
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2678–2688 |  2678 

Transformed image features can improve machine learning 

performance for detecting benign-malignant of breast cancer 

Anak Agung Ngurah Gunawan*1, Putu Astri Novianti2, Anak Agung Ngurah Frady Cakra Negara3, 

Anak Agung Ngurah Bagaskara1. 

Submitted: 29/01/2024    Revised: 07/03/2024     Accepted: 15/03/2024 

Abstract: Breast cancer is a commonly diagnosed disease in women. This research aimed to create a transformed image features can 

improve machine learning performance for detecting benign-malignant of breast cancer.This research was quantitative research. Data 

was taken from the radiology installation at Doctor Sutomo Hospital from 2010 until now, where there were 670 data, consisting of 342 

benign and 328 malignant. The data was distributed randomly; 70% was used for training, while the remaining 30% was used for testing. 

Every mammography had nine features: Entropy, Entropy of hdiff, contrast, Angular second moment, Angular second moment of hdiff 

Inverse difference moment, mean, Mean hdiff, and deviation. This research developed each feature into ten sub-features, namely Entropy 

at a distance of 1 pixel to Entropy at a distance of 10 pixels, and so on until the mean Hdiff at a distance of 10 pixels. Thus, the total 

features used in this research were 90 features. This research used three types of transformation, namely original, binary transformation, 

and bipolar transformation. Besides, this research also used three types of methods, namely 90 features, average, and optimization. 

Furthermore, this research sought the best performance based on the widest ROC graph, highest accuracy, and lowest false negative rate. 

In addition, this research also sought the best types of transformation and methods. Models with optimization types with binary and 

bipolar transformations had the highest positive true values. Models with optimization types with binary and bipolar transformations 

both had the lowest false negative values. The average type model with bipolar transformation had the highest accuracy value, followed 

by binary transformation. Models with optimization types with binary and bipolar transformations both had the highest ROC area. Based 

on the three methods and three transformations proposed, it was found that the optimization method and types of binary and bipolar 

transformations had the best performance. 
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1. Introduction 

Breast cancer is a commonly diagnosed disease in women 

and accounts for nearly one in four cancer cases [1]–[4]. 

Cancer is the second cause of death worldwide and has 

been identified as a dangerous disease [5]–[7]. Breast 

cancer is the most frequently diagnosed cancer in women 

globally and the fourth leading cause of female cancer-

related deaths in Japan [8], [9]. Breast cancer is one of the 

most prominent heterogeneous and leading causes of 

death in women worldwide [10], [11]. Breast cancer is one 

of the top five causes of cancer-related deaths [12]. 

Many patients have a poor prognosis due to late treatment. 

Since 1960 there has been a 66% increase in global cancer 

death reported by the International Agency for Research 

on Cancer (IARC) [13]. A total of 144,524 women were 

diagnosed with primary ductal carcinoma in situ (DCIS), 

with an average age at diagnosis of 57.4 years and 1540 

breast cancer deaths in the group [14]. In 2018, million 

new cases of cancer were diagnosed. The most common 

was lung cancer (2.09 million cases), followed by breast 

cancer (2.09 million cases) and prostate (1.28 million 

cases) [15]. 

In 2022, 1,918,030 new cancer cases and 609,360 deaths 

due to cancer in the United States [16]. In 2024, 2,001,140 

new cancer cases and 611,720 deaths in the United States 

[17]. 

Therefore, breast cancer screening is significant. 

Mammography is the most commonly used screening tool 

for breast cancer [18]–[23]. According to Kosmia 

Loizidou (2023), mammografi is the most effective tool 

for screening breast cancer [5], [24]–[26]. Early detection 

by mammography screening can increase the survival of 

breast cancer patients [27]. Magnetic Resonance Imaging 

in recent years has become a useful tool to support the 

diagnosis of preoperative intraductal spread of breast 

cancer [28]–[32]. According to Xuemin Liu (2021), 

MicroRNA-155 (mir-155) can serve as a diagnostic 

biomarker for breast cancer [33]. 

Many methods have been developed for the early 

detection of breast cancer. Ioannis Sechopoulos (2021) 

developed machine learning for breast cancer screening 
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using digital mammography [34]. Suvarna Vani (2022) 

developed an artificial intelligence to detect and classify 

Invasive Ductal Carcinoma [35]. Bita Asadi (2023) 

developed Deep Learning to detect breast cancer [36]. 

Yash Amethiya (2022) developed machine learning and 

biosensors for the early detection of breast cancer [37]. 

Imran Ul Haq (2022) developed deep learning for breast 

cancer screening  [38]. 

Machine learning is currently being developed for breast 

cancer screening. Richard Adam (2023) used Deep 

learning for breast cancer detection with MRI [39]. 

Kimberlee (2023) used a machine learning model to 

predict the increased risk of ductal carcinoma in situ 

(DCIS) surgery for invasive cancer [40]. Wei-Chung Shia 

(2021) used machine learning to classify malignant 

tumors on breast ultrasound [41]. Vincent Peter (2021) 

used machine learning to detect early breast cancer 

recurrence [42]. Zahra Maghsoodzadeh Sarvestani (2023) 

used machine learning for cation diagnosis of breast 

microcalcification on mammogram images [43]. 

