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Abstract: The embedded steel is integrated with concrete material, primarily used in buildings and infrastructure projects. "Embedded 

steel" refers to steel reinforcement bars or mesh embedded in concrete structures. Steel is added to the concrete to strengthen and support 

the structure. One of the primary challenges associated with embedded-based steel is anticipating its corrosion once it has been incorporated 

into building structures. It is necessary to monitor the initiation time of corrosion on the steel in the concrete, which is considered crucial 

to the environment.  Early corrosion detection is challenging, and its accuracy helps design durable concrete. This process reduces the time 

and cost of embedded steel manufacturing. This research focuses on applying embedded deep-learning models to test the accuracy of the 

algorithms suggested for embedded steel. A-state of art technique reveals that convolutional neural network (CNN), Long short-term 

memory (LSTM), and Deep neural network (DNN) models can perform accurate predictions. In this study, the above deep learning models 

are embedded to validate the accuracy of the different algorithms.  The study aimed to determine the corrosion initiation time on steel, 

which is Incorporated within concrete via corrosion potential measurement. To achieve this, concrete samples were arranged with conch 

shell powder as a partial replacement to Portland cement and exposed in 5% sodium chloride with following the requirements of ASTM 

C876 – 15. During the exposure time, the steel embedded's corrosion potential was measured, and the resulting dataset was utilized for 

training three deep-learning models. These models were developed using input variables such as cement, conch shell powder, fine 

aggregate, coarse aggregate, exposure period, and water to estimate the corrosion initiation time on the embedded- steel based on the 

potential corrosion measurements. 

Keywords: Corrosion estimation, DNN, CNN, LSTM, Embedded steel, initiation time of corrosion  

1. Introduction 

The most significant endurance issue facing the 

construction sector is the deterioration of concrete 

building materials by the rusting of embedded steel [1, 2]. 

The alkaline hydration cement items required to protect 

(passivate) the embedded steel are reacted with and 

destroyed when both CO2 and chloride (Cl-) ion 

ingression into cement activate the corrosion of steel. As 

rust progresses, the implanted steel's cross-section shrinks 

and loses its compressive and bending capabilities [3]. As 

a result, the concrete develops structural fissures that 

lower the ability of the building to support loads. Studies 

claim that chloride ion-induced rusting can be more 

harmful and expensive to fix than rust caused by 

carbonating steel [4]. 

 

The overall cost of rusting was calculated by the  NACE 

Impact 2013 Study to be US$2.50 trillion, or around 4% 

of the world's gross domestic (GDP) product. Best 

corrosion avoidance practices could reduce damage costs 

by 15–35% globally [5]. The cost of restoration exceeds 

the cost of the building during certain intense reinforced 

concrete deteriorative states [6]. Thus, predicting the 

useful life of structures finished using reinforced concrete 

(RC) using the deterioration of embedded steel is crucial. 

The lifespan of the RC construction can be estimated 

using the corrosion starting time for the steel embedded 

[7].  

 Statistical techniques, response control strategies, and 

electrochemical methods are the principal techniques for 

determining and forecasting the degree of steel corrosion 

in concrete structures. The scientific method assumes that 

the water-to-cement ratio, chloride levels, temperatures, 

and humidity levels are directly related to the corrosion 

rate [8-10]. The response control approach considers how 

the physical signals alter before and following reinforced 

concrete corrosion [11,12]. The two approaches 

mentioned above are reasonably easy for designers to use, 

but they're unable to effectively depict the complex link 

between tangible indications and corrosion degree. When 

employed in practice, electrochemical methods are less 

practical than one of the two techniques, even if they may 

capture the corrosion process as entirely as feasible [13]. 
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The motivation for this research stems from the critical 

need to improve the durability, safety, and cost-

effectiveness of concrete structures in our built 

environment. Corrosion of steel embedded within 

concrete is a pervasive challenge that can compromise the 

integrity of bridges, buildings, and other infrastructure, 

leading to expensive repairs, shortened lifespans, and 

potentially hazardous conditions.  

