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Abstract: Accurately identifying influential nodes within complex networks is crucial for understanding information and influence 

propagation. Existing state-of-the-art algorithms, while powerful, often rank all nodes, which can be computationally expensive and 

unnecessary for many applications. In this paper, we propose a simple yet efficient approach that overcomes these limitations. 

Initially, a systematic sampling methodology was employed to strategically select a subset of nodes from the network, representing 

a small fraction of its entirety. Subsequently, the betweenness centrality of these sampled nodes was estimated to facilitate  their 

ranking. To assess the performance of our sampling method alongside alternative algorithms, we employ the stochastic Susceptible–

Infected–Recovered (SIR) information diffusion model to compute various metrics including the infection scale, the final infected 

scale over time, and the average distance between spreaders. Our experimental findings, conducted on real-world networks, indicate 

that our proposed method accurately identifies influential nodes while maintaining significant computational  efficiency. 
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1. Introduction 

During the  last  few  years,  networks  have  gained  

immense  traction,  and  there  has  been  a  notable  surge 

in the user base of networks,  increasing  to  billions  of  

records  while  collecting  a  gigantic  amount  of  data  

[1]. This data is used to identify  influential  spreaders  

in  complex  networks.  With  these  huge  records  of 

data, the understanding of influential nodes must be 

more focused as they play a crucial role in targeting 

advertisements over media [2][3][4], spreading diseases 

[5], and word-of-mouth on social networks [6][7], 

which can be described by information spreading on 

networks. The importance of this huge data has become 

increasingly clear, and identifying influential nodes has 

become more important because they have a strong 

ability to affect other nodes. Therefore, the number of 

research activities has drastically increased  in  an 

attempt to obtain influential nodes in complex 

networks. 

Centrality, a straightforward concept in network 

analysis, evaluates the importance of nodes through 

various metrics by assigning a real value to each node 

in the network, where the values produced are 

expected to provide a ranking of nodes to determine 

their importance, including degree [8], betweenness [9], 

closeness [10], and VoteRank centralities [11]. Degree 

centrality, is a fundamental local metric widely adopted 

for ranking user influence that focuses on the immediate 

neighborhood or local connection between nodes within 

the network., proves to be efficient in numerous 

scenarios. However, its reliance solely on node degree 

overlooks the broader topological structure of the 

network, leading to potential inaccuracies in 

identifying influential spreaders [11][12][13]. In 

contrast, betweenness and closeness centralities, 

esteemed global metrics which analyze the whole 

network to identify spreaders that play significant 

roles in connecting different parts of the network, and 

predicated on the premise of influence propagation 

along the shortest paths [14]. Nonetheless, these metrics 

entail high computational complexity as they 

necessitate the computation of shortest paths between 

all pairs of nodes in the network. VoteRank 

centrality[15], which is founded upon a voting 

mechanism, identifies a group of spreaders wherein 

each node possesses equal voting capacity and receives 

votes from its neighbors. Nevertheless, all centrality 

algorithms often compute some scores for all nodes and 

then rank them based on their scores [16], which is 

computationally expensive and unnecessary for many 

applications. In addition, many other approaches exist 

to identify influential nodes in complex network that 

play crucial role in reducing the time complexity such 

as, PageRank [17],  ClusterRank[18], and LeaderRank 

[19][20]. 

However, it is important to consider the network structure 

when identifying influential spreaders and gaining a better 

understanding of how the network operates [21]. The 

specific location of a node within the network holds 
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particular significance. Therefore, there are various 

approaches that rely on the network structure to identify 

influential nodes [13][22][23]these approaches evaluate 

the influential nodes in network based on the score of each 

node that achieved . There are several evaluation models 

that define the importance of a node in a network. Among 

these models, the most commonly used one is the SIR 

model [24].  In the SIR model, nodes in the network are 

classified as susceptible (S), infectious (I), or recovered 

(R). The model measures a node's spreading ability by 

infecting the node with the highest rank initially, and then 

assessing the number of nodes that have recovered in the 

network. The infection process stops if there are no nodes 

remaining in the infected list after a certain number of time 

steps. 