Machine learning can process data quickly and efficiently, 

identify patterns, and accurately predict the risk of 

disease. However, many do not know that binary or 

bipolar data transformation can improve machine learning 

performance. For this reason, this research aimed to create 

a transformed image features can improve machine 

learning performance for detecting benign-malignant of 

breast cancer. This research is fundamental to carry out, 

considering that the breast cancer death rate is increasing 

every year. 

2. Materials and Methods 

This research was quantitative research. Data was taken 

from the radiology installation at Doctor Sutomo Hospital 

from 2010 until now. There were 670 data, consisting of 

342 benign and 328 malignant. The data was distributed 

randomly; 70% was used for training, while the remaining 

30% was used for testing. Every mammography had nine 

features: Entropy, contrast, Angular second moment, 

Inverse difference moment, mean, deviation, Entropy of 

hdiff, Angular second moment of hdiff, and Mean hdiff, 

as shown in Figure 2. This research developed each 

feature into ten sub-features: Entropy at a distance of 1 

pixel to Entropy at a distance of 10 pixels, and so on until 

the mean Hdiff at a distance of 10 pixels. Thus, the total 

features used in this research were 90, as shown in Figure 

3. This research used three types of transformation, 

namely original, binary transformation, and bipolar 

transformation. Besides, this research also used three 

types of methods, namely 90 features, average, and 

optimization. Furthermore, this research sought the best 

performance based on the ROC graph, the highest 

accuracy, and the lowest false negative rate. In addition, 

this research also sought the best types of transformation 

and methods. What is meant by average was taking the 

average of each feature. What is meant by optimization 

was taking significant features with a significant value < 

0.05 using the ANOVA test. Then, this research compared 

TP, FP, FN, TN, accuracy, sensitivity, specificity, 

precision, TPR, and FPR values using three types of data, 

namely original data, binary transformation data, and 

bipolar transformation data, as shown in Table 1, Table 2, 

and Figure 4 to Figure 10. From Table 1, Table 2, Figure 

5, and Figure 6, this research concluded the method had 

the highest accuracy value and the lowest false negative. 

Furthermore, this research also made a ROC graph to see 

the best performance of this research-proposed method, as 

shown in Figure 11. The research flowchart from this 

research is as shown in Figure 1. 

 

Fig. 1. Research Flowchart 

3. Results and Discussions 

3.1 Result 

The calculation results of TP, FP, FN, and TN values for 

each transformation can be seen in Table 1. 

Table 1. TP, FP, FN, and TN Values from Each 

Transformation 

  T.P F.P F

N 

TN 

90 

Feature

s 

Origina

l 

0 0 98 103 

Binary 89 0 9 103 

Bipolar 98 4 0 99 

Averag

e 

Origina

l 

19 8 79 95 

Binary 98 4 0 99 

Bipolar 97 1 1 102 

Optimi

zation 

Origina

l 

68 43 30 60 

Binary 98 4 0 99 

Bipolar 98 3 0 100 
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The calculation results of the Accuracy, Sensitivity, 

Specificity, and Precision values for each transformation 

can be seen in Table 2 

Table 2. Accuracy, Sensitivity, Specificity, and Precision 

Values of Each Transformation 

  Acc

urac

y  

Sen

sitiv

ity  

Spe

cific

ity  

Prec

isio

n  

TP

R 

FP

R 

9
0

 F
ea

tu
re

s 

Origi

nal 

0.51 0.00 1.00 nan 0.00 0.0

0 

Binar

y 

0.96 0.90 1.00 1.00 0.91 0.0

0 

Bipol

ar 

0.98 1.00 0.96 0.96 1.00 0.0

4 

A
v

er
ag

e 

Origi

nal 

0.57 0.19 0.92 0.70 0.19 0.0

8 

Binar

y 

0.98 1.00 0.96 0.96 1,00 0.0

4 

Bipol

ar 

0.99 0.99 0.99 0.98 0.99 0.0

1 

O
p

ti
m

iz
at

io
n

 

Origi

nal 

0.63 0.69 0.58 0.61 0.69 0.4

2 

Binar

y 

0.98 1.00 0.96 0.96 1.00 0.0

4 

Bipol

ar 

0.98 1.00 0.97 0.97 1.00 0.0

3 

 

Data visualization of nine features contained in digital 

mammography is shown in Figure 2. 

 

Fig. 2. Visualization of Digital Mammography Data 

Histogram of 90 features from digital mammogram as 

shown in Figure 3 

 

Fig. 3. Histogram of Features Contained in Digital 

Mammography 

The model with 90 feature types with bipolar 

transformation had the highest true positive value, 

followed by binary transformation. The average type 

model with binary transformation had the highest true 

positive value, followed by bipolar transformation. 

Models with optimization types with binary and bipolar 

transformations both had the highest positive true values, 

as seen in Figure 4. 

 

Fig. 4. Comparison of True Positive Values of Various 

Transformations 

The model with 90 feature types with bipolar 

transformation had the lowest false negative value, 

followed by binary transformation. The average type 

model with binary transformation had the lowest false 

negative value, followed by bipolar transformation. 

Models with optimization types with binary and bipolar 

transformations both had the lowest false negative values, 

as seen in Figure 5 

 

Fig. 5. Comparison of False Negative Values of Various 

Transformations 
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The model with 90 feature types with bipolar 

transformation had the highest accuracy value followed by 

binary transformation. The average type model with 

bipolar transformation had the highest accuracy value, 

followed by binary transformation. The model with 

optimization type with bipolar transformation had the 

highest accuracy value, followed by binary 

transformation, as seen in Figure 6. 

