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Abstract: This paper presents Improved Artificial Cooperative Search (IACS) algorithm for solving economic dispatch problems 

considering the valve point effects, ramp rate limits, transmission losses and prohibited operation zones.   In order to improve the solution 

quality and increase the search efficiency, a novel perturbation scheme called “Global best guided chaotic local search” is proposed and 

incorporated into ACS algorithm.   The effectiveness of the proposed IACS algorithm has been benchmarked with twelve widely known 

optimization test problems.  In order to assess the performance of the proposed algorithm on non-convex optimization problems,  four case 

studies related to highly nonlinear economic dispatch problems have been solved . Results retrieved from IACS algorithm have been 

compared with literature approaches in terms of minimum, maximum and average generation cost values. Comparison results indicate that 

IACS produces more economical power load than those of other optimizers available in the literature. 
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1. Introduction

Economic load dispatch (ELD)   problem  plays an important role 

in power systems planning. ELD is a constrained optimization 

problem whose  main objective  is to minimize total fuel cost of 

generating units while satisfying an equality and a great deal of  

inequality constraints including discontinuous prohibited zones, 

generating unit constraints and ramp rate limits. The cost of power 

generation in fossil fuel plants is very high therefore optimum 

scheduling of generation units is needed to save possible amount 

of expenditure on power generation systems. Each power unit is 

represented by a quadratic cost function which becomes highly 

nonlinear, non-convex and discontinuous due to the effect of valve 

point loadings and prohibited operating zones. This functional 

behaviour generates multiple local optimum points in solution 

space and complicates the locating the global optimum of the ELD 

problem[1]. Mathematical programming techniques [2-7] have 

been utilized to reach the optimum solution of the ELD problem 

however  these kind of methods have  not  provided  feasible 

solutions yet  and they generally get trapped in local optimum 

points in the search space [8]. Dynamic Programming method [9] 

succeeds to solve ELD problems and copes with the non-

convexities occurred by valve point effect, however this method 

incurs high computational burden and its performance  deteriorates 

with increasing number of  generation units. Besides, Newton 

based methods have had trouble in handling large number of 

inequality constraints objected to ELD problem [10].  

Due to their supreme capability on maintaining acceptable balance 

between exploration of the search domain  and exploitation of the 

promising areas,  metaheuristic methods such as  Genetic 

algorithm (GA) [11-13], Gravitational Search Algorithm [14-15], 

Simulated Annealing (SA) [16-18], Particle Swarm Optimization 

(PSO) [19-22],   Differential Evolution [23-26], Harmony Search 

(HS) [27-28], Artificial Bee Colony (ABC) [29-30], Firefly 

Algorithm (FA) [31-35], Teaching Learning based 

Optimization(TLBO) [36-37], Cuckoo Search (CS) [38-39] and 

Biogeography-Based Optimization (BBO) [8,40-43,76]  have been 

recruited  for solving economic dispatch problems. From the 

literature survey, it is seen that metaheuristic algorithms applied on 

ELD problem have not guaranteed to find the global optimum of 

the problem, however they are capable of finding near-optimal 

solutions. Detailed explanation of some of the studies mentioned 

above is given in Table 1. 

Table 1 Detailed explanation of some studies in the literature 

Ref. Explanation 

[11] 

The Atavistic GA is applied to solve the ELD problem with 
valve point discontinuities. The algorithm is applied to a 

system with 13 generating units and found better solutions 

than traditional GA. 

[14] 

The GSA algorithm is utilized to solve the ELD problem. 

The results showed that the algorithm is easy to implement, 

robust, gives more favourable solutions with less execution 
time. 

[16] 

The SA algorithm is applied to solve the ELD problem. The 

transmission losses are later added to the equation. The 

results are compared with those found by the dynamic 
programming of the ELD. 

[29] 

The ABC algorithm is utilized to solve the ELD problem 

with 10, 13, 15 and 40 generating units. The results are 
compared with that of the other techniques reported in the 

literature. The ABC algorithm found more favorable results. 

[31] 

The FA algorithm is utilized to solve the ELD problem. 
Many nonlinear characteristics of the generating units have 

been taken into account. The results showed that the FA 

algorithm finds better solutions than the others.  

[36] 

The TLBO algorithm is suggested to solve the ELD 
problem. The proposed methodology is similar to the other 

studies in the literature. The TLBO algorithm found more 

favorable results than the other algorithms.  

In this article, Improved Artificial Cooperative Search (IACS) is 

presented for successful solution of non-convex economic dispatch 

problems. ACS is based on the interaction between prey and 

predator individuals of the population while they are migrating to 

find possible food resources.  ACS has fewer control parameters 

and uses different mutation and crossover strategies than other 

optimization algorithms [44]. In order to enhance the convergence 

capability of the ACS algorithm, a novel perturbation scheme 

called “Global best guided chaotic local search” is proposed in this 

study.  The proposed scheme is based on the motivation of 

exploitation of the explored areas of the search domain and   refines 

the so-far-obtained optimum solution by means of the global best 

solution vector, which guides the population individuals during 

iterations. By this scheme, mutated individuals move towards to 
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promising areas of the search space with guidance of the recruited 

global best solution vector.  To test the performance of the 

proposed methodology, four standard test systems composed of 

13-, 38-, 40-, and 140- generation units have been solved by IACS 

algorithm. Simulation results have been compared with other 

metaheuristic algorithms applied on ELD problems. Comparison 

results in terms of statistical analysis show that the proposed IACS 

produces better generation cost values for each case study. To the 

author’s best knowledge, this is the first application of ACS-based 

algorithms on ELD problems.  The main motivation of this study 

is suggesting the ACS and IACS algorithms for solving the ELD 

problem and comparing the performances of these two algorithms. 

Rest of the paper is organized as follows: Mathematical modelling 

of economic dispatch problem is explained in Section 2.  Section 3 

presents the description of ACS algorithm, improvements over 

ACS algorithm and implementation of IACS on ELD problem. 

Proposed algorithm is benchmarked with a suite of twelve-

optimization test problem in Section 4.  Section 5 describes the 

application of IACS algorithm on solving non-convex economic 

dispatch problems with 13-, 38-, 40- ,and 140-unit generating 

systems and Section 6 provides the conclusion. 

2. Mathematical Modelling of Economic Dispatch
Problems 

Economic dispatch problem aims to find optimum combination of 

power generation units that minimizes total fuel cost while 

subjected to an equality and several inequality constraints. 

Economic dispatch, which is a sub division of Unit Commitment 

(UC) problems, is an example of nonlinear programming 

optimization due to nonlinear characteristic of power systems [31]. 

