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Abstract: It has already been found in the literature that the hybrid grey wolf optimization- pattern search (hyGWO-PS)  tuned fractional 

order PID (FOPID)-controllers in three area interconnected hydro thermal power system (TAIHTPS) with nonlinearities, multiple tie lines 

and reheat turbines has produced the far better performance than some recent published approaches. In that study, the settling times and 

overshoots of frequency & tie line power deviations and ITAE values were obtained by proposed approach called hyGWO-PS/FOPID 

under the nominal condition and are evaluated as: Settling time of ∆f1 = 8.50s; Settling time of ∆f2= 8.50s; Settling time of ∆f3= 8.10s; 

Settling time of ∆PTie12 = 19.31s; Settling time of ∆PTie23= 15.23s; Settling time of ∆PTie31=13.01s; ITAE=1.1243.  In this regard, it has 

become necessary to study the variation in the performance of TAIHTPS consisting of hyGWO-PS optimized FOPID-controllers with 

parametric variations, i.e. with varying load conditions and system parameters (TG, TT, TR, TWand T12). In the present work, the robustness 

analysis or the sensitivity analysis of hyGWO-PS optimized FOPID-controllers under parametric variations for AGC of same 

interconnected power system has been carried out. The robustness analysis shows that the behaviour or the system dynamic responses of 

TAIHTPS consisting of hyGWO-PS optimized FOPID-controllers  hardly alters under the variations in operating load conditions and 

system parameters over the range [-50%, +50%], i.e. hyGWO-PS optimized FOPID  is far better robust for the same. 

Keywords: GWO, PS, hyGWO-PS, FOPID Controllers, TAIHTPS, Sensitivity Analysis, Parametric Variation.   

1Introduction 

AGC provides the control mechanism for multi area 

interconnected power system (MAIPS)  in preserving  the 

tie- line power and system frequency near about nominal 

values (Kundur,P., 1994) and for enhanced 

interconnected AGC, numerous control schemes have 

been proposed like; MCT (Kumar, P.B. and Kothari, D.P., 

2005; Shoults, R.R. and Ibarra, J.A.J., 1993), NN 

(Chaturvedi, D.K., et al., 1999), FST (Ghosal, S.P., 2004), 

RL (Ogata., K., 1990) and ANFIS approach (Khuntia, 

S.R. and Panda., S, 2012) with complex structure of 

controllers (Saikia, L.C., et al., 2011). 

Now a days, trying to develop a new nature inspired 

optimization algorithms for fine tuning of numerous 

controllers’ parameters has become the popular area of 

research for improved MAIPS such as BFOA/PI, GA 

optimized controllers (Nanda, J., et al., 2009; Ali, E.S. and 

Abd-Elazim, S.M., 2011), Gain Scheduling PI-controller 

(Gozde, H. and Taplamacioglu, M.C., 2011),  ICA/PID  

(Shabani, H., et al., 2012), TDE  &  TLBO/P-, PI- & PID-

(Mohanty, B., et al., 2014; Barisal, A.K., 2015),  

Emotional Learning tuned controller (Farhangi, R., et a l., 

2012), FA with online wavelet filter (Naidu, K., et al., 

2014), ABC/ PI- & PID- (Gozde, H., et al., 2012) and 

GSA/PI- & PIDF (Sahu, R.K., et al., 2014). In 

continuation, hybrid algorithms provide further 

improvement in performance of MAIPS like hBFOA-

PSO/PID (Sahu, R.K.,Panda, S., 2014),  hPSO-PS/fuzzy 

PI (Sahu, R.K., et al., 2015) and hGWO-PS/2DOF-PID 

(Soni, V., et al., 2016a, 2016b, 2017, 2020). 

In Soni, V.,  et al, 2020, it has already been proved that 

the hyGWO-PS tuned fractional order PID controllers 

(FOPID) for AGC of TAIHTPS produces the far better 

performance in terms of less settling times, less 

oscillations, better & fast dynamic response and less 

ITAE value as compared to some recently published 

approaches using minimization of ITAE as an objective 

function. Now, in the present work, the performance of 

the same power system using the proposed approach 

hyGWO-PS/FOPID has been studied with parametric 

variations over the range [-50%, +50%].  The simulation 

results demonstrate that the hyGWO-PS tuned FOPID for 

AGC of same power system is more robust. 