The works of the author [14], wherein the initiation time 

of corrosion in sewage RC steel is anticipated and utilized 

for calculating the corrosion rate, are the ones that are 

most like our study. Similarly, the authors [15] employed 

ANN to forecast the initiation time of corrosion in slag 

cement. The amount of exposure and mixing proportion 

of elements, particularly cement-like substances, affect 

the corrosion characteristics of steel embedded in RC 

structures. The binder's constituent elements impact how 

durable the concrete is. Research on the lifespan of 

reinforced concrete (RC) structures is influenced by the 

period until reinforcement corrosion starts. The proposed 

primary contribution method is given below: 

➢ The main goal is to evaluate and contrast the 

effectiveness of embedding deep learning techniques, 

including CNN, DNN, and LSTM, to suggest the best 

approach to foretelling corrosion initiation time for the 

embedded steel. 

➢ The experimental evaluation of the impact of 

gradually adding conch shell powder in concrete  

produced the data sets for the research. 

➢ To create the framework, the parameters (inputs) for 

the stages of training and testing the conch shell 

powder percentage additions and exposed times, and 

the target (output) is corrosion capability. 

2. Related Works 

The nonlinear relationship among variables can be 

effectively expressed using machine learning (ML) 

methods and a lot of data. ML has been used to evaluate 

and forecast concrete qualities with effectiveness. The 

authors used machine learning methods (ML) to forecast 

the mechanical properties (such as tensile power) of 

hydraulic concrete. The effects of mixture proportions and 

timing of curing on mechanical characteristics are then 

analysed and statistically verified. To forecast the exterior 

chloride content of concrete in the context, the author used 

ensemble ML. ML also has significant potential in 

resolving issues with picture recognition, dam quality 

assurance tracking, production assessment, and other 

issues [16-17]. 

The combination of the intricate characteristics of 

reinforced concrete buildings and the significant 

nonlinearity of embedded metal rusting, it is challenging 

to forecast corrosion parameters in particular processes 

[18]. To calibrate new experimental data when empirical 

coefficients are necessary but challenging to attain, most 

prediction models use empirical formulas. This is a result 

of the complicated interaction that exists among the 

proportions of the concrete mixture and the desired 

qualities [19]. A sophisticated tool can effectively keep 

track of the data complexity and provide precise findings. 

The capacity of machine learning techniques to identify 

connections among both input and output information has 

been the foundation for their use in real modelling and 

complicated civil engineering issues throughout time 

[20,21]. It has been suggested that ML algorithms can 

predict and identify pattern outlines in the properties and 

attributes of materials [22]. Machine learning techniques 

are used in numerous research fields [23-25], particularly 

in the study of the propagation of cracks in concrete [26], 

strength evaluation and security tracking [27], the 

beginning of corrosion over time [28], chloride dispersion 

[29], autogenous reduction in concrete, gradient reliability 

evaluation, and other fields. Studies [30] on corrosion 

examined the capabilities of machine learning in 

endurance and life expectancy evaluation, concentrating 

on the appropriateness and relevance of models in 

comparison to real-world models. The workability of fiber 

concrete increased with increasing quartz percentage of  

M sand, but the maximum strength was achieved with 

15% replacement of quartz and 0.5% hooked-end steel 

fiber after elevated temperature testing[31]. The study 

analyzed natural materials KLC, KPT, and SSB from 

Vietnam and their mullitization at calcinated 

temperatures. Results showed kaolinite, halloysite, and 

sericite as dominant minerals, with chemical 

compositions mainly SiO2 and Al2O3. The mullitization 

process starts at 1000°C and critical at 1400°C, with larger 

mullite crystals[32]. 