Formulation of the ELD problem can be described as  

Minimize
2

1 1

( )
N N

i i i i i i i

i i

F F P a P b P c
 

      (1)                                             

where F is total generation cost to be minimized and Fi  is the cost 

function of ith generator;  power output of the ith  generator is 

represented by Pi;  ai, bi and ci are the coefficients pertaining to ith 

generator and  N is the number of the on-line  generators  in the 

power generation system. Modelling valve point loadings is 

necessary to capture the losses incurred due to the throttling of 

partially open valves in electric power generators [45]. Introducing 

valve point effects into economic dispatch problem makes the 

objective function  non-convex owing to the contribution of ripple-

like effect occurred in multi valve steam  turbines. This feature 

enhances the non-linearity of the objective function and increases 

the chance to be getting stuck in  the local optimum points in 

generation cost  curve.  Superposition of sinusoidal function and 

total cost function is formulized as  
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where Pi,min corresponds to lower bound of the power generation 

for the ith generator; ei and fi  are  fuel cost coefficients of the ith  

generator that model the valve point effect in the generation cost 

curve.   

2.1. Power balance constraints 

1
i D L

N

i
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

    (3)    

where PD is total load demand and PL represents transmission 

losses of the power generation system. The B – coefficient method 

[46], commonly used by the power industry to calculate 

transmission network losses, is formulated by the following 

expression 
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2.2. Operational limits 

Power output of the each generator should be restricted between 

maximum and minimum limits. Following inequality constraint 

should be applied for each generation unit:  

  
P

i ,min
 P

i
 P

i ,max  (5) 

where Pi,min and Pi,max are  minimum and maximum  power output  

for ith generating unit, respectively. When it is to consider ramp 

rate limits of each generator, operation bounds are modified as 

follows: 

   00

, ,maxmax , min ,
ii min i i i i iP P DR P P P UR       (6) 

In Eq. (6), 0
iP  is previous generator output power; URi and DRi are 

respectively up and down ramp limits of the ith generator in terms 

of MW/h.  

Figure 1.  Fuel cost curve considering prohibited operating zones 

2.3. Prohibited Zones 

Due to the physical limitations of machine components or 

vibrations on the shaft, start and stop of coal mills that take place 

in their auxiliary parts, generator units have prohibited regions that 

make operating curves of the generator non-continuous [47]. 

Power output of the generators must be avoided from these areas 

to satisfy operation constraints. Fig. 1 shows the characteristics of 

the cost curves with prohibited operating zones (POZ). 

Mathematical representation of the constraints can be given as  

,min ,1
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where M  is the number of prohibited operating zones of ith 

generator; ,
L

i kP and ,
U
i kP are the lower and upper limits of the kth

prohibited zone of the ith generator, correspondingly. In this article, 

POZ constraints are taken into consideration by applying the 

following procedure:  

If power output of the ith generator lies between upper and lower 

bounds of the jth POZ, that is to say,  

, ,

L U

i j i i jP P P   (8) 

output of the generator is pushed to nearest boundary of the kth 

prohibited zone by applying the following equations   
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3. Artificial Cooperative Search Algorithm

3.1. Fundamentals of the Artificial Cooperative Search 
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Nature has always been an inspiration for many researchers. 

Nowadays, many optimization algorithms   has been inspired from 

biological, physical or chemical systems [48]. Most of the bio-

inspired algorithms have been  derived from the swarm intelligence 

concept. Swarm Intelligence (SI) is a special kind of bio-inspired 

algorithm deals with the behaviour of collective, multiple agents 

interacting with each other by following some predetermined rules. 

In SI algorithms, each agent may behave as an unintelligent entity, 

but whole system, consists of multiple agents, may show some 

kind of intelligent behaviour.  

Artificial Cooperative Search (ACS), developed by Civicioglu [44] 

to be used in solving real-valued numerical optimization problems, 

is a dual-population based swarm intelligence algorithm.  In nature, 

there are such individuals those utilize mutualism based biological 

interaction locations in order to sustain for their lives.  Organisms 

involved in a mutualism based interaction locations try to take 

benefit of these location points. In mutualism, two types of 

organism living in the same habitat aims to derive mutual benefits 

from each other.  Besides, there is another term called 

“cooperation” which is interaction of homogenous living beings 

that adopt mutualism. ACS algorithm is conceptualized on 

aforementioned mutual and cooperation based biological 

interaction of two eusocial superorganisms living in the same 

habitat. “Habitat” term mentioned above matches the “search 

domain” concept pertaining to the optimization problem.  

ACS algorithm is based on the interaction between two artificial 

superorganisms as they interact and migrate to variety of areas to 

find more fruitful habitat.  In nature, amount of food that can be 

found in a habitat depends on yearly climate changes.  For that 

reason, many superorganisms have developed seasonal migration 

behaviour to find better food sources. Many species are known to 

set up a group called “superorganism” prior to migration. After a 

superorganism is formed, individuals of the superorganism start to 

move to better food sources by means of forming groups. In 

addition, many superorganisms can divide into sub-groups (sub-

superorganisms) prior to migration. Many swarms use explorers to 

discover a habitat.  Explorers discover a possible migration area, 

then collect information about this new explored area and share the 

information with the superorganism they belong to. If the 

superorganism decides to migrate to a new explored area, it moves 

to discovered area, and then this exploration process starts again 

and proceeds until they find productive feeding areas.  

In ACS algorithm, artificial superorganisms migrating to find 

possible fruitful areas refer to superorganisms with random 

solutions under given search space. ACS algorithm is composed of 

two superorganisms, namely α and β, those inherit sub-

superorganisms   equal to the population size (N).   Sub-

superorganisms consist of D individuals which correspond to the 

dimension of the optimization problem. Prey and Predator sub-

superorganisms are determined by means of α and β 

superorganisms. In ACS algorithm, predator sub-superorganism 

individuals pursue prey sub-super organism individuals while they 

are migrating to find productive feeding areas (optimum point of 

the problem).  The whole iteration process in ACS algorithm can 

be named as “coevolution” which is based on the two 

superorganisms looking for the optimum solution of the problem, 

maintaining cooperation based biological interaction between each 

other.  

Individuals of the ith  sub-superorganisms of  α and  β are initialized 

with the equation  below 


i , j:g

 rnd.(up
j
 low

j
) low

j


i , j:g

 rnd.(up
j
 low

j
) low

j
                           (11)                                                    

where i 1,2,3,...,N , j 1,2,3,...,D  and g 1,2,3,...,maxcycle . 