In this paper, we propose a novel approach to accurately 

identifying influential nodes within complex networks 

while addressing the computational overhead associated 

with existing algorithms. Our methodology introduces a 

systematic sampling technique combined with an 

estimation method for betweenness centrality, enabling the 

strategic selection of a small subset of nodes from the 

network. This alleviates the need to rank all nodes, 

resulting in enhanced computational efficiency without 

compromising accuracy. Through empirical evaluation on 

real-world networks using the SIR information diffusion 

model, we demonstrate the effectiveness of our approach 

in accurately identifying the influential nodes in a network. 

2. Related Work 

In this section, we provide an overview to the most 

common measures and algorithms that are used to identify 

influential node in networks. Identifying influential nodes 

within complex networks is a pivotal endeavor in network 

analysis. Such nodes play a crucial role in expediting the 

dissemination of information, thereby optimizing the 

coverage of nodes within the network in fewer steps [25].  

Maji et al. [21] conducted a survey to identify influential 

spreaders in a complex network through various centrality 

measures such as degree, closeness, coreness (k-shell 

centrality), etc. Additionally, a mathematical formulation 

is introduced to improve the K-shell method instead of 

guessing the value of the node through trial and error. 

Lu et al. [19] developed the LeaderRank (LR) algorithm, 

which relies on random walkers and utilizes the stochastic 

matrix to identify the influence of nodes in a directed 

complex network. LR introduces a ground node (Leader) 

that is connected to every node (fans) in the network 

through bidirectional weighted edges, forming a leadership 

network. Additionally, LR is more resilient to noisy data 

and resistant to manipulations. LR only depends on the in-

degree of each node for the identification of an influential 

node. 

Lie et al. [26] introduced a novel metric called 

neighborhood centrality to identify influential spreaders in 

complex networks, which is based on the centrality or 

coreness of a node and its neighbors’ centrality. The metric 

considers not only the importance of the node’s direct 

neighbors but also its 2-step and even more steps 

neighborhood, in order to define the importance of these 

connections. 

Zhang et al. [27] introduced voteRank to identify 

influential spreaders in unweighted and undirected 

complex network. The authors presented strategies for 

node selection to reduce the overlapping spreading 

influence from both individual and group perspectives. 

Kumar and Panda [28] introduced the Neighbor- hood 

Coreness algorithm to enhance the resolution of the 

VoteRank algorithm, leveraging k-shell values of 

neighbors for refinement. Despite these efforts, the 

challenge of overlapping influential regions of spreaders 

persisted. Liu et al. [29] proposed a novel method named 

VoteRank++, which is based on the foundation of the 

VoteRank method proposed in [27], to identify influential 

nodes within complex networks. Within the context of 

VoteRank++, nodes with different degrees are assigned 

distinct levels of voting weight. Further- more, A node can 

vote differently for its neighbors based on the different 

levels of closeness between nodes. In contrast, Chen et al. 

[25] proposed a local ranking approach named 

ClusterRank to identify influential nodes in directed 

networks. This approach includes both the local clustering 

coefficient and the influence of neighbors to determine the 

importance of the node in the network. 

Ma et al. [30] introduced a novel approach named 

Extended Gravity Centrality (EGC) was developed for the 

identification of influential spreaders within networks, 

employing a gravity formula incorporating k-shell values 

and the shortest distance between nodes. Independently, Li 

et al. introduced the Local Gravity Model (LGM) [31], 

which relies on degree values and shortest path lengths 

between nodes. Notably, both EGC and LGM necessitate 

the computation of shortest paths, rendering them 

computationally intensive for large-scale graphs. To 

mitigate this, Yang and Xiao [32] proposed an enhanced 

gravity model called K-shell-based Gravity Centrality 

(KSGC), which leverages the K-shell algorithm to account 

for both local and global structural features, thereby 

improving efficiency in identifying influential nodes 

across complex networks.  

Wang et al. [33]proposed a new measure called Efficiency 

centrality (EFFC) to identify influential spreaders in a 

complex network. EFFC considers the impact of the node 

in the network before and after removing nodes and its 

edges that the node is connected to neighbors. The removal 

process might change the degree of network efficiency and 
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the structure of the network, particularly the removal of 

pivotal nodes, which will prominently change the whole 

network’s efficiency. 

