 

• Through comparative evaluations, our model 

outperforms specified benchmarks, showcasing 

a swift and robust ability to detect sound 

disorders associated with heart conditions. 

• The unique features embedded in our model 

contribute significantly to its efficacy in 

accurately identifying and categorizing heart-

related disorders. 

2. Related Work 

Exploration of predictive and detection strategies for CVD 

encompasses three pivotal features: statistical, image-

based, and audio-based, explicitly focusing on systolic 

and diastolic sounds. While statistical methods hold 

promise in early detection, their reliance on limited 

features such as age, blood pressure, and cholesterol levels 

necessitate refinement to achieve a more comprehensive 

and nuanced approach. 

Researchers have extensively explored image-based 

approaches, particularly utilizing Electrocardiogram data, 

as demonstrated by Martin-Isla et al. [6]. Their 

implementation of deep learning models like CNNs 

represents a significant advancement in this field. 

However, it is essential to recognize that ECG-based 

predictions, while valuable, primarily focus on early-stage 

detection and diagnosis. 

Pasha et al. [1] employ deep learning techniques to predict 

cardiovascular disease, offering insights into analyzing 

cardiovascular risk factors and predicting the likelihood of 

heart disease development. 

Majumder et al. [2] propose a method for heart disease 

prediction utilizing concatenated hybrid ensemble 

classifiers. This study explores the effectiveness of 

combining multiple classification algorithms to enhance 

the accuracy and robustness of predictive models. 

Pant et al. [3] investigate heart disease prediction using 

image segmentation through one dimensional CNN 

models. And they used vertical techniques to avoid 

overfitting. This model when compared all machine 

learning models performed better with training and testing 

accuracy of 0.97 and 0.96. In a comprehensive review, 

Joshi et al. [4] discuss the evolution and applications of 

CNNs, providing insights into their strength and weakness 

in terms of bandwidth compared all versions and types of 

CNN models that will help for image analysis. 

Chang et al. [5] presents AI based approach for heart 

disease detection using machine learning algorithms. In 

this they used continuous and categorical variables to train 

random forest models and got an accuracy of 0.83. But 

they used statistical features like temperature, blood 

pressure etc. Martin-Isla et al. [6] review image-based 

cardiac diagnosis with machine learning techniques, in 

this cardiac images, geographic images, ECG, anagenetic 

features are used to train their models. With all these 

features their model can able to detect whether it is 

diseased or not. 

Muhammad et al. [7] propose an intelligent computational 

model for early and accurate detection and diagnosis of 

heart disease, they compared all metrics like precision and 

recall with their support score and discussed the 

imbalanced data problems and importance. 

Nova et al. [8] propose automated image segmentation for 

cardiac septal defects based on contour regions with 

CNNs, presenting a preliminary investigation into using 

deep learning for automated detection and segmentation 

of cardiac abnormalities. 

Bao et al. [9] conducted a comparative study using CNNs 

to analyze time-frequency distributions of heart sound 

signals, and explored all the combinations of CNN models 

and also exploring different approaches for feature 

extraction and classification of heart sound data and 

observe the differences. And also studied S1, S2, S3 and 

S4 signal over disease prediction. 

Panah et al. [10] investigate the impact of noise and 

degradation on heart sound classification models, 

exploring the robustness of heart sound analysis 

algorithms in real-world noisy environments. And their 

results show that various noise levels in audio, and 

different approaches to disease identification. 

Studies such as those referenced in [17] have delved into 

time-frequency analysis of phonocardiogram signals in 

the audio-based category. This involves integrating 

wavelet transforms and neural network training, yielding 

promising results in detecting cardiovascular 

abnormalities. Similarly, other works such as [18], [19], 

and [20] have utilized phonocardiogram signals and time-

frequency analyses with wavelet signals to train deep 

learning models, optimizing outcomes. Additionally, 

research addressing heart valve diseases [21] [22] has 

focused on detecting valve positions critical for 

preventing blood clotting, thus ensuring proper heart 

pumping. Significantly, all these models leverage deep 

learning methodologies. 
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In [23], [24], and [25], researchers have explored heart 

sounds, extracting features like time-frequency and 

spectral frequencies to train deep learning models. 

However, there remains a notable gap in addressing 

disorders specific to systolic and diastolic sounds, which 

can pose significant threats to human health. Real-time 

monitoring of these disorders, observed second to second, 

could mitigate the risk of heart attacks, warranting further 

investigation for comprehensive heart health monitoring 

and early intervention. 