 

Fig. 6. Comparison of Accuracy Values of Various 

Transformations 

Binary and bipolar data transformations could increase the 

sensitivity value, the average, and optimization data types, 

which had the same sensitivity value with binary and 

bipolar transformations. However, the 90 feature data 

types had a different sensitivity value between binary and 

bipolar transformations. The sensitivity value of bipolar 

transformation with 90 feature data types was higher than 

binary transformation with 90 feature data types, as shown 

in Figure 7. 

 

Fig. 7. Comparison of Sensitivity Values of Various 

Transformations 

Binary and bipolar data transformations could increase the 

specificity value, the average, and optimization data types, 

which had the same specificity value with binary and 

bipolar transformations. However, the 90 feature data 

types had a different specificity value between binary and 

bipolar transformations. The specificity value of bipolar 

transformation with 90 feature data types was lower than 

binary transformation with 90 feature data types, as shown 

in Figure 8 

 

Fig. 8. Comparison of Specificity Values of Various 

Transformations 

Binary and bipolar data transformation could increase the 

precision value, the average data type, and optimization, 

which had the same precision value with binary and 

bipolar transformations. However, the 90 feature data 

types had a different precision value between binary and 

bipolar transformations. The precision value of bipolar 

transformation with 90 feature data types was lower than 

binary transformation with 90 feature data types, as shown 

in Figure 9 

 

Fig. 9. Comparison of Precision Values of Various 

Transformations 

Binary and bipolar data transformation could increase the 

True Positive Rate value, the average, and optimization 

data types, which had the same True Positive Rate value 

as binary and bipolar transformations. However, the 90 

feature data types had a different True Positive Rate value 

between binary and bipolar transformations. The True 

Positive Rate value of bipolar transformation with 90 
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feature data types was higher than binary transformation 

with 90 feature data types, as shown in Figure 10. 

The model with 90 feature types with bipolar 

transformation had the highest ROC area, followed by 

binary transformation. The average type model with 

binary transformation had the highest ROC area, followed 

by bipolar transformation. Models with optimization 

types with binary and bipolar transformations both had the 

highest ROC area, as seen in Figure 11.  

 

 

Fig. 10. Comparion of TPR Value of Various  Transformation 

 

Fig. 11. ROC Graph of Various Transformations 

3.2. Discussions 

Binary and bipolar data transformations could increase 

true positive values, accuracy, sensitivity, specificity, 

precision, and true positive rate. Binary and bipolar data 

transformations could reduce false negative values. 

Machine learning performance could be improved by 

transforming data, both binary transformation and bipolar 

data transformation. The feature type should use the 

average feature type or the optimization feature type. 

Literature studies showed that a comparison of specificity, 

sensitivity, and accuracy values with other sophisticated 

methods can be seen in Table 3. 

 

Table 3. Summary of Performance Results of Other Advanced Methods 

Study Year Method Accuracy Sensitivity Specificity 

Demirler S¸ ims¸ir 

et.al [44] 

2021 Dual-Layer Spectral CT 

 

- 0.966  0.917 

Chen et al. [45] 2023 Artificial Intelligence 0.778 0.921 0.671 

Osman et al. [46] 2020 Adjusted Quick Shift 

Phase  

Not mentioned 0.795 0.979 

El Houby et al. [47] 2021 Convolutional Neural 

Networks 

0.965 0.965 0.965 
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Abdolahi et al [48] 2020 Artificial Intelligence 0.85 Not 

mentioned 

Not 

mentioned 

Nelson et al. [49] 2023 Star-Convex Polygon 0.876 Not 

mentioned 

Not 

mentioned 

Eroglu et al. [50] 2021 Convolutional Neural 

Networks 

0.956 Not 

mentioned 

Not 

mentioned 

Deepa et al [51] 2022 Convolutional Neural 

Network Models 

0.945 Not 

mentioned 

Not 

mentioned 

Wu et al. [52] 2022 Deep Learning Fusion 

Models 

0.877 0.861 Not 

mentioned 

Kawattikul et al. [53] 2022 Conventional 

Handcrafted Feature and 

Deep-Learning 

Technique 

Not mentioned 0.82 0.85 

Liew et al[54] 2021 XGBoost-Based 

Algorithm 

0.97 Not 

mentioned 

Not 

mentioned 

Shia et al. [41]. 2021 Support Vector Machine 

and Pre-Trained Deep 

Residual Network 

Model. 

Not mentioned 0.943 0.932 

Rahman et al. [55] 2022 Multi-Scale Feature 

Fusion 

0.992 Not 

mentioned 

Not 

mentioned 

Song et al. [56] 2022 Deep Multi-View Fusion 0.850 0.957 0.716 

Webb et al. [57] 2021 Deep Learning-Based Not mentioned 0.826 0.993 

Leong et al. [58] 2022 Deep Convolutional 

Neural Networks 

0.999 0.999 1,000 

Haq et al. [38] 2022 Feature fusion and 

Ensemble Learning-

Based CNN Model 

0.994 0.995 0.994 

Joseph et al. [59] 2022 Handcrafted Features and 

Deep Neural Networks 

0.979 Not 

mentioned 

Not 

mentioned 

Assari et al. [60] 2022 Deep Residual Learning-

Based 

0.917 0.898 0.938 

Yuchao Zheng et al. 