Tulu et al.[34] introduced a novel approach called the 

Community-Aware Mediator (CAM) aimed at discerning 

influential nodes within intricate networks. This 

methodology gauges a node’s influence through the 

entropy of random walks across various communities. 

Consequently, such nodes assume pivotal roles within 

their respective communities, facilitating the exchange and 

dissemination of information. Bae and Kim [35] propose a 

novel measure called coreness centrality (CC) to identify 

influential spreaders in unweighted and undirected 

networks. This measure uses both the degree and the 

coreness of each node by considering the k-shell of the 

neighbors or the neighbors of neighbors that are adjacent 

to a spreader. CC can estimate the powerful influential 

spreaders that have more connections and reside in the core 

network. 

Li et al. [36] proposed a novel centrality named Clustered 

Local-Degree (CLD) to identify influential spreaders in a 

complex network based on the local clustering of a node 

and the degrees of its neighbors. It calculates the degrees 

of the nearest neighbors of a given node, combines the sum 

and the clustering coefficients of the nodes to rank 

spreaders. 

Zareie et al. [37] proposed a method to identify influential 

spreaders in a network based on neighborhood diversity. 

Their proposed method uses k-shell to determine the 

centrality of nodes based on sphere diversity, which is 

define. Each node will obtain a ranking value, which will 

define the importance of the node. Another work by Zareie 

et al. [38] proposed an enhanced cluster rank approach 

aimed to find influential spreaders within a network. This 

method leverages neighborhood correlation coefficients 

alongside k-shell decomposition to discern influential 

entities. Identifying influential spreaders in a network 

depends on how nodes share connections with neighbors 

to provide a more detailed correlation structure between 

nodes and discover the influential spreaders. 

Namtirtha et al. [39] proposed an indexing method named 

the k-shell hybrid method to identify highly influential 

spreaders not only from the core but also from lower shells. 

Their proposed method combines node degree and K-shell 

index, deriving benefits from both global measure (k-shell) 

and local measure (K), along with their combination. 

Another work by Namtirtha et al. [40] proposed a new 

method called weighted k-shell degree (KSD) 

neighborhood for identifying influential spreaders from a 

variety of complex network connectivity structures by 

assigning weights to the edges using the node degree and 

k-shell index of end nodes.  

Guo et al. [41] proposed a method to identify a set of 

influential nodes in a complex network based on 

information entropy. The node with the highest number of 

connections with other nodes has a greater ability to be an 

influential node. Xu et al. [42] introduced adjacency 

information entropy to determine the vital node in a 

weighted and directed complex network. 

Generalized mechanics model has been introduced by Liu 

et al. [43] to identify influential spreaders in networks. 

Utilizing a Weighted Gravity model (WGravity) [44], the 

significance of nodes is assessed by amalgamating local 

and global network connections. This model is based on 

the calculation of the node degree and largest value of the 

normalized eigenvector. 

Zhao et al. [45] introduced a novel method called the 

global importance of nodes (GIN) metric to identify 

influential spreaders in unweighted and undirected 

complex networks based on the K-shell. The method 

considered both the local influence and the global 

influence of the nodes simultaneously, thereby identify 

nodes that may appear unimportant but are actually 

important in the complex network. 

Liu et al. [46] proposed an approach to identify influential 

nodes based on graph traversal. The approach uses a 

breadth-first search (BFS) tree, in which the target node is 

the root node. The BFS tree assigns a score value to each 

node. The length of the tree should be short, and a node is 

considered influential when it is at the top level of the tree. 

Additionally, the local neighborhood of the root node has 

a higher expectation of being an influential one as well. 

Gupta and Mishra [22] propose a novel method to identify 

the top-k influential spreaders in undirected and 

unweighted complex real-world networks using network 

structure. It computes the normalized global importance 

(NGI), which depends on the nodes degree, normalized 

iteration multiplier (NIM), and k-core decomposition.  