3. Proposed Methodology 

The proposed method uses Ensemble Deep Learning 

methods for the prediction of initiation time of corrosion  

in concrete embedded steel. The RC made by embedding 

steel form a mixture of regular Portland cements and 

conch shell powder, a thorough corrosion study was 

performed. Initially, the conch shell powder dataset is 

collected and then the data is transformed for feature 

selection process. Next by using Embedded Deep 

Learning methods such as DNN,CNN and LSTM is used 

for learning the transformed data.  Finally, the prediction 

process is evaluated. Figure 1 shows the proposed 

architecture working. 
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Figure 1 Architecture of the Proposed Method

3.1 Dataset Collection 

The samples were subjected to a 5% NaCl solution for the 

purpose of evaluating concrete durability after the water-

cured concrete for the necessary 28 days, as per ASTM 

C876-15 (Fig. 2). To providing direction on tracking 

reinforcement corrosion, the norm is an empirically based 

corrosion potential measuring process. An extremely 

impedance voltmeter was used to assess open circuit 

corrosive possibilities of the specimens . The voltmeter 

was connected to both the embedded reinforcements and 

standard electrode, with the positive and negative ends 

appropriately linked. From the starting electrode and the 

reinforcing reinforcement, the voltmeter detects the 

variation in electrical potential. Cement reinforcing 

corrosion is well recorded, and the relevance of 

prospective readings too [2]. The ASTM C 876 states that 

the likelihood of active corrosion increases with 

increasing voltmeter reading negativity [1]. The accepted 

approach is based on the link that exists between the 

empirically stated likelihood of reinforcement corrosion 

and the measured reinforcement corrosion potential (E). 

 

Figure 2 specimens used 

3.1.1 Conch Shell Powder 

Conch shells were originally considered environmentally 

safe and have recently been used in engineering. Conch 

shell, which is classified as bio- 

waste on the seashore, is a novel material used as an nano 

bio-carbonate in concrete composites.  

 

3.2 Dataset Preparation 

The interquartile range was used to examine the set of 

data's distribution and variation for misfits or values that 

are extreme. The outliers or high numbers are problematic 

when learning algorithms for DL since they don't 

accurately reflect the behaviour of the fundamental 

systems and are frequently the consequence of 

measurement mistakes. 

3.3 Data Transformation and Feature Selection Using 

Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a well-liked 

feature transformation method that transforms associated 

features into unrelated features. The primary components 

of PCA are always equivalent to or fewer than the overall 

number of characteristics in the information collection. 

PCA reduces the dimensionality of the data and increases 

the variance. The first principal component of the PCA is 

the portion of the variance that is most fully covered by 

the greatest constituent. A covariance matrix is produced 

and used to determine the primary parts. This study 

employed a four-step PCA using the covariance matrix 

eigen-decomposition to identify the main constituent. 

➢ Covariance matrix creation. 

➢ Discover the Eigenvalues. 

➢ Track down the Eigenvector that embodies the 

primary component motion. 

➢ Obtain each data's coordinates in the opposite 

direction of the primary element. 

Consider a data set Dx that comprises n rows and k 

columns, wherein n and k represent the occurrences and 

characteristics present in the data set, respectively. A 

covariance matrix C is produced to translate Dx into the 

modified matrix Dy. Covariances are positioned off-
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diagonal in this matrix, while variances are arranged 

diagonally. The relationship between each feature in 

matrix C must be close to zero because PCA reduces the 

correlation among the converted matrix variables. Off-

diagonal values must be minimized and diagonal elements 

in the C matrix must be maximized. 

            

Additionally, by resolving the equation |𝐶 − 𝜆𝐼| = 0, 

Eigenvalues are calculated. The next step is to calculate 

the Eigenvectors using Eq. (1). The altered dataset is then 

obtained by multiplying the Eigenvector matrix by the 

original matrix Dx. 

[𝐴 − 𝜆𝑗𝐼] × [𝑥] = [0], 𝑓𝑜𝑟 𝑗 = 1,2, … . . , 𝑛                                            

(1) 

 PCA and data transformation techniques convert the 

initial features into a new feature set in this stage. The 

original dataset is transformed using the following two 

steps in a process called the transformation of data. 