Recent observations suggest that heart diseases manifest 

as disorders in heart sounds [26], such as two or more 

consecutive systolic sounds or two or more diastolic 

sounds back-to-back, highlighting the critical need for 

real-time monitoring. Traditionally, assessments of 

cardiovascular health primarily centered on systematic 

examinations. However, contemporary approaches 

underscore the significance of ongoing, real-time 

observations to identify abnormalities promptly. This shift 

towards emphasizing the dynamic aspects of heart sounds 

signifies an evolving comprehension of the complexity of 

cardiovascular health. It also underscores the importance 

of harnessing advanced technologies, such as deep 

learning approaches, for timely identification and 

intervention in response to subtle sound disorders. By 

addressing these particular facets, the potential exists to 

revolutionize the early detection and management of heart 

diseases, offering a more comprehensive and real-time 

method for monitoring cardiovascular health, ultimately 

enhancing patient outcomes. 

3. Methodology 

Our novel approach leverages the Bi-LSTM architecture, 

a robust RNN variant capable of capturing long-term 

dependencies in sequential data. By incorporating features 

extracted from MFCC, as well as the mean and median of 

the spectrogram, our model gains a comprehensive 

understanding of the underlying patterns in heart sound 

data. 

In our architecture figure 1, these features are 

concatenated into a single list, facilitating their 

incorporation into the Bi-LSTM network. Using Bi-

LSTM allows us to capture information from past and 

future time steps, enabling the model to retain contextual 

information critical for accurate analysis effectively. 

The input size of the Bi-LSTM is 585*40*1, aligning with 

the dimensions of the data fed into the model. The 

selection of appropriate units for each layer (64 and 32) 

ensures that the network has sufficient capacity to learn 

complex representations while avoiding excessive 

computational overhead. Additionally, incorporating 

dropout layers with a dropout rate of 0.05% at each layer 

aids in regularization, mitigating the risk of overfitting and 

enhancing the model's generalization capability. 

We employ the SoftMax activation function and the Adam 

optimizer for weight updates to facilitate efficient 

learning. The SoftMax function allows the model to 

output probabilities across multiple classes, while the 

Adam optimizer adapts the learning rate during training, 

speeding up convergence and improving overall 

performance. 

In addition to the Bi-LSTM layers, our architecture 

includes a dense layer with dimensions of 32*3. This final 

layer is the output layer, mapping the learned 

representations to three classes: Murmur, Extra stole, and 

Normal. By leveraging this dense layer, our model can 

comprehensively classify heart sound abnormalities with 

enhanced accuracy and reliability. 

 

Figure 1 Architecture of proposed model 
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Figure 2 Working of Bi-LSTM model 

 

3.1 Data Preprocessing and Feature Extraction. 

Utilizing the Kaggle heart disease challenge dataset 

showcases a meticulous approach to feature extraction and 

processing. We selectively analyze normal, extra stole, 

and murmur audio files for a more precise analysis of heart 

sounds, considering both ordered and disordered WAV 

files. Extraction of diverse features, such as time-

frequency, harmonic features, harmonic percussive 

source, spectral features, rhythm features, and MFCC, 

reflects a comprehensive understanding of the acoustic 

attributes of heart sounds. 

We apply a signal length of 16000 and a clip duration of 

12, focusing on extracting spectrogram features, as 

illustrated in Figures 3 and 4. This attention to detail 

ensures robust feature extraction. Normalizing the data 

and employing max pooling techniques improve data 

consistency and enhance the model's robustness. 

Stacking the extracted features into a single list, formatted 

into three dimensions (585 * 40 * 1), with an average 

duration of 4.9 and a sample rate of 22050, demonstrates 

a thoughtful preparation of input data for subsequent 

model training. This structured approach, encompassing 

various features and preprocessing steps, is essential for 

developing a well-performing model for heart disease 

classification using deep learning techniques. 

Consolidating all features into a single list, as depicted in 

Table 1, facilitates efficient data management and model 

training processes. 

 

 

Figure 3 Wave frequency of heart sound 

 

Figure 4 Wave plot of Heart sound 



 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2635–2642 |  2639 

Table 1 MFCC features from heart sound 

Spectrogram Image of Heart Sound Extracted features 

 

[[-2.45461310e+02 -2.91119158e+02 -

4.02448048e+02 ... -3.67871637e+02 

  -3.70708414e+02 -3.72469945e+02] 

 [ 8.86406929e+01 9.88661324e+01 

1.33256498e+02 ...  1.51281027e+02 

   1.57261842e+02 1.52452273e+02] 

 [ 1.03978908e+02 8.56985019e+01 

2.37443259e+01 ...  2.91626730e+01 

   2.93766991e+01 3.74463005e+01] 

 ... 