Zhao et al. [23] proposed a ranking approach to identify 

influential spreaders in a network, which is based on 

structure holes and the k-shell algorithm. This approach 

can identify not just the core nodes with high k-shell 

indices but also the nodes that have lower k-shell indices 

yet play a vital role in connecting different sections of a 

network. 

Curado et al. [47] introduced an innovative metric for 

pinpointing influential spreaders within intricate networks. 

Their approach integrates a random walk methodology 

with an effective distance gravity model, enabling the 

incorporation of local, global, and dynamic node 

interaction data. By amalgamating insights from effective 

distances within a gravity model framework, their metric 

offers enhanced efficacy in identifying pivotal nodes 

within complex networks. Expanding on this concept, Qiu 
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et al. [48] also proposed a similar method to identify 

influential spreaders in a complex network based on the 

local and global position of the node. The degree centrality 

is used to measure the local influence, while the clustering 

coefficient is used to measure the global influence of nodes 

through the k-shell method. Then, it calculates the weight 

of local and global influence to define the influential node 

and obtain the importance of each node. Another similar 

approach proposed by Berberler [49] is called global and 

local structure. The proposed method not only depends on 

node influence to identify influential nodes in the network 

but also depends on how a node shares relation with other 

nodes. The basic idea of this method mainly depends on 

node connectivity and its location in the network. 

Recently, deep learning approaches have been used to 

identify influential spreaders in networks, and they have 

made significant progress in this field. Bhattacharya et al. 

[13] proposed a novel deep learning framework named 

DeepInfNode for identifying influential spreaders with 

topological structure in graphs using Graph Convolutional 

Networks (GCN). The proposed framework predefines 

node neighbors in networks through Breadth-First Search 

(BFS) in order to learn hidden predictive signals before 

incorporating them into the learning layers. The 

framework analyzes both node properties and the shortest 

distances between nodes to identify influential nodes in the 

network. The top 10% most significant nodes in the 

network are considered influential, while the others are 

considered less significant. 

3. Preliminaries  

Considering an unweighted complex network G =  (V, E), 

where V and E denote the set of nodes and edges in the 

network respectively. Interchangeably, we use n and m to 

denote the number of nodes and edges, respectively. The 

distance, denoted by 𝑑(𝑣, 𝑢) between nodes u and v 

corresponds to the number of edges in the shortest path 

connecting them. The eccentricity of a node v, denoted by 

ecc(𝑣), is the largest distance from that node 𝑣 to any other 

node, i.e., ecc(𝑣) = 𝑚𝑎𝑥𝑢 ∈ 𝑉 𝑑(𝑣, 𝑢). For a node 𝑣 of 𝐺, 

𝑁(𝑣 ) = {𝑢 ∈ V: 𝑢𝑣  ∈ E} is called the neighborhood of 𝑣 . 

Peripheral nodes in networks are nodes that are located at 

the fringes or peripheries of the network structure. These 

nodes often have fewer connections compared to nodes in 

the core of the network and play less influential roles in 

information dissemination or network dynamics. Formally, 

peripheral nodes are nodes with the high eccentricity values, 

that is, using Breadth-First Search (BFS) algorithm from a 

node 𝑣, peripheral nodes are nodes at the maximum distance 

from 𝑣. 

3.1. Degree Centrality 

Degree centrality is a network centrality measure used to 

assess the relative importance of a node within a network. It 

is considered a local measure because it only considers the 

immediate connections (neighbors) of a particular node. In 

simpler terms, degree centrality reflects the number of direct 

connections a node possesses within the network structure. 

It is defined as the following: 

𝐶𝑑(𝑣) = |𝑁(𝑣)|     (1) 

3.2. Betweenness centrality 

Betweenness centrality (BC) [9] measures the extent to 

which a node serves as a bridge for communication between 

other nodes in a network. It quantifies the number of shortest 

paths passing through a particular node, relative to the total 

number of shortest paths between all pairs of nodes in the 

network. It is defined as follows: 

𝐶𝑏(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡𝑠≠𝑣≠𝑡 ∈𝑉     (2) 

where 𝜎𝑠𝑡 is the total number of shortest paths from node 

𝑠 to node 𝑡 and 𝜎𝑠𝑡(𝑣)is the number of shortest paths from 

node 𝑠 to node 𝑡 that pass-through node 𝑣. 