The rest of paper is organized as follows: Section 2 

describes the basic background about the literature 

(Details of Soni, V., et al., 2020) which elaborates the 

standard TAIHTPS, FOPID controller’s structure, ITAE 

(objective function) and hyGWO-PS algorithm in brief. 

Section 3 demonstrates the robustness/sensitivity analysis 

of the hyGWO-PS tuned FOPID controllers for AGC of 

TAIHTPS. Section 4 provides the results and discussion 

about the robustness of the same. In      Section 5, the 

conclusions of present work is given followed by 
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2 Basic Background  

In the present work, the same AGC of TAIHTPS (shown 

in Figure 1) with nonlinearities, multiple tie lines, reheat 

turbines and three FOPID controllers of dissimilar 

characteristics as taken in Soni, V., et al, 2020, has been 

considered.  The FOPID controller (shown in Figure 2) 

has been defined by the following equation Soni, V., et al, 

2020: 

𝐺𝑓𝑜𝑝𝑖𝑑(𝑠) = 𝐾𝑃𝑓 +
𝐾𝐼𝑓

𝑠𝜆
+𝐾𝐷𝑓𝑠

𝜇                                     (1) 

The nomenclature of all symbols and parameters of the 

above equation are given in Soni, V., et al, 2020. The 

parameters: 𝐾𝑃𝑓 , 𝐾𝐼𝑓 , 𝐾𝐷𝑓 , λ and μ of FOPID in 

TAIHTPS-AGC have been optimized or tuned using 

hyGWO-PS (shown in Figure 3) algorithm by minimizing 

the ITAE (OF) given in (2) over the constrained 

optimization problem defined in (3).  

( ) dttPtPtPtwwwJ
simulationt

+++++= 
0

231213321
  (2) 

Minimize J 

             Subject to 

 

{
 
 

 
 
K𝑃𝑓𝑚𝑖𝑛 ≤ K𝑃𝑓 ≤ K𝑃𝑓𝑚𝑎𝑥
K𝐼𝑓𝑚𝑖𝑛 ≤ K𝐼𝑓 ≤ K𝐼𝑓𝑚𝑎𝑥
K𝐷𝑓𝑚𝑖𝑛 ≤ K𝐷𝑓 ≤ K𝐷𝑓𝑚𝑎𝑥
λ𝑓𝑚𝑖𝑛 ≤ λ𝑓 ≤ λ𝑓𝑚𝑎𝑥
μ𝑓𝑚𝑖𝑛 ≤ μ𝑓 ≤ μ𝑓𝑚𝑎𝑥

                                       (3) 

The upper and lower bounds for parameters are defined 

as: 

{
 
 

 
 
−2 ≤ K𝑃𝑓 ≤ 2

−2 ≤ K𝐼𝑓 ≤ 2

−2 ≤ K𝐷𝑓 ≤ 2

0 ≤ λ𝑓 ≤ 1

0 ≤ μ𝑓 ≤ 1

                                                        (4) 

 

The following results of settling times and ITAE are 

obtained as: ST of ∆f1 = 8.5s; ST of ∆f2= 8.5s; ST of ∆f3= 

8.1s; ST of ∆PTie12 = 19.31s; ST of ∆PTie23= 15.23s; ST of 

∆PTie31=13.01s; ITAE=1.1243.   

The more details about used standard test system, GWO 

algorithm, PS algorithm, hyGWO-PS algorithm and the 

procedure to implement the algorithm for tuning the 

FOPID controllers’ parameters in the considered system,  

structure of FOPID controllers and its working can easily 

be found in Soni, V., et al., 2020. The dynamic behavior, 

settling times, overshoots, value of ITAE of standard 

power system aforesaid and the relative comparison with 

others had also been discussed and given in Soni, V., et 

al., 2020.   