The rnd represents a random number selected from a uniform 

distribution in the range of  [0,1]. The g value counts the iteration 

number.  Symbols up j  and lowj  show the upper and lower 

bounds of the search space for jth dimension of the problem. Fitness 

values (productivity values) of the associated sub-superoganisms 

are calculated by using the following formula; 

y
i;
 f (

i
)

y
i;
 f (

i
)           (12)  

Table 1 gives the pseudo-code of the Artificial Cooperative Search 

algorithm equipped with the evolutionary boundary constraint 

mechanism that will be explained in the upcoming sections. In 

Table1, there are some symbolizations and abbreviatons those ease 

the comprehension of the conceptual descriptions. For instance, 

rand(0,1) stands for the representation of a uniform random 

number defined in the range [0,1]; permute(.) function shuffles the 

row elements of the population individuals; X represents the 

biological interaction locations for Predator and Prey individuals; 

R is the scale factor that determines the biological interaction 

speed; rndint(1,Y) generates pseudo-random integers defined 

between 1 and Y; determination of the passive individuals is 

procured by M matrix which is comprised of integers 0 and 1. 

3.2. Improvements over Artificial Cooperative Search 
Algorithm    

3.2.1. Global best guided chaotic local search  

In this section, a novel local search mechanism is proposed to 

refine the optimal solutions corresponding to the interaction 

locations between prey and predator individuals and  avoid being 

trapped in local optimum points. Inspired by the search equations 

of Differential Evolution [49] and Artificial Bee Colony [50] 

algorithms, proposed perturbation scheme takes full advantage of 

global best  (Gbest) vector of current population and probes around 

the Gbest solution to circumvent the local optimum solutions faced 

on the course of iterations. Proposed scheme can be described as   

   , , , , ,
2.0 0.5

new j best j i j best j i j
X G ch G X                    (13)                                                     

where i = 1,2,3,..,N;  j = 1,2,..,D and ch is chaotic variable 

generated by Logistic map [51]. Chaos is a deterministic, random-

like mathematical phenomena occur in nonlinear systems and has 

a strong dependence on initial conditions [51,77].   Effective and 

ergodic chaotic sequences can be generated by an ordinary  chaotic 

map on the concept of the following equation 

  
x

k1
 f (x

k
),      0  x

k
 1,      k  1,2,3....                             (14)

                               

Logistic map, which is one dimensional chaotic map and 

demonstrates that how complex behaviour arises from a simple 

deterministic system without need of any random sequence, is 

defined as  

 1 1k k kch ch ch                                                             (15)                                                       

where γ is a control parameter and ch is a chaotic variable as 

defined before.  For initial conditions,   ch0  should be in the range 

of (0,1) and  
0

0.25,0.50,0.75ch  . Chaotic behaviour of the 

generated sequence can be controlled by the control parameter γ, 

however Logistic map sequence is chaotic when γ=4.0. 

3.2.2. Evolutionary boundary constraint handling scheme   

Gandomi and Yang [52] developed an evolutionary scheme for 

boundary constraint handling. According to this proposed scheme, 

when population individuals goes beyond the prescribed 

boundaries, they are  pushed into the related bounds of the 

optimization problem by means of a uniform  random number and 

global best solution vector  obtained so far. Proposed constraint 

handling scheme can be formulized  as 

 
,
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where α and β are real valued number in the range of [0,1]; lowi  

and  upi  are the ith variable of the lower and upper bounds of the 
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optimization problem, respectively; xi is the ith mutable decision 

variable of the related optimization problem.  In the view of ACS 

algorithm,  xi is the biological interaction location where prey 

individuals are pursued by predator individuals aiming  for finding 

more suitable areas for subsistence.  

3.3. Implementation of Improved Artificial Cooperative 

Search Algorithm for ELD Problem 

The proposed IACS algorithm will be applied on economic 

dispatch problems considering valve point effects, ramp rate limits 

and prohibited operating zones those all make the objective 

function of the problem non-linear, non-convex, and non-

continuous.  IACS is proposed for optimum scheduling of each 

power generation unit satisfying both equality and inequality 

constraints.  Solution steps of the economic dispatch problem using 

IACS algorithm are given as follows; 

Step 1: Apply upper and lower bounds; define cost coefficients, 

transmission loss coefficients, prohibited operating zones, valve 

point  coefficients and ramp limits for each generation unit; 

initialize the chaotic sequence by using Logistic map;  determine 

population size and maximum number of  generation  

Step 2: Initialize α and β superorganisms by random real valued 

numbers as described in Eq. (11). Remind prohibited zones by 

adjusting the numerical values of superorganism individuals (α and 

β) with using Eqs. (9) and (10). Calculate the fitness values of the 

α and β superorganisms with considering the valve point effects, 

total energy demand constraints, and transmission losses given as 

the following equation; 

  

2

1

1

N

i i i i i

i

N

i i i ,min i i L D

i

arg min   F a P b P c

e sin f P P P P P





  

      





 (17)     

where ψ is a problem dependant penalty coefficient which 

penalizes infeasible solutions. Set iteration counter to 1 

Step 3: Determine the predator individuals and their respective 

fitness values by following the procedure  given in Table 1 in the 

lines between 12 and 16 

Step 4:  Determine prey individuals by implementing the procedure 

given in Table 1 within the lines between 17 and 18 

Step 5: Calculate scale factor (R) by the rule given in Table 1 in 

the lines between 19 and 23. 

Step 6: Apply binary valued integer map (M) to determine passive 

individuals with the decision rule stated in Table 1 within the lines 

between  24 and 45  

Step 7: Calculate the biological interaction locations with  the 

equation given in line 47 in Table 1 

Step 8: Determine the best solution (Gbest) of the current population 

and fine-tune the biological interaction locations with Eq. (13). If 

mutated solution vectors are better than those of inferior solutions, 

update the perturbed solution vector. Increment the iteration 

counter. 

Step 9: Update the biological interaction locations with the 

procedure given within the lines between 48 and 53.  

Step 10: Apply evolutionary boundary constraint handling scheme 

defined in the lines between 55 and 63 in Table 1.  Handle the 

prohibited zone constraints with (9) and (10), and process the 

selection update mechanism through the procedure given within 

the lines between 65 and 67 in Table 1 

Step 11:  Determine new superorganisms for next generations with 

the decision rule described in the lines between 68 and 72 in Table 

1.  

Step 12: Get the best fitness value of predator sub-superorganism. 

Retain the best fitness value and its corresponding design variables 

for next generations.  

Step 13: Update the chaotic sequence generated by Logistic map 

as described in Eq. (15) and increment the iteration counter.  

Step 14:  Repeat Step 3 to Step 13 until termination criteria is met. 