The initial characteristics are changed into new features, 

often principal components, in the first phase of PCA. 

Typically, PCA is used to reduce dimensionality. The 

subsequent phase takes the principal component data from 

PCA and transforms it into a new feature set. 

3.4 Training the Dataset Using Ensemble Deep 

Learning Methods 

Detailed corrosion research is shown on the ensemble 

steel in RC constructed from a blend of ordinary Portland 

cement and conch shell powder. The proposed method 

uses Ensemble Deep Learning methods such as DNN, 

CNN, and LSTM for training the dataset. The working 

process of the methods is given below. 

3.4.1 Convolutional Neural Network (CNN) 

Figure 3 illustrates the CNN architecture used in this 

work, which consists of two fully connected layers, three 

max-pooling layers, and eight convolutional layers. The 

input layer of the CNN will have six nodes, each 

corresponding to one of the input variables (Cement, 

coarse aggregate, conch shell powder, water, fine 

aggregate, exposed time). The values of these variables 

will be fed into these nodes. Convolution kernels 

automatically extract the pixel pairs information for the 

convolution layer. The quantity of feature mappings in the 

following layer is equal to the quantity of convolution 

kernels; it must be noticed. The convolution procedure 

results in parts with a d1-k1 + 1 if the input dimension is d1 

and the convolution kernel size is k1. In contrast to the 

input characteristics, the d1-k1 + 1 feature is more creative 

and complicated. To downsample the attributes from the 

convolution layer, utilize the pooling layer.  

In this stage, there is a constant compression of the 

number of features and a significant reduction in the 

number of variables. If the kernel size is k2 and the input 

dimensionality is d2, d2/k2 characteristics are produced 

following the pooling process. This study uses the max-

pooling algorithm to determine the eigenvalue of the 

subsampled feature map as the sum of all values of all 

items in the pooling window. After the CNN output layer, 

two fully connected layers bridge the learned dispersed 

feature model to the sample label space to realize a vivid 

display of categorization. 

The ReLU function, which is carried out after every 

convolutional and fully connected layer with the goal of 

introducing nonlinear elements between layers and 

enhancing CNN's expressive capabilities, must also be 

mentioned. Finally, the softmax function is used to 

normalise the output vector of the final fully connected 

layer to a categorical distribution of probabilities. The 

final layer of the CNN will have one node representing the 

predicted corrosion initiation time as a numerical value. 

 

Figure 3 Structure of Convolutional Neural Network 
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3.4.2 Long-Short-Term Memory (LSTM) 

The term "neuron" refers to each component of deep 

learning. Neurons are interconnected, and learning is 

altering the strength of neurons. This modification makes 

the deep learning network a multi-level neuron network 

since each layer is tailored to the properties of the neuron 

network. The term "function" may be employed to explain 

this process since a variety of distinct functions, such as 

the first one typically represents the framework of 

networks as shown in equ (2) 

𝐷(𝑎) = 𝑑(3)(𝑑(2)𝑑(1)(𝑎))                                                                        

(2) 

An explanation of a specific network layer is provided by 

function d. 

Although the topology of the universal neural network can 

theoretically address the issue of losing data brought on 

by selecting parameters and the distance, it is unable to 

produce the desired results. LSTM can succeed in a 

variety of tasks while overcoming the drawbacks of 

recurrent neural networks. As seen in Figure 4, LSTM 

expands the original recurrent neural network topology by 

including a memory storage structure.  

 

Figure 4 Structure of LSTM 

 

Like the CNN, the input layer of the LSTM will have 

nodes corresponding to each input variable (Cement, 

coarse aggregate, conch shell powder, water, fine 

aggregate). However, the inclusion of the "exposed time" 

variable is a key differentiator for the LSTM. LSTMs are 

particularly adept at handling sequential data. The 

"exposed time" variable can be treated as a sequence, with 

each time point representing a step in the sequence. 