[61] 

2023 Transfer Learning and 

Ensemble Learning 

0.989 Not 

mentioned 

Not 

mentioned 

Caballo et al. [62] 2020 Deep learning-Based 0.92 Not 

mentioned 

Not 

mentioned 

Chaudhury et al. [63] 2023 Fast AI Technique and 

Squeezenet Architecture 

Sushovan 

0.903 Not 

mentioned 

Not 

mentioned 

Huang et al. [64] 2021 Convolutional Neural 

Networks (CNN), 

AlexNet, DenseNet, and 

ShuffleNet 

0.955; 

0.997; 

0.978 

Not 

mentioned 

Not 

mentioned 
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Akinnuwesi et al. 

[65] 

2020 Support Vector Machines 0.976 0.952 1.00 

Kadry et al. [66] 2023 Pre-Trained Deep 

Learning Schemes 

0.955 Not 

mentioned 

Not 

mentioned 

Khan et al. [67] 2022 Deep Neural Network 

MultiNet 

0.99 Not 

mentioned 

Not 

mentioned 

Aljuaid et al. [68] 2022 Deep Neural Networks 

and Transfer Learning 

0.978 0.976 0.973 

Asadi et al. [36] 2023 Deep Learning Network 

ResNet50 

0.986 0.986 Not 

mentioned 

Bo-Wei Han et al 

[69] 

2021 cfDNA-based 

nucleosome 

Not mentioned Not 

mentioned 

Not 

mentioned 

Rijthoven et al [70] 2021 HookNet Not mentioned Not 

mentioned 

Not 

mentioned 

Proposed  2024 Data Transformation 0.990 0.989 0.990 

 

4. Conclusions 

Machine learning was important in the breast cancer 

detection process. This research used three ways to see the 

best performance of machine learning in detecting breast 

cancer. This research looked at the widest ROC graph, 

which had the highest accuracy and the lowest false 

negative values. Based on the three types of data models 

analyzed, only binary and bipolar transformations showed 

an improvement in machine learning performance. Not all 

features in mammography could improve machine 

learning performance, and only averaged and optimized 

features could improve machine learning performance. 

This research contributed to providing knowledge about 

the use of feature averaging and optimization with binary 

or bipolar transformations to improve machine learning 

performance. 

List of abbreviations 

KNN : K-Nearest Neighbor 

ANN : Artificial Neural Networks 

SVM : Support Vector Machine 

TN         : Predicted to be benign actually benign 

T.P   : Predicted to be malignant, actually malignant 

F.P : Predicted to be malignant but actually benign 

FN : Predicted to be benign actually malignant 

FPR : False Positive Rate 

TPR : True Positive Rate 

ROC : Receiver Operating Characteristics 

Consent for publication 

Not applicable. 

Availability of data and materials 

Data taken from Installation Radiology Doctor Sutomo 

Hospital from 2010 until now where there are 670 data 

consisting of 342 benign and 328 malignant. 

Competing interests 

The authors declare that they have no competing interests 

Funding 

This research was funded by Udayana University 

Author Contributions 

All authors have read and approved the manuscript, 

AANG: project design, data analysis, script writing; PAN: 

Manuscript editing, data collection; AANF: machine 

learning program; AANB: data analysis. 

Acknowledgments 

Thank you to Udayana University through LPPM for 

giving funds to complete this research. 

References 

[1] M. A. Shafei et al., ‘Differential expression of the 

BCAT isoforms between breast cancer subtypes’, 

Breast Cancer, vol. 28, no. 3, pp. 592–607, 2021, 

doi: 10.1007/s12282-020-01197-7. 

[2] J. Wang, R. Zhao, and J. Cheng, ‘Diagnostic 

accuracy of contrast-enhanced ultrasound to 

differentiate benign and malignant breast lesions: A 

systematic review and meta-analysis’, Eur. J. 

Radiol., vol. 149, Apr. 2022, doi: 

10.1016/j.ejrad.2022.110219. 

[3] D. S. Grewal et al., ‘The most widely used is 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2678–2688 |  2685 

mammography, which has false- negative results in 

10e15% cases.’, Med. J. Armed Forces India, no. 

xxxx, pp. 1–7, 2022, doi: 

10.1016/j.mjafi.2022.01.015. 

[4] P. Pati et al., ‘Hierarchical graph representations in 

digital pathology’, Med. Image Anal., vol. 75, Jan. 

2022, doi: 10.1016/j.media.2021.102264. 

[5] K. Loizidou, R. Elia, and C. Pitris, ‘Computer-aided 

breast cancer detection and classification in 

mammography: A comprehensive review’, 

Computers in Biology and Medicine, vol. 153. 

Elsevier Ltd, Feb. 01, 2023. doi: 

10.1016/j.compbiomed.2023.106554. 

[6] J. Ma et al., ‘Distinguishing benign and malignant 

lesions on contrast-enhanced breast cone-beam CT 

with deep learning neural architecture search’, Eur. 

J. Radiol., vol. 142, Sep. 2021, doi: 

10.1016/j.ejrad.2021.109878. 