3.3. Closeness Centrality 

The closeness centrality [10] quantifies how close a node is 

to all other nodes in the network, reflecting its ability to 

efficiently interact with others. It is defined as the reciprocal 

of the average shortest path length from the node to all other 

nodes in the network. It is defined as follows: 

𝐶𝑐(𝑣) =
1

∑ 𝑑(𝑣,𝑢)𝑢∈V
    (3) 

where 𝑑(𝑢, 𝑣)is the topological distance between nodes 𝑢 

and 𝑣. 

3.4. VoteRank Centrality 

VoteRank centrality, introduced by Zhang et al. [27], 

leverages a voting scheme to identify influential nodes 

within a network. Every vertex 𝑣 ∈ V is associated with a 

tuple (𝑠𝑢, 𝑣𝑎𝑢) where su denotes the voting score of vertex 

𝑢 and 𝑣𝑎u indicates the voting ability of vertex 𝑢. The 

voting score su, which is obtained from its adjacent 

neighbors, can be computed by adding the voting ability of 

all its neighbors, i.e. 

𝑆𝑢 = ∑ 𝑣𝑎𝑖𝑖∈N(u)      (4) 

4. The Proposed Method 

In this section, we introduce a systematic sampling 

technique to strategically select a subset of nodes from the 

network for the purpose of identifying influential nodes. 

Specifically, our method aims to exclude a substantial 

portion of nodes deemed unlikely to exhibit influence. As 

previously noted, conventional centrality measures compute 

some scores for all nodes in the network and then rank them 

by their score which is prohibitive for large-scale networks. 

In contrast, our proposed approach streamlines the process 

by focusing solely on ranking nodes within our sampling 
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set. Leveraging the betweenness centrality algorithm as 

outlined by Brandes [50], we expedite the estimation of 

betweenness scores for nodes within our sampling set, and 

then rank them based on their scores. Observations suggest 

that influential nodes often reside at the network’s core. 

Accordingly, our method expeditiously identifies peripheral 

nodes by executing a limited number of breadth-first search 

(BFS) algorithms to identify a set P of peripheral nodes that 

exhibit considerable spatial separation. Subsequently, we 

initiate BFS from each node u in P and exclude all leaf nodes 

from the BFS tree, thereby refining our selection of 

influential nodes. It is important to note that prior to these 

steps, we repeatedly remove all nodes with a degree of one. 

Particularly, our method consists of three main steps: 

Step 1: Identifying a set of peripheral nodes P with 

considerable spatial separation.  

1. Select an arbitrary vertex z from the network. 

2. Perform a breadth-first search 𝐵𝐹𝑆 starting from 

vertex 𝑧 to determine a vertex 𝑥 at the greatest distance 

from 𝑧. Node 𝑥 is designated as a peripheral node and 

added to the list 𝑃. 

3. To ensure substantial spatial separation between 

subsequent peripheral nodes, execute 𝐵𝐹𝑆 from vertex 𝑥 

to identify a vertex 𝑦 not yet included in 𝑃, positioned at 

the greatest distance from 𝑥. Add 𝑦 to the list 𝑃. Repeat 

this process for 𝑡 iterations. 

Step 2: Determining the sampling set S of nodes. 

1. Initially, include all nodes into the sampling set 𝑆 =

 𝐺. 𝑉. 

2. For each node 𝑢 in peripheral node set 𝑃, execute a 

𝐵𝐹𝑆 starting from 𝑢 to identify all leaf nodes 𝐿 from the 

𝐵𝐹𝑆 tree. 

3. Remove all nodes in 𝐿 from the sampling set 𝑆. 

Step 3: Rank the nodes in 𝑆. 

1. Estimate the betweenness centrality for each node 𝑢 ∈

 𝑆 using the accumulation algorithm presented by 

Brandes [50]. 