 [-1.33243318e+01 -8.19430184e+00 -

1.18989196e+00 ...  9.66035179e-02 

   6.24897256e-01 1.19534810e+00] 

 [ 3.16322374e-01 -4.99245923e-01 -

1.58862224e-01 ...  2.22770953e+00 

  -2.15090204e-01 4.84898894e+00] 

 [ 3.34313266e+00 -9.89011623e-01 -

2.77108967e+00 ...  2.65077442e+00 

  -1.38751247e+00 1.85793453e+00]] 

 

 

4. Training and Result Analysis 

The Bi-LSTM model takes input vectors from both 

directions as shown in figure 2, and undergoes a process 

of hyperparameter tuning. Training iterations are 

conducted across various epochs, including 30, 35, and 

40, with batch sizes ranging from 16 to 32. Additionally, 

the learning rate is randomly adjusted to optimize model 

performance. 

Figure 4 illustrates the training and validation loss curves, 

providing insight into the model's generalization 

capabilities. Notably, the observed loss trends indicate 

that the model neither suffers from overfitting nor 

underfitting. This balanced performance suggests that the 

model effectively captures underlying patterns in the data 

without overly memorizing the training set or failing to 

capture its underlying structure. 

Our approach ensures that the Bi-LSTM model achieves 

optimal performance across different training scenarios by 

systematically adjusting hyperparameters and monitoring 

performance metrics such as loss curves. This iterative 

process of experimentation and evaluation enhances the 

model's robustness and reliability in accurately classifying 

heart disease based on acoustic features extracted from 

heart sounds. 

From Figure 5, a comparison between the LSTM and Bi-

LSTM models reveals distinct performance trends across 

different classes. Specifically, for class 0 (Normal), the 

Bi-LSTM model demonstrates superior accuracy 

compared to the LSTM model, achieving an optimal score 

over the curve. However, both models exhibit lower 

performance for classes representing Murmur and extra 

stole. Notably, despite lower overall accuracy, the Bi-

LSTM model outperforms the LSTM model regarding 

true positive and false negative rates, suggesting a more 

effective detection of these specific abnormalities. 

Table 2 further quantifies the performance metrics, 

indicating that the Bi-LSTM model achieves an overall 

accuracy of 0.74. This comprehensive assessment 

underscores the Bi-LSTM model's strengths in accurately 

classifying heart disease cases, particularly in detecting 

normal heart sounds and effectively managing false 

negatives in identifying murmurs and extra stole 

instances. 
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Figure 4 Training and validation loss- at batch size of 

16,32 

 

Figure 5 RoC curve of LSTM and Bi-LSTM models 

 

Table 2 accuracy of two models  

Model  Accuracy Class  Accuracy 

LSTM 0.69 Normal 0.89 

Extra Stole 0.60 

Murmur 0.62 

Bi-LSTM 0.74 Normal 0.98 

Extra Stole 0.66 

Murmur 0.69 

 

5. Conclusion 

In conclusion, our study comprehensively examines heart 

disease classification using deep learning methodologies, 

explicitly focusing on comparing LSTM and Bi-LSTM 

models. Using the Kaggle heart disease challenge dataset, 

we meticulously extracted features from heart sound 

recordings, including spectrogram features and MFCCs, 

to facilitate robust model training. Our findings reveal that 

while both LSTM and Bi-LSTM models exhibit varied 

performance across different classes, the Bi-LSTM model 

stands out with superior accuracy, achieving an overall 

accuracy of 0.74. 

Our study underscores the importance of leveraging 

bidirectional LSTM architecture, which effectively 

captures long-term dependencies in sequential data and 

contributes to enhanced performance in heart disease 

classification tasks. By integrating features from both 

forward and backward directions, the Bi-LSTM model 

demonstrates heightened sensitivity in detecting abnormal 

heart sounds, offering potential benefits for early disease 

detection and intervention. 

Furthermore, our research emphasizes the critical role of 

meticulous hyperparameter tuning and model evaluation 

processes. Through systematic adjustments of parameters 

such as batch size, number of epochs, and learning rate, 

we optimize model performance and mitigate issues such 

as overfitting or underfitting, as evidenced by the 

observed loss curves. 

Moving forward, we recognize the need to address class 

imbalance in our dataset. As observed, the dominance of 

the normal class may skew model performance. 

Therefore, future work will focus on balancing the dataset 

to ensure equitable representation across all classes, 

thereby enhancing the model's ability to classify heart 

disease cases across diverse populations accurately. 

Abbreviations: 

CVD Cardiovascular disease  

Bi_LSTM Bi-directional Long short-

term memory 

CNN Convolution Neural Network 

RNN Recurrent Neural Network 

 ECG Electrocardiogram 

MFCC Mel-Frequency Cepstral 

Coefficients  
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