Pseudocode of artificial cooperative search algorithm 

1 INPUT DATA: POPULATION SIZE (N), PROBLEM DIMENSION (D), MAXIMUM ITERATION 

NUMBER (MAXITER), OBJECTIVE FUNCTION F(.), PROBABILITY OF BIOLOGICAL 

INTERACTION (P), UPPER AND LOWER BOUNDS (UP AND LOW) 

2 SET GLOBALMINIMUM TO 1E20 AND INITIALIZE SUPERORGANISMS (Α, Β) 

3 FOR I = 1 TO N 

4 FOR J = 1 TO D  

5 ΑI,J=LOWJ + (UPJ - LOWJ) X RAND1(0,1)  

6 ΒI,J=LOWJ + (UPJ - LOWJ) X RAND2(0,1)  

7 END 
8 FITNESS-ΑI = F(ΑI) 

9 FITNESS-ΒI = F(ΒI) 

10 END 

11 FOR    ITER = 1 TO MAXITER 

// SELECTION PHASE 

12 IF  RAND3(0,1) < RAND4(0,1)  THEN 

13 PREDATOR = Α, FITNESS-PREDATOR = FITNESS-Α, KEY = 1 

14 ELSE  

15 PREDATOR = Β, FITNESS-PREDATOR = FITNESS-Β, KEY = 2

16 END 

17 IF  RAND5(0,1) < RAND6(0,1) THEN PREY = Α  ELSE  PREY = Β  END 

18 PREY = PERMUTE (PREY) 

19 IF RAND7(0,1) < RAND8(0,1) THEN  

20 R=4X RAND9(0,1)X(RAND10(0,1)- RAND11(0,1) )  

21 ELSE 

22 R ~ Γ( 4X RAND12(0,1), 1) 

23 END 

24 M1:N,1:D = 1.0 

25 FOR I =1 TO N 

26 FOR J = 1 TO D 

27 IF  RAND13(0,1) < ( P X  RAND14(0,1)) THEN 

28 MRNDINT(N),RNDINT(D)= 0 

29 END  

30 END 

31 END 
32 IF  RAND15(0,1) <  ( P X RAND16(0,1) ) THEN 

33 FOR  I = 1 TO N  

34 FOR J = 1 TO D 

35 IF RAND17(0,1) <  ( P X RAND18(0,1) ) THEN 

36 MI,J = 1.0 

37 ELSE 
38 MI,J = 0.0 

39 END 

40 END  

41 END 

42 END 

43 FOR  I = 1 TO N 

44 IF Σ MI = D THEN  MI,RNDINT(D) = 0 END 

45 END 

46 // MUTATION 

47 X = PREDATOR + R X (PREY - PREDATOR ) 

48 FOR  I = 1 TO N 

49 FOR  J = 1 TO D 

50 // CROSSOVER 

51 IF MI,J > 0 THEN XI,J= PREDATORI,J END 

52 END     

53 END   

54 // BOUNDARY CONTROL 

55 FOR   I = 1 TO N 

56 FOR  J = 1 TO D  

57 IF  (XI,J < LOWJ)   THEN  

58 XI,J   = (RAND19(0,1) X LOWJ ) + (1 - RAND19(0,1)) X GBEST,J

59 ELSE IF (XI,J > UPJ)   THEN 

60 XI,J   = (RAND20(0,1) X LOWJ ) + (1 – RAND20(0,1)) X GBEST,J

61 END 

62 END 

63 END  

64 // SELECTION (UPDATE) 

65 FOR I = 1 TO N 

66 IF  F(XI)  < FITNESS-PREDATORI   THEN PREDATORI = XI ,FITNESS-PREDATORI = F(XI) END 

67 END 

68 IF   KEY = 1  THEN 

69 Α = PREDATOR,  FITNESS-Α = FITNESS-PREDATOR  

70 ELSE 
71 Β = PREDATOR,  FITNESS- Β = FITNESS-PREDATOR 

72 END 

73 FITNESS-BEST = ARGMIN (FITNESS - PREDATOR)   1, 2, 3, ..,best N

74 IF  FITNESS-BEST < GLOBALMINIMUM  THEN 

75 GLOBALMINIMUM = FITNESS-BEST 

76 GLOBALMINIMIZER = PREDATOR-BEST 

77 END 

78 END 

79 OUTPUT DATA : GLOBALMINIMUM = F (GLOBALMINIMIZER 

4. Experimental Studies on Improved Artificial
Cooperative Search Algorithm

In this section, twelve widely known 50 dimensional optimization 

test functions have been carried out in order to assess the 

performance of the IACS algorithm over new emerged 
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metaheuristics such as Quantum behaved Particle Swarm 

Optimization (QPSO) [53-54], Intelligent Tuned Harmony Search 

(ITHS) [55], Artificial Bee Colony (ABC)[10], Differential  

Search (DS) [56], Bird Mating Optimizer (BMO) [57], Bat 

Algorithm (BAT) [58] and Artificial Cooperative Search (ACS) 

[44]. Table 2 shows the 12 benchmark problems, which are 

composed of unimodal, and multimodal test functions those 

require expensive computational effort due to both their 

multidimensionality and inherent complex nature they exhibit. Due 

to the stochastic discrepancy, 50 consecutive algorithm runs along 

with 500,000 function evaluations have been performed for each 

test function for all mentioned algorithms. Algorithms have been 

developed in Java and run on Intel with 2.50 GHz   CPU and 6.0 

GB RAM. Table 3 gives the statistical results for all mentioned 

optimizers in terms of mean and standard deviation values. IACS 

algorithm finds global optimum of Sphere, Rastrigin, Griewank 

and Step functions in each algorithm run and    

outperforms other algorithms with regards to statistical results it 

attains over 11 out of 12 test functions.  Concerning the best results 

obtained after consecutive algorithms runs, convergence 

performance of all above-mentioned algorithms have been 

compared with IACS algorithm in Fig. 2. It is clear that IACS is 

more quicker than other algorithms since in each test function, 

except for Pathologic function in Fig. 2(k), IACS is getting closer 

to the optimum point while others remain stagnant and are far away 

from the optimum. 
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Table 3.  Statistical results for 50 Dimensional benchmark test functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

   

   

 Mean D.±Standard D. Mean D.±Standard D. Mean D.±Standard D. Mean D.±Standard D. 

 Sphere Ackley Rastrigin Levy 

QPSO 9.52E+01±4.92E+01 8.11E+00±8.63E+00 2.04E+02±2.17E+02 5.93E+01±3.07E+01 

ITHS 2.32E-02±2.09E-02 7.07E-02±2.87E-02 4.75E+01±3.88E+01 4.22E-02±3.58E-02 

ABC 9.49E-16±1.70E-16 5.04E-14±6.66E-15 0.00E+00±0.00E+00 3.86E-09±1.03E-16 

DS 1.61E+01±3.18E+01 1.03E+01±1.10E+00 3.17E+02±2.32E+01 2.51E+02±5.59E+00 

BMO 3.74E-04±3.96E-04 2.36E-02±6.92E-03 2.06E+02±3.97E+01 3.47E+01±2.53E+01 

BAT 3.82E-05±3.35E-05 1.73E+01±1.43E+00 3.68E+02±4.32E+01 9.30E+01±2.08E+01 

ACS 4.12E-25±3.28E-45 1.36E-14±3.21E-15 0.00E+00±0.00E+00 3.86E-09±1.43E-23 

IACS 0.00E+00±0.00E+00 4.44E-15±0.00E+00 0.00E+00±0.00E+00 3.86E-09±4.07E-24 

 MeanD.±StandardD. MeanD.±StandardD. MeanD.±StandardD. MeanD.±StandardD. 