LSTMs can capture dependencies over time, making them 

suitable for predicting how corrosion initiation time might 

change over the exposure period. 

As depicted in Figure 4, the gate's primary purpose is to 

control how the data storage device interacts with the 

upper and lower units. On the one hand, the input unit gate 

can permit signals from outside sources to modify the data 

state of the present cell's memory structure. However, the 

output unit gate may impact the information contained in 

other storage structures. 

3.4.3 Deep Neural Network (DNN) 

The primary advantage of DNN over other neural network 

topologies is its superior nonlinear capacity for 

processing. DNN can tackle mathematics and physical 

issues with bigger data sets and more complicated features 

because of the nonlinear map framework's concise and 

effective design. Additionally, DNN may make use of its 

unique multiple hidden layer architecture for training on a 

vast volume of data, and as a result, the findings used for 

projection will typically be more accurate. A model with 

more layers is more complicated, has greater nonlinear 

properties, and may acquire richer data. The links among 

the network structure's levels are theoretically fully 

interconnected, and the neurons in every level can also be 

connected to one another. DNN is chosen as a result when 

experience is added. The DNN, which consists of several 

hidden layers, an input layer, and an output layer. 

The DNN design primarily includes an input layer, a 

hidden layer, and an output layer. The network is 

distinguished by the presence of numerous implicit layers. 

The n-dimensional column vector X [x1, x2, xn] represents 

the input layer. The conventional constant function serves 

as the activation function in the input layer, which must 

change the input amount before it can be transmitted to the 

first layer. The information in the hidden layer comes 

from the input of the upper layer. After the nonlinear 

processing of the input variables using this layer's 

activation function, the processed  

data's output is transmitted to the lower layer, where it is 

combined with y to produce the final output. 

4. Experimental Results 

The ensemble method is proposed for the prediction of 

initiation time of corrosion for steel embedded in concrete. 

It uses six different properties for creating a corrosion 

evaluation [1,2]. The proposed method uses CNN, DNN, 

and LSTM methods for the evaluation process. The 

scientific outcome of the corrosion experiments described 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2078–2087 |  2083 

was collected to create 80 datasets with six distinct 

properties. Cement, coarse, conch shell powder and water, 

fine aggregate,  and exposed time are the input variables 

for the model's construction. Table 1 displays an overview 

of the statistical analysis of the datasets used for 

developing models.  

Table 1 Statistical Analysis of Dataset 

 

Inputs  

               Statistical 

Data 

Min 

Value 

Max 

Value 

Cement (kg/cm3) CE 270.5 410.0 

Conch Shell Powder 

(kg/cm3) 

50.0 200.0 

Coarse Aggregate 

(kg/cm3) 

780.4 890.6 

Fine Aggregate (kg/cm3) 780.4 890.6 

Water (kg/cm3) 110.2 164.8 

Corrosion Potential (mV) -568 -78 

 

The above statistical data were used for the evaluation. 

The proposed ensemble methods are CNN, DNN, and 

LSTM; among the three methods the DNN method gives 

efficient performance in terms of RMSE, MAE, Split 

percentage of Training and Testing dataset and Accuracy. 

In Table 2 , the experimental evaluation results are given. 

Let's illustrate how the technology developed in this 

research can be applied to monitor the corrosion of steel 

in a real-world infrastructure project, such as a bridge 

construction. This example will highlight the step-by-step 

process and demonstrate the practical implications of the 

research: 

 

1. Data Collection and Initial Assessment: 

• During the initial phase of bridge construction, a 

comprehensive dataset is collected, including the 

properties of the concrete mix (cement, coarse 

aggregate, conch shell powder, water, fine aggregate), 

exposure time, and the initial corrosion potential of the 

embedded steel. 

2. Integration of Deep Learning Models: 

• The deep learning models developed in the research 

(CNN, DNN, and LSTM) are integrated into the 

project's monitoring system. These models have been 

trained on similar datasets from the research and are 

capable of predicting corrosion initiation time based on 

the input variables. 