2. Return a ranking list of all nodes in 𝑆. 

Let l be the size of our sampling list S. Thus, the running 

time of our sampling algorithm is 𝑂 (𝑙𝑚). Indeed, we 

will show later in Section 6, that the size of our sampling 

set is very small compared to the whole number of nodes 

in the network. 

Algorithm1: Pseudo code of our Sampling Method 

Input: 𝐴 connected graph 𝐺 =  (𝑉, 𝐸), an integer t. 

Output: 𝐴 set 𝑆 of influential nodes.  

1 Remove all nodes with degree one and repeat until no 

node with degree one exists.  

2 𝑆 =  𝐺. 𝑉 # initially set the sampling list to include all 

nodes.  

3 𝑃 =  [ ] # A set of peripheral nodes.  

4 𝑥= an arbitrary vertex in 𝑉  

5 𝒇𝒐𝒓 𝑖: = 1 𝑡𝑜 𝑡 𝑑𝑜 

6         Run a 𝐵𝐹𝑆 at 𝑥,and let 𝑦 be a vertex at the largest 

distance from 𝑥                 that is not yet included into 𝑃.  

7         Append 𝑦 into the peripheral list 𝑃. 

8         𝑥 = 𝑦 

9 end  

10 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑢 in 𝑃 do  

11         Run a 𝐵𝐹𝑆 at u and return a list 𝐿 of leaf nodes. 

12         Remove all nodes 𝑤 ∈ 𝐿 from 𝑆  

13 𝒆𝒏𝒅  

14 𝑅 =  𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠(𝐺, 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 𝑆)  

15 𝒓𝒆𝒕𝒖𝒓𝒏 𝑅. 

5. SIR Model and Performance Metrics  

In this section, we will describe the SIR model and the 

metrics used to see the performance of our sampling 

approach. 

 

5.1. SIR Model  

 To assess the effectiveness of various method in capturing 

influential nodes within networks, we employ the 

Susceptible-Infected-Recovered (SIR) model [51] as a 

standard evaluation framework which has been frequently 

used for this purpose in the literature [27][29][33][52]. The 

SIR model partitions cases into three statuses [51]: (i) 

Susceptible (S), representing individuals not yet infected by 

the disease; (ii) Infected (I), denoting the infected cases that 

are capable of spreading the disease; and (iii) Recovered 

(R), indicating previously infected individuals who have 

recovered and gained immunity. Initially, a node under 

examination is designated as infected, and at each time step, 

infected nodes randomly infect susceptible neighbors at a 

spreading rate 𝜆 (ranging from 0 to 1), which is also called 

the infection rate. The number of infected nodes at a certain 

time step is the ability of the initially infected node to 

influence others, also called node infection ability. 
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Subsequently, infected nodes may be removed (either 

deceased or recovered with immunity) with a probability of 

𝛽 as a recover rate, set to 1 without loss of generality. The 

dynamic process continues until no further nodes can be 

infected. 

5.2. Performance Metrics 

To assess the performance of the proposed approach along 

with other methods such as betweenness, closeness, degree, 

and voteRank centralities for identifying influential nodes, 

we use the following metrics that have been presented in 

[27]. The first two metrics are based on spreading scale 

under SIR model, while the third one is based on structural 

properties of selected influential nodes. 

(i) Infection Scale 𝐹(𝑡): Throughout the information 

diffusion process governed by the SIR model, the 

quantities of infected and recovered nodes 

dynamically fluctuate over time within the system. At 

any given moment time 𝑡, the infection scale 𝐹(𝑡) 

denotes the total number of infected nodes and 

recovered nodes at time 𝑡. This metric serves as a 

pivotal gauge of the efficacy of the spreader selection 

algorithm, offering insights into the extent of 

information dissemination within the network over 

time, emanating from the designated seed nodes. The 

following equation calculates the Infection scale, 

𝐹(𝑡): 

 𝐹(𝑇) = 𝑁𝐼(𝑡) + 𝑁𝑅(𝑡)  (5) 

where 𝑁𝐼  (𝑡), 𝑁𝑅(𝑡) represents the number of 

infected, recovered nodes at time 𝑡, 

respectively. 