 Rosenbrock Dropwave Zakharov Griewank 

QPSO 8.52E+02±4.17E+02 -4.53E-02±2.18E-02 2.22E+02±2.79E+02 8.15E-01±4.64E-01 

ITHS 3.82E+01±2.48E-01 -4.34E-01±1.71E-01 5.25E-02±1.23E-01 1.39E-03±1.55E-03 

ABC 2.20E+01±9.45E+00 -5.51E-02±2.96E-02 2.91E+02±4.10E+01 1.49E-16±1.72E-16 

DS 2.54E+02±5.88E+01 -1.56E-01±2.92E-02 1.37E+02±3.4E+01 8.88E-01±6.64E-02 

BMO 6.11E+01±3.24E+01 -3.32E-01±5.10E-02 1.75E+00±1.45E+00 9.08E-03±8.93E-03 

BAT 2.20E+01±7.48E+01 -5.56E-01±2.25E-01 1.03E-04±5.78E-05 8.33E-03±2.43E-02 

ACS 2.20E+01±5.71E+00 -4.77E-01±5.90E-02 3.45E-02±1.18E-02 0.00E+00±0.00E+00 

IACS 1.44E-06±1.54E-06 -6.34E-01±1.42E-01 1.81E-15±3.62E-31 0.00E+00±0.00E+00 

 MeanD.±StandardD. MeanD.±StandardD. MeanD.±StandardD. MeanD.±StandardD. 

 Quartic Step Pathologic Alpine 

QPSO 1.03E+01±7.83E+00 3.74E+01±1.23E+01 1.66E+00±4.78E-01 1.31E+01±3.31E+00 

ITHS 2.00E-02±1.69E-01 1.57E-02±1.24E-02 9.76E-01±2.80E-01 1.34E-01±6.61E-03 

ABC 6.30E-02±2.51E-02 1.05E-16±1.52E-16 1.75E-03±1.60E-03 1.95E-05±2.73E-05 

DS 2.56E+04±1.03E+04 3.80E+01±7.75E+00 6.93E+00±5.27E-01 3.06E+01±3.98E+00 

BMO 7.78E-01±1.83E-01 7.52E-04±1.93E-04 8.35E+00±5.02E-01 1.04E+01±2.82E+00 

BAT 5.31E+01±1.88E+01 3.98E-05±1.44E-05 4.29E+00±1.62E+00 2.43E+01±8.13E+00 

ACS 3.84E-02±5.66E-03 0.00E+00±0.00E+00 1.80E-02±4.21E-03 1.37E-08±3.92E-08 

IACS 3.66E-02±7.01E-03 0.00E+00±0.00E+00 1.58E-02±5.01E-03 7.95E-09±1.68E-08 
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Figure 2.  Convergence profiles of the optimizers for (a) Sphere function, (b) Ackley function, (c)  Rastrigin function, (d) Levy function, (e) Rosenbrock 

function, (f) Dropwave function, (g) Zakharov function, (h) Griewank function, (i) Quartic function, (j) Step function, (k) Pathologic function, and  (l) 

Alpine function 

 

5. Simulation and Analysis 

In this section, IACS algorithm has been assigned to 13-, 38-, 40-, 

and 140- unit generation systems to verify its applicability and 

feasibility on ELD problems. IACS is implemented using Java 

executing Pentium Core i5 CPU @ 2.5 GHz and 6.0 GB RAM on 

a personal computer.   

5.1 Case Study 1:  13- Unit Test System 

This case deals with 13-generating units which takes into account 

valve effects and prohibited zones without considering 

transmission losses. As number of generation sites increases, 

complexity of the system is improved owing to the non-linear 

characteristic of valve point loading effects.  This non-linear 

behavior increases the number of local optimum therefore finding 

global optimum of the problem significantly becomes a 

challenging process. In this case, total load demand of 1800.0 MW 

and 2520.0 MW test systems are studied. Due to the stochastic 

characteristic of metaheuristic algorithms, 50 trial runs have been 

performed along with 50,000 function evaluations for both IACS 

and ACS algorithms.  Problem data for 1800.0 MW test system can 

be found in Sinha et al. [59].  Table 5 reports the statistical results 

obtained by HGA[60], FA[31], BF-NM [61], MDE[62], IPSO-

TVAC [63], SDE [64],  MsEBBO [8], MsEBBO/sin [8], 

MsEBBO/mig [8], and ACS-based  algorithms for 1800.0 MW test 

system. From Table 4, it is seen that minimum fuel cost value 

(17,954.091 $/h) obtained by IACS is lower than those acquired by 

other methods available in the literature.  Table 5 lists the best 

generation cost results of above-mentioned literature approaches 

and their corresponding power generation rates. Table 6 reports 

statistical analysis obtained by FAMPSO[65], HHS [66], ACO [1],  

ICA-PSO [67], IPSO-TVAC [63] and ACS-based algorithms  for 

2520.0 MW test system. Table 6 clarifies that however little 

improvement have been made by IACS over ACS algorithm on 

minimum generation cost value, IACS not only attains the best 

result among the other algorithms but also it surpasses the 

remaining algorithms in terms of robustness. This behavior 

indicates the supremacy of the proposed algorithm. Table 7 lists 

the comparison of the optimal solution in the literature. 

Table 4  Statistical analysis for the 13-unit test system with total load 

demand of 1800 MW  

N/A means “not available” 

 

 

 

Table 5  Best power outputs  for the 13-unit test system with total load demand of 1800 MW 

Unit (MW) MsEBBO/sin [8] MsEBBO [8] MDE [62] IPSO-TVAC [63] SDE[64] ACS IACS 

P1 628.3185 628.3185  628.318 628.3185 628.32 628.3184 538.5593 

P2 222.7492 149.5997  149.594 149.5996 149.60 149.5995 224.3994 

P3  149.5997 222.7492  222.758 222.7489 222.75 222.7494 149.5996 

P4 109.8666 109.8666 109.8665 109.8666 109.87 109.8665 109.8665 

P5 109.8666   60.0000 109.8665 109.8666 109.87   60.0000 109.8665 

P6 109.8666 109.8666 109.8665 109.8666 109.87 109.8665 109.8665 

P7 109.8666 109.8666 109.8665 109.8666   60.00 109.8665 109.8665 

P8  109.8666 109.8666   60.0000 109.8666 109.87 109.8665 109.8665 

P9   60.0000 109.8666 109.8665   60.0000 109.87 109.8665 109.8665 

P10   40.0000   40.0000   40.0000   40.0000   40.00   40.0000   40.0000 

P11   40.0000   40.0000   40.0000   40.0000   40.00   40.0000   77.3999 

P12   55.0000   55.0000   55.0000   55.0000   55.00   55.0000   55.0000 

P13   55.0000   55.0000   55.0000   55.0000   55.00   55.0000   55.0000 

PTotal    1800.00    1800.00    1800.00      1800.00    1800.00    1800.00    1800.00 

Total cost ($/h) 17,963.82 17,963.82 17,960.39 17960.3703 17,960.37 17,960.36 17,954.091 

 Minimum 

cost ($/h) 

Maximum cost  

($/h) 

Average cost  

($/h) 

Stand

art 

dev. 