3. Real-Time Monitoring: 

• As the bridge is exposed to environmental conditions 

over time, the embedded steel's corrosion potential is 

continuously measured and fed into the deep learning 

models. 

• The models use the live corrosion potential data, 

combined with the other input variables (such as 

exposure time), to predict the likelihood of corrosion 

initiation for each section of the bridge. 

4. Early Detection and Alerts: 

• The deep learning models, especially the DNN with its 

high accuracy, are designed to provide early warnings 

when the predicted corrosion initiation time for any part 

of the bridge approaches a critical threshold. 

• When a potential corrosion risk is detected, the 

monitoring system sends alerts to the maintenance team, 

indicating the specific location and the estimated 

timeframe for corrosion initiation 

Table 2 Experimental Result of Corrosion Dataset 

Methods Used Accuracy RMSE MAE 

CNN 92.7% 45.7092 12.678 

DNN 95.87% 50.2103 21.093 

LSTM 88% 46.3490 19.908 

  

Figure 5 shows the accuracy of the Training and Testing 

Dataset. The proposed ensemble deep learning methods 

also give better results. Among the three methods, the 

DNN provides efficient development. The DNN achieves 

95.87% of Accuracy, and CNN achieves 92.7% of 

accuracy, and LSTM achieves 88% of accuracy. 
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Figure 5 Accuracy Level of Corrosion Potential of Steel 

Figure 6 and 7 shows the evaluation results of RMSE and 

MAE of the Corrosion Dataset. In the proposed ensemble 

method, DNN achieves a better result.  

The specific results of the study regarding the accuracy of 

the different deep learning models used (CNN, DNN, and 

LSTM) are provided in Table 2.These accuracy 

percentages reflect how well each deep learning model 

predicted the initiation time of corrosion for steel 

embedded in concrete based on the dataset and input 

variables provided in the study. The DNN model 

performed the best in terms of accuracy among the three 

models, with CNN also showing a good level of accuracy. 

LSTM, while still performing reasonably well, had 

slightly lower accuracy compared to CNN and DNN. 

With the assistance of the factors, it was possible to see 

how the various split percentages affected the trained 

model's and forecasts' results. Although (RMSE and 

MAE) increase, the CC decreases as the proportional 

divide for the training dataset decreases. In a similar vein, 

the testing dataset displayed opposing behaviour; the CC 

grew but the MAE and RMSE declined with a reduction 

in the proportion of the testing collected dataset. A DNN 

ensemble method, one of the more advanced methods with 

appealing properties including variable importance 

measure (VIM), fewer parameters, and overfitting has 

strong resistance, was chosen as the best approach for this 

study. 

 

Figure 6 RMSE of Corrosion Potential of Steel 

 

Figure 7 MAE of Corrosion potential of Steel 

Figs. 8 and 9 show a predicted correlation in experiments 

with cross-plot for the training and testing of the data. A 

quick glance at the cross-plot showed no differences 

between the embedded steel's actual and predicted 

corrosion potential. With a coefficient of correlation (CC) 
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of 99.08% and 98.87% for the training and tested data sets, 

it was clear that there was agreement. After training, the 

suggested model demonstrated excellent performance in 

determining the corrosion potential of embedded steel 

using the test datasets.                           

 

Figure 8 Training of Cross-Corrosion Potential of 

Steel 

 

Figure 9 Testing of Cross-Corrosion Potential of Steel 

The article describes an ensemble method for predicting 

corrosion initiation time in embedded steel in concrete, 

which utilizes six different properties for creating a 

corrosion evaluation. The technique employs CNN, DNN, 

and LSTM methods of assessment and uses data collected 

from scientific corrosion experiments to create 80 datasets 

with six distinct input variables. From the above result 

analysis, it is proved that deep learning has a high 

accuracy rate in the prediction of corrosion when 

compared to some ML techniques. Also, this research 

helps to test future aspects in construction field with 

advanced technologies. Deep learning algorithms can 

automatically learn relevant features from raw input data 

without the need for manual feature extraction. This is 

especially useful in complex prediction tasks, such as 

initiation time of corrosion, where there may be multiple 

input variables with complex interactions and 

correlations. 