 

Fig. 1 AGC of TAIHTPS (Soni, V., et al., 2020) 

 

Fig. 2.  Structure of FOPID (Soni, V.,et al., 2020) 

The optimized parameters have been given in Table 1 [24] 

as: 

Table 1 Optimized parameters of hyGWO-PS tuned 

FOPID for TAIHTPS (Soni, V., et al, 2020) 

Prescribe

d 

area 

KP KI KD 𝝀 μ 

Area 1 1.731

5 

1.713

5 

0.259

5 

0.820

0 

0.011

0 

Area 2 1.892

0 

1.306

2 

0.451

2 

0.845

6 

0.995

4 

Area 3 0.089

4 

1.431

3 

0.055

3 

0.912

1 

0.181

0 
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The more details about used standard test system, GWO 

algorithm, PS algorithm, hyGWO-PS algorithm and the 

procedure to implement the algorithm for tuning the 

FOPID controllers’ parameters in the considered system,  

structure of FOPID controllers and its working can easily 

be found in Soni, V., et al., 2020. The dynamic behavior, 

settling times, overshoots, value of ITAE of standard 

power system aforesaid and the relative comparison with 

others had also been discussed and given in Soni, V., et 

al., 2020.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 hyGWO-PS algorithm (Soni, V., et al., 2020)  

3 Robustness/sensitivity analysis of hyGWO-PS 

optimized FOPID Controllers for AGC of 

TAIHTPS   

Robustness/Sensitivity of TAIHTPS is the ability to 

provide the approximately constant system dynamic 

responses with altered operating load conditions and 

system variables within a certain tolerable range. In the 

present work, the robustness/sensitivity analysis of 

TAICHTPS using hyGWO-PS/FOPID has been carried 

out over wide range from -50% to +50% with varying 

operating load conditions and system parameters. The 

operating load condition means application of load 

disturbance in  any area and the system parameters are TG, 

TT, TR, TW and T12 (Saikia, et al., 2011;Nanda, et al., 2009).  

The robustness/sensitivity analysis for the system can be 

explained from the Figure 4. The system dynamic 

responses along with the ITAE value and settling times  

 

Fig. 4 Complete robustness/sensitivity analysis of 

TAIHTPS 

are observed in each way of performance analysis which 

decides whether the system is more robust or less. If the 

variation in system dynamic responses, ITAE values and 

settling times are very close or near to the respective 
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values of the system response obtained under nominal 

conditions, the system will be more robust. 

4 Results and discussions 

 

4.1 Robustness/sensitivity with variation in 

operating load conditions 

In this analysis, percentage of SPL in area 1 has been 

varied from its nominal value in wide range of [-50%, 

+50%] and 10% of SLP has been considered in area 2. 

During each variation, the system dynamic responses, 

settling times and ITAE values have been observed. The 

results have been shown in Figures 5-10. 

 
Fig. 5 Variation in 

1f   with 

varying load condition (VLC) 

 
Fig. 6 Variation in

2f
 with 

VLC 

 

 
Fig. 7 Variation in 

3f
with 

VLC 

 
Fig. 8 Variation in

12TieP with 

VLC 

 

 
Fig. 9 Variation in

23TieP   with 

VLC 

 

 

 
Fig. 10 Variation in 

31TieP  

with VLC 

 

4.2 Robustness/sensitivity with variation in TG 

keeping constant operating load conditions, TT, 

TR, TW andT12 

     In this analysis, percentage change has been varied in 

TG from its nominal value in wide range of [-50%, +50%]. 

For this analysis, 10% of SLP has been considered in area 

2 at time t=0 second.  During each variation, the system 

dynamic responses, settling times and ITAE values have 

been observed. The results have been shown in Figures 

11-16.  

 
Fig. 11 Variation in

1f
 with  

∆TG 

 

 
Fig. 12 Variation in 

2f
  with  

∆TG  

 

Fig. 13 Variation in 
3f  with 

∆TG 

 

Fig. 14 Variation in 
12TieP with 

∆TG 

 

 

Fig. 15  Variation in 
23TieP

with ∆TG  

 

Fig. 16 Variation in  
31TieP  with 

∆TG  
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4.3 Robustness/sensitivity with variation in TT 

keeping constant operating load conditions, TG, 

TR, TW andT12 

This analysis shows the variation in TT   in percentage from 

its nominal value for wide range of [-50%, +50%]. A 10% 

of step load change in area 1 has been considered at time 

t=0 second. The results are shown in Figure. 17-22. 