(ii) Final infected scale 𝐹(𝑡𝑐): Expresses the affected 

scale when stable state is reached. 𝐹(𝑡𝑐) enumerates 

all those nodes that became infected and then 

recovered at time 𝑡𝑐, where 𝑡𝑐 represents the final time 

when there is no infected node exits in network. The 

following equation is used to calculate the final 

infected scale, 𝐹(𝑡𝑐): 

 

𝐹(𝑡𝑐) = 𝑁𝑅(𝑡)       (6)  

 

where 𝑁𝑅(𝑡) denotes the number of recovered 

nodes at time t. 

 

(iii) Average distance between spreaders 𝐿𝑠: It is crucial 

that the spreader nodes distribute strategically across 

diverse parts of the network. When spreader nodes 

cluster together, certain network parts may be left 

unaffected. Maximizing the distance between 

selected spreaders enhances the potential for broader 

information dissemination and coverage. Hence, we 

employ the average shortest path length 𝐿𝑠 among 

the selected spreaders 𝑆, which is formally defined as 

the following. 

𝐿𝑠 =
1

|𝑆|(|𝑆|−1)
 ∑ 𝑑(𝑢, 𝑣)u,v∈S,u̸≠v  

     (7) 

6. Experimental Results  

6.1. Datasets 

To examine our proposed sampling method, a comparative 

analysis will be conducted alongside established network 

centrality measures including degree, closeness, 

betweenness, and voteRank centralitities, using different 

network datasets of a variety of sizes, structural properties, 

and domains. All datasets considered are listed either in 

SNAP [53] or Konect [54] project. All of the networks are 

treated as undirected, unweighted and we only considered 

the largest connected components. 

Table 1. Table 1: Network datasets and their parameters: the number of nodes n; number of edges m, and the number of 

nodes in our sampling method S. 

Network   N   M S   

hamster  2000  16098 239  

p2p-

Gnutella08 
 6299  20776 578  

as-733  6474  13895 315  

PGP  10680  24316 1327  

musae-
wiki 

 11631  170918 334  

CA-

AstroPh 
 17903  197031 1443  

musae-
facebook 

 22740  171002 1917  

loc-

brightkite 
 56739  212945 3978  
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The details of the datasets are listed in Table 1 along with 

the number of nodes in our sampling list S generated by our 

sampling method 1. It is noteworthy that for hamster, p2p-

Gnutella08, as-733 and musae-wiki networks, we selected 5 

peripheral vertices, corresponding to t = 5 in Algorithm 1. 

Conversely, for the remaining networks, we selected 10 

peripheral nodes, that is t = 10. 

6.2. Evaluation 

Utilizing the SIR model and the metrics detailed in Section 

5.1 and Section 5.2, respectively, we evaluate the 

performance of our sampling method compared with the 

results achieved by other methods including closeness 

centrality, betweenness centrality, degree centrality, and 

voteRank centrality. This evaluation is conducted on eight 

real-world networks of varying application domains and 

sizes, as listed in Table 1. To avoid the randomness involved 

in the SIR model, the simulations are repeated multiple 

times, and the final results represent the average outcome 

across all iterations. 

Figure 1 illustrates the evolution of the infected scale 𝐹(𝑡) 

across eight networks, employing different methodologies, 

with an infection rate of 𝜆 = 0.05 and 𝑝 =  0.005, where 𝑝 

represents the ratio of initial spreaders. Figure 1 reveals that 

our proposed methodology for identifying initial spreaders 

facilitates robust information dissemination, notably 

impacting a larger scale compared to alternative methods 

across networks such as hamster, p2p-Gnutella08, musae-

wiki, Ca-AstroPh, Musae-facebook, and loc-brighkite. 

However, in the as-733 network, VoteRank and 

betweenness centralities exhibit marginal superiority over 

our approach, although our methodology still outperforms 

other methods. Similarly, in the PGP network, VoteRank 

centrality displays a slight advantage over our method and 

betweenness centrality, albeit our technique demonstrates 

superior outcomes compared to closeness and degree 

centralities. 