4.1 Result and  discussion 

 Early detection of corrosion and accurate prediction of its 

initiation time in steel embedded within concrete 

structures can bring about transformative improvements 

to the construction and infrastructure industry. This 

research presents a powerful solution that offers several 

key benefits: 

1. Accurate prediction of corrosion initiation time allows 

engineers and maintenance teams to identify 

vulnerable areas within concrete structures well before 

significant deterioration occurs. By addressing 

corrosion issues at an early stage, the durability and 

lifespan of buildings and infrastructure are 

substantially increased. This translates into safer 

structures that can withstand the test of time, reducing 

the risk of sudden failures. 

2. The ability to pinpoint the onset of corrosion means 

that maintenance efforts can be targeted precisely 

where needed. This precision reduces the need for 

widespread and costly interventions. Instead, 

resources can be focused on areas with actual 

corrosion risks, leading to significant cost savings over 

the lifecycle of a structure. 

3. The accurate prediction of corrosion initiation enables 

optimized design and construction of concrete 

structures. By knowing exactly when and where 

corrosion is likely to occur, engineers can tailor 

reinforcement strategies and material usage more 

efficiently. This not only leads to cost savings but also 

has positive environmental implications by reducing 

excess resource consumption. 

4. By extending the lifespan of concrete structures and 

reducing the need for frequent repairs, this research 

contributes to more sustainable construction practices. 

Minimizing the impact on the environment through 

efficient use of materials and reduced construction 

waste is an essential aspect of modern construction. 

5. The integration of deep learning models into 

monitoring systems allows for real-time tracking of 

corrosion potential. This capability provides 

invaluable data for making informed decisions about 

maintenance, repair, and even design adjustments. It 

empowers stakeholders to take proactive steps, 

preventing costly emergency repairs and maintaining 

infrastructure functionality. 

6. The findings of this research have the potential to 

influence industry standards and guidelines for the use 

of embedded steel in concrete structures. As accurate 

prediction methods are adopted, these improved 

standards ensure that construction practices align with 

the latest advancements, leading to safer and more 

reliable infrastructure for communities. 
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The ability to detect corrosion early and predict its 

initiation time with high accuracy has far-reaching 

implications for the construction and infrastructure 

industry. It improves safety, reduces costs, enhances 

sustainability, and empowers decision-makers with 

crucial information. This research lays the foundation for 

a more resilient and efficient built environment, shaping 

the future of construction practices. 

5. Conclusion 

This study aims to examine the accuracy of the different 

methods that can be recommended for integrated steel 

manufacturing by implementing deep-learning models. 

Deep neural network (DNN), Convolutional neural 

network (CNN), and long short-term memory (LSTM) 

models can all provide accurate predictions according to 

state-of-the-art approaches. In this study, embedded deep 

learning models from above are used to evaluate the 

efficacy of the various algorithms.  Using corrosion 

potential measurement, the study sought to ascertain the 

steel initiation time of corrosion within self-compacted 

concrete. To do this, concrete examples were created 

using conch shell powdered as a partial replacement to 

Portland cement and subjected with eight months to 

sodium chloride with 5% by ASTM C876 - 15. The 

potential of corrosion in the embedded steel was evaluated 

during the exposure period, and the generated datasets 

were used to train three deep-learning algorithms. These 

models were created to calculate the corrosion start time 

of the embedded steel based on the corrosion potential 

data. The input variables used in these models included 

cement, conch shell powder, coarse aggregate, fine 

aggregate, water, and exposure time. The proposed 

Ensemble Deep Learning method, the DNN achieves 

better performance than the other two techniques. 
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