 
Fig. 17 Variation in 

1f
 with 

∆TT  

 
Fig. 18 Variation in 

2f
  with  

∆TT  

 

 
Fig. 19 Variation in 

3f   with 

∆TT  

 
Fig. 20 Variation in tie-line 

power deviation; 
12TieP   with 

∆TT 

 
Fig. 21 Variation in 

23TieP  

with ∆TT  

 
Fig. 22 Variation in 

31TieP  

with ∆TT  

 

4.4 Robustness/sensitivity with variation in TR 

keeping constant operating load conditions, TG, 

TT, TW andT12 

This analysis shows the variation in TR   in percentage from 

its nominal value for wide range of [-50%, +50%]. A 10% 

of step load change in area 1 has been considered at time 

t=0 second. The results are shown in                 Figures 

23-28. 

 

 

 

Fig. 23 Variation in 1f  with 

∆TR 

 

 

Fig. 24 Variation in 
2f  with 

∆TR 

 

 

Fig. 25 Variation in 
3f  with 

∆TR 

 

Fig. 26 Variation in
12TieP  with 

∆TR 

 

 

Fig. 27 Variation in 
23TieP  with 

∆TR 

 

Fig. 28 Variation in 
31TieP  

with ∆TR 

 

4.5 Robustness/sensitivity with variation in TW 

keeping constant operating load conditions, TG, 

TT, TR andT12 

     This analysis shows the variation in TW   in percentage 

from its nominal value for wide range of [-50%, +50%]. 

A 10% of step load change in area 1 has been considered 

at time t=0 second. The results are shown in                

Figures 29-33. 
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Fig. 29 Variation in 1f  

with ∆TR 

 
Fig. 30 Variation in 

2f  with 

∆TR 

 
Fig. 31 Variation in 

3f  

with ∆TR 

 

 
Fig. 32 Variation in

12TieP  with 

∆TR 

 

 
Fig. 33 Variation in 

23TieP  

with ∆TR 

 
Fig. 34Variation in 

31TieP  with 

∆TR 

 

4.6 Robustness/sensitivity with variation in TW keeping 

constant operating load conditions, TG, TT, TR 

andT12 

This analysis shows the variation in T12   in percentage 

from its nominal value for wide range of [-50%, +50%]. 

A 10% of step load change in area 1 has been considered 

at time t=0 second. The results are shown in Figure. 34-

39. 

From simulation results shown in Figures 5-39, the 

variation in ITAE values and settling times of frequency 

and tie-line power deviations have been tabulated in 

Tables 2-3. Simulation results show that there are slight 

or negligible variations observed in ITAE values, settling 

times of frequency and tie-line power deviations, i.e. the 

behaviour of the system under consideration hardly alters 

with parametric variation means once the parameters of 

hyGWO-PS optimized FOPID-controllers for TAIHTPS 

have been set, i.e. there is no need to reset again over the 

range of [-50%, +50%]. 

 

 

Fig. 34 Variation in 1f  with 

∆T12 

 

 
Fig. 35 Variation in 

2f  with   

∆T12 

 
Fig. 36 Variation in 

3f  with 

∆T12 

 

 
Fig. 37 Variation in 

12TieP  with 

∆T12 

 

 

Fig. 38 Variation in 
23TieP  

with 

    ∆T12 

 
Fig 39 Variation in 

31TieP  with 

∆T12 

 

 

Table 2 Robustness/Sensitivity analysis of hyGWO-PS 

optimized FOPID-controllers for TAIHTPS 

 

Paramete

rs 

 

% 

Change 

Performance Index 

with 

Proposed Approach; 

hyGWO-PS/FOPID 
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Variation 

(PV) 

Settling time Ts (Sec.) 