MsEBBO/mig 

[8] 

17,963.8317 17,972.8427 17,969.6001 4.336

7 

HGA [60] 17,963.83 N/A 17,988.04 N/A 

FA [31] 17,963.83 18,168.80 18,029.16 148.5

4 

MsEBBO/sin [8] 17,963.8292 17,972.8105 17,967.0705 4.187

6 

MsEBBO [8] 17,963.8292 17,969.0323 17,964.0468 1.921

5 

BF-NM [61] 17 960.4998 N/A 17 969.8569 2.053

8 

MDE [62] 17,960.39 17,969.09 17,967.19 N/A 

IPSO-TVAC 

[63] 

17,960.3703 N/A N/A N/A 

SDE [64] 17,960.37 N/A N/A N/A 

ACS 17,960.362 17,969.57 17,965.89 3.13 

IACS 17,954.091 17,968.13 17,961.56 4.76 
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Table 6  Comparison of the statistical results for the 13-unit test system with total load of 2520.0 MW 

  Minimum Cost ($/h) Maximum cost ($/h) Average cost ($/h) Standart dev. 

FAMPSO [65] 24,169.9176 24,169.9176 24,169.9176 N/A 

HHS [66] 24,169.90 24,196.9 24,169.9 N/A 

ACO [1] 24,169.63 24,195.91 24,182.79 7.86 

ICA-PSO [67] 24,168.91 24,184.92 24,175.24 N/A 

IPSO-TVAC [63] 24,166.8 24,169.41 24,167.37 N/A 

ACS 24,164.058 24,177.86 24,165.72 4.046 

IACS 24,164.046 24,164.046 24,164.046 2.45E-8 

N/A means “not available” 

 

Table 7  Best power outputs  for the 13-unit system with total load of 2520.0 MW   

 

 

5.2 Case Study 2:   38-Unit Test System 

A test system with 38-generation units is considered to test the 

actual performance of IACS algorithm on non-convex problems. 

Fuel costs are represented by quadratic cost functions, 

transmission losses are not taken into account and total power 

demand is set to 6000.0 MW for this case. System parameters are 

taken from Liang and Glover [9].  Table 8 compares the optimum 

results extracted by DE/BBO [68], PSO-TVAC [69], NPSO [69] 

and ACS based algorithms. Table 10 gives the statistical analysis 

for aforementioned algorithms in terms of minimum, maximum 

and average cost values. As seen from Table 10, IACS algorithm 

not only finds lower fuel cost values than the other methods but 

also it is so robust and consistent such that the worst fuel cost value 

obtained by IACS is much better than the best fuel cost value 

acquired by ACS. Both algorithms shows similar convergence 

characteristics until 32,653 function evaluations then both of them 

remain in stagnation till the end of iterations. However, ACS 

algorithm is trapped in the local optimum with the corresponding 

fuel cost value of 9,417,205.08 ($/h). Fig. 3 illustrates the set of 

optimum solutions obtained after 50 algorithm run for this case. 

 

Figure 3. Set of optimum results obtained by IACS for 38-unit test 

system 

 

 

 

 

 

Unit 

(MW) 

FAMPSO 

[65] 

HHS 

[66] 

ACO 

[1] 

ICA-PSO 

[67] 

IPSO-TVAC 

[63] 

ACS IACS 

P1 628.3185 628.3185 628.32 628.32 628.319 628.3185 628.3185 

P2 299.1993 299.1993 299.06 299.19 299.199 299.1993 299.1993 

P3 299.1993 299.1993 299.17 294.51 295.878 294.4839 294.4821 

P4 159.7331 159.7331 159.73 159.73 159.265 159.7331 159.7331 

P5 159.7331 159.7331 159.73 159.73 159.73 159.7331 159.7331 

P6 159.7331 159.7331 159.73 159.73 159.73 159.7331 159.7331 

P7 159.7331 159.7331 159.73 159.73 159.73 159.7331 159.7331 

P8 159.7331 159.7331 159.73 159.73 159.73 159.7331 159.7331 

P9 159.7331 159.7331 159.73 159.73 159.73 159.7331 159.7331 

P10   77.3999   77.3999   75.47 114.80   77.363   77.3999   77.3999 

P11   77.3999   77.3999   77.33   77.40   77.397   77.3999   77.3999 

P12   87.6845   87.6845   92.10   55.00   92.397   92.3999   92.3999 

P13   92.3999   92.3999   90.59   92.40   91.517   92.3999   92.3999 

PTotal (MW)   2520.0 2520.0 2520.0 2520.0 2520.0 2520.0 2520.0 

Total cost ($/h) 24,169.9176 24,169.9 24,169.63 24,168.91 24,168.8 24,164.058 24,164.046 
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Table 8  Comparison  of  the best results for 38-unit system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10  Statistical results and comparison for the 38 unit system. 

 

 

 

 

 

 
N/A means “not available” 

 

5.3 Case Study 3:   40-Unit Test System 

In this section, the proposed algorithm has been applied on a power 

system consists of 40 generating units incorporating valve loading 

effects. Total power demand is set to 10,500 MW for this case.  

Input parameters of the cost functions for all generating units are 

referred to the case study given in Coelho and Mariani [5]. 50 trial 

runs along with 500,000 function evaluations have been performed 

due to the stochastic nature of the proposed metaheuristic 

algorithm. Optimal fuel cost values obtained by FA [31], PS [10], 

BBO [68], SOH-PSO [70] along with corresponding generator 

loads have been reported in Table 11.  Table 12 gives the detailed 

comparison of the proposed algorithm and literature studies in 

terms of minimum, maximum and mean of the generation cost 

value.  Table 12 clarifies that proposed IACS algorithm surpasses 

other remaining methods in terms of minimum fuel cost values. 