[7] Y. Yu et al., ‘Application of a shear-wave 

elastography prediction model to distinguish 

between benign and malignant breast lesions and the 

adjustment of ultrasound Breast Imaging Reporting 

and Data System classifications’, Clin. Radiol., vol. 

77, no. 2, pp. e147–e153, Feb. 2022, doi: 

10.1016/j.crad.2021.10.016. 

[8] H. Sung et al., ‘Global Cancer Statistics 2020: 

GLOBOCAN Estimates of Incidence and Mortality 

Worldwide for 36 Cancers in 185 Countries’, CA. 

Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021, 

doi: 10.3322/caac.21660. 

[9] K. Tamura et al., ‘Phase 1 study of oral selective 

estrogen receptor degrader (SERD) amcenestrant 

(SAR439859), in Japanese women with ER-positive 

and HER2-negative advanced breast cancer 

(AMEERA-2)’, Breast Cancer, vol. 30, no. 3, pp. 

506–517, 2023, doi: 10.1007/s12282-023-01443-8. 

[10] M. Zou et al., ‘Knockdown of CAVEOLIN-1 

Sensitizes Human Basal-Like Triple-Negative 

Breast Cancer Cells to Radiation’, Cell. Physiol. 

Biochem., vol. 44, no. 2, pp. 778–791, 2017, doi: 

10.1159/000485291. 

[11] S. K. Saha et al., ‘Prognostic and clinico-

pathological significance of BIN1 in breast cancer’, 

Informatics Med. Unlocked, vol. 19, Jan. 2020, doi: 

10.1016/j.imu.2020.100327. 

[12] A. Möhl et al., ‘The impact of cardiovascular disease 

on all-cause and cancer mortality: results from a 16-

year follow-up of a German breast cancer case–

control study’, Breast Cancer Res., vol. 25, no. 1, pp. 

1–9, 2023, doi: 10.1186/s13058-023-01680-x. 

[13] M. Zubair, S. Wang, and N. Ali, ‘Advanced 

Approaches to Breast Cancer Classification and 

Diagnosis’, Frontiers in Pharmacology, vol. 11. 

Frontiers Media S.A., Feb. 26, 2021. doi: 

10.3389/fphar.2020.632079. 

[14] V. Giannakeas, V. Sopik, and S. A. Narod, 

‘Association of a Diagnosis of Ductal Carcinoma in 

Situ with Death from Breast Cancer’, JAMA Netw. 

Open, vol. 3, no. 9, Sep. 2020, doi: 

10.1001/jamanetworkopen.2020.17124. 

[15] C. Mattiuzzi and G. Lippi, ‘Current cancer 

epidemiology’, J. Epidemiol. Glob. Health, vol. 9, 

no. 4, pp. 217–222, 2019, doi: 

10.2991/jegh.k.191008.001. 

[16] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, 

‘Cancer statistics, 2022’, CA. Cancer J. Clin., vol. 

72, no. 1, pp. 7–33, 2022, doi: 10.3322/caac.21708. 

[17] R. L. Siegel, A. N. Giaquinto, and A. Jemal, ‘Cancer 

statistics, 2024.’, CA. Cancer J. Clin., no. October 

2023, pp. 12–49, 2024, doi: 10.3322/caac.21820. 

[18] H. S. Aase et al., ‘Mammographic features and 

screening outcome in a randomized controlled trial 

comparing digital breast tomosynthesis and digital 

mammography’, Eur. J. Radiol., vol. 141, Aug. 

2021, doi: 10.1016/j.ejrad.2021.109753. 

[19] L. Wang, P. Wang, H. Shao, J. Li, and Q. Yang, 

‘Role of contrast-enhanced mammography in the 

preoperative detection of ductal carcinoma in situ of 

the breasts: a comparison with low-energy image 

and magnetic resonance imaging’, Eur. Radiol., 

2023, doi: 10.1007/s00330-023-10312-z. 

[20] V. Jolidon, ‘Gender inequality and mammography 

screening: Does living with a partner improve 

women’s mammography uptake?’, Soc. Sci. Med., 

vol. 298, Apr. 2022, doi: 

10.1016/j.socscimed.2022.114875. 

[21] T. Sterlingova, E. Nylander, L. Almqvist, and B. 

Møller Christensen, ‘Factors affecting women’s 

participation in mammography screening in Nordic 

countries: A systematic review’, Radiography, vol. 

29, no. 5. W.B. Saunders Ltd, pp. 878–885, Aug. 01, 

2023. doi: 10.1016/j.radi.2023.06.010. 

[22] J. J. K. Liow et al., ‘Attitudes and barriers to 

mammography screening in Singaporean women 

through the eyes of their adult children: A focus 

group study’, SSM - Qual. Res. Heal., vol. 2, Dec. 

2022, doi: 10.1016/j.ssmqr.2022.100168. 

[23] H. I. Greenwood et al., ‘Outcomes of screening 

mammography performed prior to fertility treatment 

in women ages 40-49’, Clin. Imaging, vol. 80, no. 

August, pp. 359–363, 2021, doi: 

10.1016/j.clinimag.2021.08.028. 

[24] M. Kalambo, T. S. Omofoye, E. Cohen, J. W. T. 