∆f1 ∆f2 ∆f3 

Nominal 0 8.50 8.50 8.10 

Operating 

Load 

Condition

s (OLC) 

 

+50 8.50 8.50 8.10 

+25 8.50 8.50 8.10 

-25 8.50 8.50 8.10 

-50 8.50 8.50 8.10 

 

 

TG 

 

+50 8.50 8.51 8.10 

+25 8.51 8.51 8.10 

-25 8.51 8.50 8.10 

-50 8.50 8.50 8.09 

 

 

TT 

+50 8.51 8.51 8.11 

+25 8.49 8.51 8.11 

-25 8.49 8.48 8.13 

-50 8.49 8.48 8.12 

 

 

TR 

+50 8.48 8.49 8.13 

+25 8.49 8.49 8.13 

-25 8.49 8.48 8.12 

-50 8.49 8.48 8.12 

 

 

TW 

+50 8.48 8.47 8.13 

+25 8.48 8.47 8.13 

-25 8.48 8.47 8.11 

-50 8.48 8.47 8.12 

 

 

T12 

 

+50 8.49 8.46 8.12 

+25 8.49 8.46 8.12 

-25 8.49 8.46 8.12 

-50 8.49 8.46 8.12 

 

Table 3 Robustness/Sensitivity analysis of hyGWO-PS 

optimized FOPID-controllers for TAIHTPS 

 

PV 

 

% 

Ch

an

ge 

Performance Index with 

Proposed Approach; 

hyGWO-PS/FOPID 

 

ITAE 

Value 

Settling time Ts (Sec.) 

∆PTie1

2 

∆PTie2

3 

∆PTie31 

No

m. 

0 19.31 15.23 13.01 1.124

3 

 

OL

C 

+5

0 

19.31 15.24 13.01 1.124

3 

+2

5 

19.31 15.24 13.01 1.124

3 

-25 19.31 15.24 13.01 1.125

6 

-50 19.31 15.24 13.01 1.125

7 

 

 

TG 

 

+5

0 

19.31 15.23 13.01 1.126

2 

+2

5 

19.32 15.23 13.01 1.126

0 

-25 19.31 15.25 13.01 1.126

0 

-50 19.33 15.25 13.01 1.126

2 

 

 

TT 

+5

0 

19.32 15.25 13.01 1.130

9 

+2

5 

19.32 15.25 13.01 1.129

8 

-25 19.32 15.26 13.01 1.129

8 

-50 19.32 15.24 13.01 1.129

7 

 

 

TR 

+5

0 

19.33 15.25 13.01 1.125

5 

+2

5 

19.33 15.25 13.01 1.125

4 

-25 19.33 15.25 13.02 1.125

4 

-50 19.33 15.24 13.02 1.125

4 

 

 

TW 

+5

0 

19.30 15.25 13.02 1.125

4 

+2

5 

19.30 15.24 13.02 1.125

4 

-25 19.30 15.24 13.02 1.125

4 

-50 19.30 15.24 13.02 1.125

4 

 

 

T12 

 

+5

0 

19.35 15.24 13.02 1.125

5 

+2

5 

19.34 15.24 13.02 1.125

5 

-25 19.34 15.24 13.02 1.124

8 

-50 19.34 15.24 13.02 1.124

6 
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5 Conclusions  

In this paper, the performance of the FOPID controllers 

of dissimilar characteristics tuned by hyGWO-PS 

algorithm for TAIHTPS has been studied with the 

parametric variation over the range from  -50% to +50%. 

The parametric variation has been applied in two ways: 

first is the variation in the operating load condition over 

the range of [-50%, +50%] by keeping system parameters 

constant and second is the variation in the system 

parameters over the range of [-50%, +50%] by keeping 

the operating load conditions constant. This study is 

known as the sensitivity analysis of the of the hyGWO-PS 

tuned FOPID controllers used in the aforesaid 

interconnected power system. This is also called as the 

robustness analysis of the same. In whole analysis, the 

objective function is ITAE. The simulation results of 

sensitivity analysis show that very less or the negligible 

change is observed in the dynamic responses of the 

TAIHTPS with both ways of parametric variations over 

the range of [-50%, +50%] which shows that the hyGWO-

PS tuned FOPID controller is more robust for the same 

means once the parameters of the controllers are set, there 

is no need to reset again for the broad range [-50%, +505] 

of parametric variations. Finally, it is concluded that the 

hyGWO-PS algorithm provides the better robustness for 

FOPID controllers in AGC of the aforesaid power system.  
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