Table 13 reports the convergence frequency of the best results 

Output (MW)      IACS  ACS  DE/BBO [68]   PSO-TVAC [69]  NPSO [69]  

P1 426.5920 426.5925 426.6060 443.659 550.000 

P2 426.5920 426.5925 426.6060 342.956 512.263 

P3 429.6491 429.6497 429.6631 433.117 485.733 

P4 429.6591 429.6596 429.6631 500.000 391.083 

P5 429.6491 429.6496 429.6631 410.539 443.846 

P6 429.6491 429.6496 429.6631 482.864 358.398 

P7 429.6491 429.6496 429.6631 409.483 415.729 

P8 429.6491 429.6496 429.6631 446.079 320.816 

P9 114.0000 114.0000 114.0000 119.566 115.347 

P10 114.0000 114.0000 114.0000 137.274 204.422 

P11 119.7621 119.7626 119.7680 138.933 114.000 

P12 127.0666 127.0686 127.0728 155.401 249.197 

P13 110.0000 110.0000 110.0000 121.719 118.886 

P14   90.0000   90.0000   90.0000   90.924 102.802 

P15   82.0000   82.0000   82.0000   97.941   89.039 

P16 120.0000 120.0000 120.0000 128.106 120.000 

P17 159.5963 159.5973 159.5980 189.108 156.562 

P18   65.0000   65.0000   65.0000   65.000   84.265 

P19   65.0000   65.0000   65.0000   65.000   65.041 

P20 271.9999 271.9999 272.0000 267.422 151.104 

P21 271.9999 271.9999 272.0000 221.383 226.344 

P22 259.9999 259.9999 260.0000 130.804 209.298 

P23 130.6431 130.6431 130.6486 124.269   85.719 

P24   10.0000   10.0000   10.0000   11.535   10.000 

P25 113.3012 113.3012 113.3050   77.103   60.000 

P26   88.0647   88.0647   88.0669   55.018   90.489 

P27   37.5037   37.5035   37.5051   75.000   39.670 

P28   20.0000   20.0000   20.0000   21.682   20.000 

P29   20.0000   20.0000   20.0000   29.829   20.995 

P30   20.0000   20.0000   20.0000   20.326   22.810 

P31   20.0000   20.0000   20.0000   20.000   20.000 

P32   20.0000   20.0000   20.0000   21.840   20.416 

P33   25.0000   25.0000   25.0000   25.620   25.000 

P34   18.0000   18.0000   18.0000   24.261   21.319 

P35      8.0000     8.0000     8.0000     9.667     9.122 

P36    25.0000   25.0000   25.0000   25.000   25.184 

P37    21.7815   21.7818   21.7820   31.642   20.000 

P38    21.1929   21.1928   21.0621   29.935   25.104 

($/h) 9,417,200.86 9,417,205.98 9,417,235.786 9,500,448.30 9,516,448.31 

 Minimum cost ( $/h ) Maximum cost ( $/h ) Average cost ( $/h ) 

SPSO [69]        9,543,984.77 N/A N/A 

PSO-Crazy[69]        9,520,024.60 N/A N/A 

NPSO [69]        9,516,448.31 N/A N/A 

PSO-TVAC [69]        9,500,448.30 N/A N/A 

DE-BBO  [68]        9,417,235.78 N/A N/A 

ACS        9,417,205.98 9,417,206.28 9,417,206.19 

IACS        9,417,200.86 9,417,202.13 9,417,201.66 
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obtained by ACS, IACS and other optimizers available in the 

literature . IACS and ACS algorithms have obtained fuel cost 

values between 120.0 x 103 ($/h) and 121.5 x 103 ($/h) in each 

algorithm run which shows their superiority over other 

optimization methods in terms of solution accuracy and 

robustness. Similar evolution characteristics have been  observed 

for both algorithms however ACS remains stable after 7813 

function evaluations and converges to local optimum point. Fig. 4 

shows the sequence of optimum results generated after 50 

algorithm runs. 

Table 11     Optimal dispatch results for 40 unit systems for total power demand of 10,500 MW 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12 Statistical results for the 40 unit test  system 

 

Output 

(MW) 
IACS ACS       FA [31]  PS [10] BBO [68] SOH-PSO [70] 

P1 110.8687 110.7998 110.8099     110.8051 110.8158 110.80 
P2 110.0013 110.7998 110.8059     110.8051 111.0896 110.80 

P3   97.3999   97.3999   97.4023  97.4023   97.4026   97.40 

P4 179.7331 179.7331 179.7332     179.7332 179.7549 179.73 
P5   92.4706   92.7561   92.7070  92.7070   88.2083   87.80 

P6 139.9999 139.9999 140.0000     140.0000 139.9886 140.00 

P7 259.5996 259.5996 259.6004     259.6004 259.5935 259.60 
P8 284.5996 284.5996 284.6004     284.6004 284.6174 284.60 

P9 284.5996 284.5996 284.6004     284.6004 284.6479 284.60 

P10 130.0000 130.0000 130.0028     130.0028 130.0298 130.00 
P11 168.7998 168.7998 168.8008     168.8008 94.01459   94.00 

P12 168.7998 168.7998 168.8008     168.8008 94.26367   94.00 

P13 214.7597 214.7597 214.7606     214.7606 304.5153 304.52 

P14 394.2793 394.2793 304.5204     304.5204 394.2642 304.52 

P15 394.2793 394.2793 394.2801     394.2801 304.5057 394.28 

P16 304.5195 304.5195 394.2801     394.2801 394.2472 394.28 
P17 489.2793 489.2793 489.2801     489.2801 489.3273 489.28 

P18 489.2793 489.2793 489.2801     489.2801 489.3047 489.28 

P19 511.2793 511.2793 511.2817     511.2817 511.3087 511.28 
P20 511.2793 511.2793 511.2817     511.2817 511.2495 511.27 

P21 523.2793 523.2793 523.2793     523.2793 523.3217 523.28 

P22 523.2793 523.2793 523.2793     523.2793 523.3144 523.28 
P23 523.2793 523.2793 523.2832     523.2832 523.3629 523.28 

P24 523.2793 523.2793 523.2832     523.2832 523.2883 523.28 

P25 523.2793 523.2793 523.2793     523.2793 523.2989 523.28 
P26 523.2793 523.2793 523.2793     523.2793 523.2802 523.28 

P27   10.0000   10.0000   10.0000  10.0008   10.0281   10.00 

P28         10.0000         10.0000         10.0000     10.0028         10.0032         10.00 
P29         10.0000         10.0000         10.0000     10.0028         10.0288         10.00 

P30         87.8169         87.8012         87.8008     87.8008         88.1459         97.00 
P31       189.9999      189.9999       189.9989   189.9989       189.9913       190.00 

P32      189.9999      189.9999      189.9989   189.9989      189.9888       190.00 

P33      189.9999      189.9999      189.9989   189.9989      189.9998       190.00 

P34      164.7998      164.8036       164.8036   164.8036      164.8452       185.20 

P35      164.7998      164.8036       164.8036   164.8036      192.9876       164.80 

P36      164.7998      164.8036       164.8036   164.8036      199.9876       200.00 
P37      109.9999      109.9999       110.0000   109.9989      109.9941       110.00 