Figure 2 provides additional insights into the impact of 

varying the number of initial spreaders on the Final Infected 

Scale. The graph displays the results of 𝐹(𝑡𝑐) plotted against 

spreader fraction, spanning from 0.004 to 0.009 across all 

networks except for hamster, a smaller network, where the 

range extends from 0.01 to 0.06. Notably, our method 

demonstrates superior performance over other 

methodologies in musae-wiki and CA-AstroPh networks. 

Moreover, it is observed that centrality measures such as 

degree, closeness, and VoteRank exhibit inconsistent 

performance with changes in the initial spreader fraction. In 

hamster and musae-facebook networks, betweenness 

centrality marginally outperforms our sampling method, 

while our approach yields superior outcomes compared to 

other methodologies. Conversely, in the locbrightkite 

network, both our method and VoteRank achieve similar 

results, surpassing other approaches. In the remaining 

network scenarios, betweenness and VoteRank centrality 

exhibit slightly better performance compared to our method. 

Figure 3 presents the Final Infected Scale 𝐹(𝑡𝑐) across 

various infection rates λ and methods on networks. Notably, 

our proposed methodology and betweenness centrality 

exhibit the capability to achieve a broader spread scale 

compared to alternative methods across diverse values of 𝜆, 

particularly evident in networks such as hamster, musae-

wiki, CA-AstroPh, musae-facebook, and loc-brighlite. In 

the remaining networks, VoteRank slightly outperforms our 

method. 

Figure 4 illustrates the values of 𝐿𝑠 associated with source 

spreaders identified by various methodologies across 

varying scales of spreaders. Notably, our sampling 

technique demonstrates notable superiority in networks 

such as hamster, musae-wiki, and CA-AstroPh, exhibiting 

larger 𝐿𝑠 values compared to all other methods. In the case 

of Ca-AstroPh, Musae-facebook, as-733, and p2p-Gnutella 

networks, our sampling method outperforms all others, with 

the exception of VoteRank centrality, which yields larger 

Lsvalues. Conversely, in the loc-brightkite network, 

VoteRank centrality attains larger 𝐿𝑠  values surpassing all 

other methodologies, while degree centrality marginally 

outperforms our method. 

 

Fig. 1. The infected scale F(t) (t = 25) on all networks 

under different methods, where the infection rate 𝜆 =

 0.05 and with ratio of initial infected nodes 𝑝 =  0.005. 

The results are averaged over 100 independent runs. 
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Fig. 2.  The final affected scale 𝐹(𝑡𝑐) on all networks 

under different methods, where the infection rate 𝜆 =

 0.05. p is the ratio of initial infected nodes. The results are 

averaged over 100 independent runs. 

 

 

Fig. 3.  The final affected scale 𝐹(𝑡𝑐) with the different 

infection rate 𝜆 on all networks under different method. 

 

 

Fig. 4.  The average shortest path length 𝐿𝑠 of nodes 

selected by different methods. 𝑝 is the ratio of initial 

infected nodes. 

Conclusion  

Identifying influential nodes within complex networks is a 

cornerstone for comprehending the intricate dynamics of 

information dissemination. While numerous state-of-the-art 

algorithms exist, they are often hindered by two significant 

drawbacks: (1) ranking all nodes in the network based on 

some calculated scores, which is unnecessary for many 

applications, and (2) high computational complexity. This 

paper proposes a novel methodology that addresses these 

limitations. We introduce a simple yet powerful systematic 

sampling approach coupled with an approximation 

technique for estimating the betweenness centrality of 

strategically selected nodes. This approach effectively 

identifies influential nodes within complex networks with 

demonstrably improved computational efficiency. To 

evaluate our proposed method, we compared its 

performance against centrality measures, including degree 

centrality, closeness centrality, betweenness centrality, and 

VoteRank centrality. We used the Susceptible-Infected-

Recovered (SIR) information diffusion model to analyze 

key metrics like infection scale, final infected scale over 

time, and average distance between spreaders across real-

world network datasets. Our empirical validation 
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demonstrated that the proposed method identified the 

influential nodes accurately, achieving comparable results 

to existing algorithms while significantly reducing 

computational time. 
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