Leung, and T. Nghiem, ‘What Women Want: Real 

Time Results for Screening Mammography in the 

Era of Value-Based Care | A Single Institution 

Experience During the COVID-19 SARS-COV2 

Pandemic’, Asploro J. Biomed. Clin. Case Reports, 

vol. 6, no. 2, pp. 161–167, 2023, doi: 

10.36502/2023/asjbccr.6309. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2678–2688 |  2686 

[25] D. Braithwaite et al., ‘Clinician and patient 

perspectives on screening mammography among 

women age 75 and older: A pilot study of a novel 

decision aid’, PEC Innov., vol. 2, Dec. 2023, doi: 

10.1016/j.pecinn.2023.100132. 

[26] J. H. Yoon, K. Han, H. J. Suh, J. H. Youk, S. E. Lee, 

and E. K. Kim, ‘Artificial intelligence-based 

computer-assisted detection/diagnosis (AI-CAD) for 

screening mammography: Outcomes of AI-CAD in 

the mammographic interpretation workflow’, Eur. J. 

Radiol. Open, vol. 11, Dec. 2023, doi: 

10.1016/j.ejro.2023.100509. 

[27] S. Bayard et al., ‘Screening mammography mitigates 

breast cancer disparities through early detection of 

triple negative breast cancer’, Clin. Imaging, vol. 80, 

pp. 430–437, 2021, doi: 

10.1016/j.clinimag.2021.08.013. 

[28] C. Kuhl et al., ‘Prospective multicenter cohort study 

to refine management recommendations for women 

at elevated familial risk of breast cancer: The EVA 

trial’, J. Clin. Oncol., vol. 28, no. 9, pp. 1450–1457, 

2010, doi: 10.1200/JCO.2009.23.0839. 

[29] M. Morrow, J. Waters, and E. Morris, ‘MRI for 

breast cancer screening, diagnosis, and treatment’, 

Lancet, vol. 378, no. 9805, pp. 1804–1811, 2011, 

doi: 10.1016/S0140-6736(11)61350-0. 

[30] A. Izumori et al., ‘Usefulness of second-look 

ultrasonography using anatomical breast structures 

as indicators for magnetic resonance imaging-

detected breast abnormalities’, Breast Cancer, vol. 

27, no. 1, pp. 129–139, 2020, doi: 10.1007/s12282-

019-01003-z. 

[31] Q. Zhang et al., ‘Quantitative transport mapping 

(QTM) for differentiating benign and malignant 

breast lesion: Comparison with traditional kinetics 

modeling and semi-quantitative enhancement curve 

characteristics.’, Magn. Reson. Imaging, vol. 86, pp. 

86–93, Feb. 2022, doi: 10.1016/j.mri.2021.10.039. 

[32] O. Olayinka, G. Kaur, R. Agarwal, V. Staradub, M. 

S. Chacho, and R. Vidhun, ‘Impact of 

multidisciplinary radiologic-pathologic correlation 

conference for benign image-guided breast biopsies 

on discordance rates and patient outcomes in a 

community teaching hospital’, in Annals of 

Diagnostic Pathology, W.B. Saunders, Apr. 2022. 

doi: 10.1016/j.anndiagpath.2021.151864. 

[33] X. Liu, Q. Chang, H. Wang, H. Qian, and Y. Jiang, 

‘Discovery and function exploration of microRNA-

155 as a molecular biomarker for early detection of 

breast cancer’, Breast Cancer, vol. 28, no. 4, pp. 

806–821, 2021, doi: 10.1007/s12282-021-01215-2. 

[34] I. Sechopoulos, J. Teuwen, and R. Mann, ‘Artificial 

intelligence for breast cancer detection in 

mammography and digital breast tomosynthesis: 

State of the art’, Seminars in Cancer Biology, vol. 

72. Academic Press, pp. 214–225, Jul. 01, 2021. doi: 

10.1016/j.semcancer.2020.06.002. 

[35] K. Suvarna Vani et al., ‘Detection and Classiication 

of Invasive Ductal Carcinoma using Artiicial 

Intelligence Detection and Classification of Invasive 

Ductal Carcinoma using Artificial Intelligence’, 

2022, doi: 10.21203/rs.3.rs-2069384/v1. 

[36] B. Asadi and Q. Memon, ‘Efficient breast cancer 

detection via cascade deep learning network’, Int. J. 

Intell. Networks, vol. 4, no. January, pp. 46–52, 

2023, doi: 10.1016/j.ijin.2023.02.001. 

[37] Y. Amethiya, P. Pipariya, S. Patel, and M. Shah, 

‘Comparative analysis of breast cancer detection 

using machine learning and biosensors’, Intelligent 

Medicine, vol. 2, no. 2. Elsevier B.V., pp. 69–81, 

May 01, 2022. doi: 10.1016/j.imed.2021.08.004. 

[38] I. U. Haq, H. Ali, H. Y. Wang, C. Lei, and H. Ali, 

‘Feature fusion and Ensemble learning-based CNN 

model for mammographic image classification’, J. 

King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, 

pp. 3310–3318, Jun. 2022, doi: 

10.1016/j.jksuci.2022.03.023. 

[39] R. Adam, K. Dell’Aquila, L. Hodges, T. Maldjian, 

and T. Q. Duong, ‘Deep learning applications to 

breast cancer detection by magnetic resonance 

imaging: a literature review’, Breast Cancer Res., 

vol. 25, no. 1, pp. 1–12, 2023, doi: 10.1186/s13058-

023-01687-4. 

[40] K. A. Hashiba, S. Mercaldo, S. L. Venkatesh, and M. 