P38      109.9999      109.9999      110.0000   109.9989      109.9992      110.00 

P39      109.9999      109.9999      110.0000   109.9989      109.9833      110.00 
P40      511.2793       511.2793      511.2794   511.2817      511.2794      511.28 

($/h) 121,371.5603 121,414.6091 121,415.0522     121,415.14 121,479.5029 121,501.14 

 Minimum  

cost ($/h) 

Maximum  

 cost ($/h) 

Average   

cost  ($/h) 

PSO [73] 121,735.47 123,467.40 122.513.91 
NPSO-LRS [75] 121,664.43 122,981.59 122,209.31 

SOH-PSO [70] 121,501.14 122,446.30 121,853.57 

BBO [68] 121,479.50 121,688.66 121,512.06 
PS  [10] 121,415.14 125,486.29 122,332.65 

FA [31] 121,415.05 121,424.56 121,416.57 

ACS 121,414.60 121,468.63 121,426.73 
IACS 121,371.56 121,450.32 121,423.33 
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Figure 4. Sequence of optimum results obtained by IACS for 40-unit test system 

Table 13  Convergence frequency of the algorithms for 40 generator system  

 Range of total generation cost (x 103 , $/h) 

 120.0 – 

121.5 

121.5 – 

122.5 

122.5 – 

123.0 

123.0  - 

123.5 

123.5 – 

124.0 

124.0 - 

124.5 

124.5 – 

125.0 

IACS 50 0 0 0 0 0 0 

ACS 50 0 0 0 0 0 0 

BBO [68] 38 12 0 0 0 0 0 

QPSO [72] 2 27 20 1 0 0 0 

SOH-PSO [70] 0 50 0 0 0 0 0 

NPSO-LRS [75] 0 40 10 0 0 0 0 

NPSO [73] 0 37 13 0 0 0 0 

PSO-LRS [73] 0 26 17 7 0 0 0 

CBPSO-RVM 

[74] 

41 8 1 0 0 0 0 

IFEP [59] 0 0 11 25 9 2 2 

 

 

5.4 Case Study 4:   Large Scale Application on Korea Power 

System 

To test the efficiency of the proposed algorithm on a large scale 

application, numerical experiments have been conducted on the 

Korean power system which consists of 140 thermal generating 

units  with ramp rate limits, valve point effects and prohibited 

operating zones. Total power load for this system is set to 49,342 

MW.   Input data for this case is obtained from Park et al. [47]. 

1,000,000 function evaluations have been made owing to the high 

dimensionality of the problem.  Due to the stochastic discrepancy, 

both ACS and IACS have performed 50 consecutive algorithm 

runs. Park et al. [47]  proposed four PSO based algorithms 

including CTPSO, CSPSO, COPSO, and CCPSO for successful 

solution of this case study. In addition, Dalvand et al.[71] 

propounded Group Search Optimizer (GSO) and Continuous 

Quick Group Search Optimizer(CQGSO) in order to solve large 

scale Korea power system problem. Coelho et al.[26] proposed  

Differential Evolution algorithm combined with truncated Levy 

flight random walks and population diversity measure (DEL) to 

solve this case study.  Table 14 compares the optimum solutions 

acquired by literature studies discussed above with the best results 

of ACS and IACS algorithms. As reported in Table 14, IACS 

algorithm surpasses other algorithms concerning the minimum fuel 

cost values. Table 15 gives the best results obtained by both ACS 

and IACS algorithms. According to the Table 15,  IACS algorithm 

succeeds in finding much better generation cost values than ACS 

algorithm  with the minimum fuel cost of 1,657,956.80 $/h. 

Although both algorithms follow similar trends until the end of 

iterations, ACS is first to saturate and get trapped in a local 

optimum solution.  After all, it can be concluded that IACS proves 

its efficiency in solving high dimensional optimization problems. 

 

Table 14  Statistical results for the 140 unit Korean power generation system 

 

 

 

 

 

 

 
N/A means “not available” 

 

 

 

 

Methods Minimum  

cost ($/h) 

Maximum  

cost ($/h) 

Average  

cost ($/h) 

Std.dev. 

CTPSO [47] 1,657,962.73 1,658,002.79 1,657,964.06 7.3150 

CSPSO [47] 1,657,962.73 1,657,962.85 1,657,962.74 0.0235 

COPSO [47] 1,657,962.73 1,657,962.73 1,657,962.73 0.0002 

CCPSO [47] 1,657,962.73 1,657,962.73 1,657,962.73 0.0000 

GSO [71] 1,728,151.16 1,753,229.56 1,745,514.99 N/A 

CQGSO [71] 1,657,962.72 1,657,962.77 1,657,962.74 N/A 

DEL [26] 1,657,962.7166 1,651,518.6719 1,658,001.7003 57.9836 

ACS 1,658,002.72 1,658,756.32 1,658,101.39 219.30 

IACS 1,657,956.80 1,657,966.74 1,657,960.85 5.6328 
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Table 15 Best results of  the ACS and IACS algorithms for 140-unit Korean power generation  system 

 

C=COAL, N=NUCLEAR, L=L 

 

 

6. Conclusion 

This paper introduces Improved Artificial Cooperative Search 

(IACS) algorithm for successful solution of economic dispatch 

problems regarding valve point effects, ramp rate limits, 

transmission losses and prohibited operation zones those all make 

the operation cost curve non-continuous, non-convex, and highly 

non-linear. ACS is dual-population based metaheuristic algorithm, 

which is based on the interaction between two superorganisms as 

they are migrating and searching more fruitful areas for 

subsistence. ACS has a fewer control parameters and uses 

advanced perturbation strategies that ease its implementation on 

any optimization problem.  In order to improve the solution quality 

and increase convergence rate, a novel local search strategy is 

incorporated into ACS algorithm. In addition, an evolutionary 

boundary constraint-handling scheme is utilized to restrict 

population individuals into the prescribed limits. In order to verify 

the applicability of the proposed algorithm on multi-dimensional 

optimization test problems, IACS is benchmarked with twelve 

widely known benchmark functions. The results obtained from 

IACS, ACS and some other metaheuristics in the literature showed 

that IACS performs better than the others. Also, IACS converges 

faster than the other algorithms. Then, IACS has been applied to 

13-, 38- , 40- and 140- unit systems and obtained results over 50 

algorithm runs have been compared with recently published ED 

optimizers.  Outcomes of the comparisons indicate that IACS 

algorithm is very effective and efficient in finding the optimum 

solution of the economic dispatch problem and can be nominated 

as an alternative method for solving non-linear ELD problems as 

well as multi-dimensional real world optimization problems. For a 

future work, IACS will be implemented on 

environmental/economical dispatch (EED) problems.  
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