Bahl, ‘Prediction of Surgical Upstaging Risk of 

Ductal Carcinoma In Situ Using Machine Learning 

Models’, J. Breast Imaging, no. 3, pp. 1–8, 2023, 

doi: 10.1093/jbi/wbad071. 

[41] W. C. Shia and D. R. Chen, ‘Classification of 

malignant tumors in breast ultrasound using a 

pretrained deep residual network model and support 

vector machine’, Comput. Med. Imaging Graph., 

vol. 87, Jan. 2021, doi: 

10.1016/j.compmedimag.2020.101829. 

[42] V. P. C. Magboo and M. S. Magboo, ‘Machine 

learning classifiers on breast cancer recurrences’, in 

Procedia Computer Science, Elsevier B.V., 2021, 

pp. 2742–2752. doi: 10.1016/j.procs.2021.09.044. 

[43] Z. M. Sarvestani, J. Jamali, M. Taghizadeh, and M. 

H. F. Dindarloo, ‘A novel machine learning 

approach on texture analysis for automatic breast 

microcalcification diagnosis classification of 

mammogram images’, J. Cancer Res. Clin. Oncol., 

vol. 149, no. 9, pp. 6151–6170, 2023, doi: 

10.1007/s00432-023-04571-y. 

[44] B. Demirler Şimşir, K. B. Krug, C. Burke, M. 

Hellmich, D. Maintz, and E. Coche, ‘Possibility to 

discriminate benign from malignant breast lesions 

detected on dual-layer spectral CT-evaluation’, Eur. 

J. Radiol., vol. 142, Sep. 2021, doi: 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2678–2688 |  2687 

10.1016/j.ejrad.2021.109832. 

[45] J. Chen et al., ‘Feasibility of using AI to auto-catch 

responsible frames in ultrasound screening for breast 

cancer diagnosis’, iScience, vol. 26, no. 1, Jan. 2023, 

doi: 10.1016/j.isci.2022.105692. 

[46] F. M. Osman and M. H. Yap, ‘Adjusted Quick Shift 

Phase Preserving Dynamic Range Compression 

method for breast lesions segmentation’, Informatics 

Med. Unlocked, vol. 20, Jan. 2020, doi: 

10.1016/j.imu.2020.100344. 

[47] E. M. F. El Houby and N. I. R. Yassin, ‘Malignant 

and nonmalignant classification of breast lesions in 

mammograms using convolutional neural networks’, 

Biomed. Signal Process. Control, vol. 70, Sep. 2021, 

doi: 10.1016/j.bspc.2021.102954. 

[48] M. Abdolahi, M. Salehi, I. Shokatian, and R. Reiazi, 

‘Artificial intelligence in automatic classification of 

invasive ductal carcinoma breast cancer in digital 

pathology images’, Med. J. Islam. Repub. Iran, Oct. 

2020, doi: 10.47176/mjiri.34.140. 

[49] A. D. Nelson and S. Krishna, ‘An effective approach 

for the nuclei segmentation from breast 

histopathological images using star-convex 

polygon’, Procedia Comput. Sci., vol. 218, pp. 

1778–1790, 2023, doi: 10.1016/j.procs.2023.01.156. 

[50] Y. Eroğlu, M. Yildirim, and A. Çinar, 

‘Convolutional Neural Networks based 

classification of breast ultrasonography images by 

hybrid method with respect to benign, malignant, 

and normal using mRMR’, Comput. Biol. Med., vol. 

133, Jun. 2021, doi: 

10.1016/j.compbiomed.2021.104407. 

[51] B. G. Deepa and S. Senthil, ‘Predicting invasive 

ductal carcinoma tissues in whole slide images of 

breast Cancer by using convolutional neural network 

model and multiple classifiers’, Multimed. Tools 

Appl., vol. 81, no. 6, pp. 8575–8596, Mar. 2022, doi: 

10.1007/s11042-022-12114-9. 

[52] Y. Wu, J. Wu, Y. Dou, N. Rubert, Y. Wang, and J. 

Deng, ‘A deep learning fusion model with evidence-

based confidence level analysis for differentiation of 

malignant and benign breast tumors using dynamic 

contrast enhanced MRI’, Biomed. Signal Process. 

Control, vol. 72, Feb. 2022, doi: 

10.1016/j.bspc.2021.103319. 

[53] K. Kawattikul, K. Sermsai, and P. Chomphuwiset, 

‘Improving the sub-image classification of invasive 

ductal carcinoma in histology images’, Indones. J. 

Electr. Eng. Comput. Sci., vol. 26, no. 1, pp. 326–

333, Apr. 2022, doi: 10.11591/ijeecs.v26.i1.pp326-

333. 

[54] X. Y. Liew, N. Hameed, and J. Clos, ‘An 

investigation of XGBoost-based algorithm for breast 

cancer classification’, Mach. Learn. with Appl., vol. 

6, p. 100154, Dec. 2021, doi: 

10.1016/j.mlwa.2021.100154. 

[55] M. M. Rahman, M. S. I. Khan, and H. M. H. Babu, 

‘BreastMultiNet: A multi-scale feature fusion 

method using deep neural network to detect breast 

cancer’, Array, vol. 16, Dec. 2022, doi: 

10.1016/j.array.2022.100256. 

[56] D. Song, Z. Zhang, W. Li, L. Yuan, and W. Zhang, 

‘Judgment of benign and early malignant colorectal 

tumors from ultrasound images with deep multi-

View fusion’, Comput. Methods Programs Biomed., 

vol. 215, Mar. 2022, doi: 

10.1016/j.cmpb.2022.106634. 

[57] J. M. Webb et al., ‘Comparing deep learning-based 

automatic segmentation of breast masses to expert 

interobserver variability in ultrasound imaging’, 

Comput. Biol. Med., vol. 139, Dec. 2021, doi: 

10.1016/j.compbiomed.2021.104966. 

[58] Y. S. Leong, K. Hasikin, K. W. Lai, N. Mohd Zain, 

and M. M. Azizan, ‘Microcalcification 

Discrimination in Mammography Using Deep 

Convolutional Neural Network: Towards Rapid and 

Early Breast Cancer Diagnosis’, Front. Public Heal., 

vol. 10, no. April, 2022, doi: 

10.3389/fpubh.2022.875305. 

[59] A. A. Joseph, M. Abdullahi, S. B. Junaidu, H. 

Ibrahim, and H. Chiroma, ‘Improved multi-

classification of breast cancer histopathological 

images using handcrafted features and deep neural 

network (dense layer)’, Intell. Syst. with Appl., vol. 

14, p. 66, 2022, doi: 10.1016/j.iswa.2022.20. 

[60] Z. Assari, A. Mahloojifar, and N. Ahmadinejad, 

‘Discrimination of benign and malignant solid breast 

masses using deep residual learning-based bimodal 

computer-aided diagnosis system’, Biomed. Signal 

Process. Control, vol. 73, Mar. 2022, doi: 

10.1016/j.bspc.2021.103453. 

[61] Y. Zheng et al., ‘Application of transfer learning and 

ensemble learning in image-level classification for 

breast histopathology’, Intell. Med., vol. 3, no. 2, pp. 

115–128, May 2023, doi: 

10.1016/j.imed.2022.05.004. 

[62] M. Caballo, D. R. Pangallo, R. M. Mann, and I. 

Sechopoulos, ‘Deep learning-based segmentation of 

breast masses in dedicated breast CT imaging: 

Radiomic feature stability between radiologists and 

artificial intelligence’, Comput. Biol. Med., vol. 118, 

Mar. 2020, doi: 

10.1016/j.compbiomed.2020.103629. 

[63] S. Chaudhury, K. Sau, M. A. Khan, and M. Shabaz, 

‘Deep transfer learning for IDC breast cancer 

detection using fast AI technique and Sqeezenet 

architecture’, Mathematical Biosciences and 

Engineering, vol. 20, no. 6. American Institute of 

Mathematical Sciences, pp. 10404–10427, 2023. 

doi: 10.3934/mbe.2023457. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2678–2688 |  2688 

[64] M. L. Huang and T. Y. Lin, ‘Considering breast 

density for the classification of benign and malignant 

mammograms’, Biomed. Signal Process. Control, 

vol. 67, May 2021, doi: 

10.1016/j.bspc.2021.102564. 

[65] B. A. Akinnuwesi, B. O. Macaulay, and B. S. 

Aribisala, ‘Breast cancer risk assessment and early 

diagnosis using Principal Component Analysis and 

support vector machine techniques’, Informatics 

Med. Unlocked, vol. 21, Jan. 2020, doi: 

10.1016/j.imu.2020.100459. 

[66] S. Kadry, R. G. Crespo, E. Herrera-Viedma, S. 

Krishnamoorthy, and V. Rajinikanth, ‘Classification 

of Breast Thermal Images into Healthy/Cancer 

Group Using Pre-Trained Deep Learning Schemes’, 

Procedia Comput. Sci., vol. 218, pp. 24–34, 2023, 

doi: 10.1016/j.procs.2022.12.398. 

[67] S. I. Khan, A. Shahrior, R. Karim, M. Hasan, and A. 

Rahman, ‘MultiNet: A deep neural network 

approach for detecting breast cancer through multi-

scale feature fusion’, J. King Saud Univ. - Comput. 

Inf. Sci., vol. 34, no. 8, pp. 6217–6228, Sep. 2022, 

doi: 10.1016/j.jksuci.2021.08.004. 

[68] H. Aljuaid, N. Alturki, N. Alsubaie, L. Cavallaro, 

and A. Liotta, ‘Computer-aided diagnosis for breast 

cancer classification using deep neural networks and 

transfer learning’, Comput. Methods Programs 

Biomed., vol. 223, Aug. 2022, doi: 

10.1016/j.cmpb.2022.106951. 

[69] B. W. Han et al., ‘Noninvasive discrimination of 

benign and malignant breast lesions using genome-

wide nucleosome profiles of plasma cell-free DNA’, 

Clin. Chim. Acta, vol. 520, pp. 95–100, Sep. 2021, 

doi: 10.1016/j.cca.2021.06.008. 

[70] M. van Rijthoven, M. Balkenhol, K. Siliņa, J. van der 

Laak, and F. Ciompi, ‘HookNet: Multi-resolution 

convolutional neural networks for semantic 

segmentation in histopathology whole-slide images’, 

Med. Image Anal., vol. 68, Feb. 2021, doi: 

10.1016/j.media.2020.101890. 

 

 

 

 

 

 

 


