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Abstract: A person's signature, which is usually affixed to documents as proof of approval or authority, is a unique handwritten 

representation of their identity. Signatures serve as a useful means of personal identification and are essential for the validation of 

transactions, contracts, and official documents. Strong signature verification techniques are necessary to counter the growing threat of 

forged signatures as the use of signatures in diverse areas increases. Forged signatures and fraudulently created copies significantly affect 

the security and authenticity of documents. This paper suggests a novel deep learning technique for offline signature verification for ease 

this concern. This novel method seeks to improve the model's capacity to extract specific details as well as high-level semantic information 

from signature images. A variety of real and fake signatures are included in the dataset, and thorough preprocessing and augmentation 

methods are used to guarantee successful model training. With 97.39% accuracy, 96.79% precision, 97% recall, and 97.20% F1-Score, the 

suggested model performs remarkably well. These findings demonstrate the efficiency of the deep learning-based technique in precisely 

confirming signatures and identifying suspected forged.  
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1. Introduction 

The signature of a person is a handwritten transcription of 

their entire name or nickname, used as a symbol of identity. 

A document is typically written as evidence of identity and 

purpose. It bears the signature of an authorized individual 

claiming something as evidence. The most widely 

recognized personal characteristic in both social and legal 

contexts is Offline Signature Verification. Handwritten 

signatures have been widely accepted as a practical method 

of text verification and fraud protection for many years. A 

handwritten signature is required for an increasing number 

of transactions, particularly financial, official, and 

commercial ones. Because automatic verification takes 

longer to complete, it is challenging to verify every 

document. Consequently, there has been an exponential 

growth in the usage of biometrics such as fingerprints, iris 

scans, signatures, hand shapes, and Deoxyribonucleic Acid 

(DNA) for the security of financial and commercial 

documents over time [1]. To verify the authenticity of 

handwritten signatures, verification of signature is an 

essential component of identity authentication and 

document security. The two primary types of signature 

verification techniques are: online and offline. Using 

scanned or digitalized images, static properties, such as the 

size, shape, and spatial arrangement of signature 

components, are analyzed in offline signature verification. 

When digital versions of physical documents are accessible, 

this technique is frequently used. On the other hand, online 

signature verification uses specialized equipment, such as 

tablets with styluses, to record dynamic characteristics of 

the signing process, such as stroke order, speed, and 

pressure. Both kinds of signature verification are essential. 

Both kinds of signature verification are essential for 

preventing fraud, ensuring the accuracy of legal documents, 

and promoting safe transactions across a range of industries. 

The decision between offline and online verification 

frequently comes down to the particular needs of the 

application and the state of the technology at hand [2]. Some 

samples of signatures are given in Figure 1. 

 

Fig.1. Samples of signature 

Two genuine signatures from the same signer can never 
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have the same geometric shape. Consequently, these 

modifications must be taken into account during the 

certification process. It is impossible to characterize the 

signatures in a unique way because of these modifications. 

This gives others the chance to replicate any signature. 

Forged signatures refer to signatures that have been copied 

through fraud [3]. Verification of signatures are made to 

identify and prevent different kinds of forgeries, 

guaranteeing the authenticity of signatures on documents. 

One popular kind is random forging, in which the forger 

tries to imitate a signature without being aware of the 

signature style of the real signer. A more careful replication 

is used in simulated forgeries, when the forger replicates the 

signer's stroke patterns by studying accessible samples. In 

contrast, traced forgery uses overlays or transparent sheets 

to closely resemble an authentic signature. In addition, lifted 

signatures, freehand attempts, and the use of forging 

instruments like stamps or tracing devices can all be used to 

create fake signatures in addition to physical manipulation 

of authentic signatures, disguised signatures, and multi-

signer forgeries provide additional issues for verification 

systems. Cut-and-paste forgery modifies documents in this 

way. The detection and distinction of these forgeries is 

greatly aided by advanced technologies, such as deep 

learning and machine learning algorithms, which guarantee 

the durability of signature verification systems in preserving 

document security and validity [4]. Figure 2 shows some 

signature samples of genuine and forged. 

 

Fig.2. Genuine and forged signature samples 

Traditional signature verification methods often faced 

challenges in handling the intricate variations and 

complexities inherent in signatures. Deep learning 

techniques have proven highly success rate in addressing 

these challenges. Deep learning models can automatically 

identify and extract features that are discriminative from 

scanned or digitalized signature images in the context of 

signature verification. These models are skilled at 

differentiating between genuine and forged signatures 

because of the hierarchical representations they record, 

which allow them to read out small variations in stroke 

patterns, spatial arrangements, and other distinguishing 

features. So, a Deep Learning method for offline 

verification of signature is suggested in the proposed work. 

The significant contribution of the suggested work includes: 

• A novel model for the verification of signature 

based on deep learning.  

• A novel model that effectively classifies different 

signature forgeries.  

• Comparing the suggested model performance with 

existing methods. 

The remaining portion of the paper are arranged as follows: 

In Section 2, a summary of literature is provided, 

highlighting areas that indicate a need for more 

investigation. In section three, the methodology is explained 

in depth. The fourth section goes into great detail about the 

results that the suggested strategy produced. Finally, a 

summary of the findings is included in Section five, which 

gives a conclusion to the paper. 

2. Related Works 

In order to determine the correlation between the pixels of 

various signatures, Narwade et al. [5] created an offline 

method for verifying signatures according to shape 

correspondence. An adaptive weighted combination of 

Euclidean distance and shape context distance was 

employed in this method. The SVM classifier was then used 

to determine whether the signature was authentic by using 

the computed distances as an input. Here obtained an 

accuracy of 89.58% by testing the suggested strategy on the 

GPDS synthetic signature data base.  

The offline signatures were analyzed to extract global and 

local properties, and Sharif et al. [6] provided a structure for 

offline signature verification. Following a reduction of the 

extracted features using evolutionary algorithm feature 

selection approach, the remaining were given to an SVM 

classifier for validation. Three datasets—CEDAR, MCYT, 

and GPSS synthetic were used in the studies. The obtained 

rates of FRR, FAR and AER on the CEDAR dataset 

surpasses the current methods in machine learning for 

signature verification. 

Masoudnia et al. [7] examined three loss functions for 

CNNs: hinge loss, Cauchy–Schwarz divergence, and cross-

entropy providing offline signature verification with the use 

of multi representational learning. After that, these losses 

were incorporated to dynamic multi-loss functions based on 

the complementing properties. The collection of SVMs was 

trained using the multi-representation set in the proposed 

ensemble through several trials, each of which learnt a 

different representation for every input depending on the 

identification of signature. Based on the methods for 

signature verification, the mode of experiments was 

assessed on three datasets: the GPDS-Synthetic, UT-SIG, 
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and MCYT. The performance analysis of suggested 

algorithm was assessed based on accuracy metrics such as 

FAR, FRR, and AER. 

By using images of the handwritings, Shariatmadari et al. 

[8] suggested a method on hierarchical one-class CNN to 

learn only real signatures that have distinct feature levels. 

This study approached signature verification as a problem 

because forgeries were not available for every user enrolled 

in an actual application situation. More accurate outcomes 

can also be obtained by constructing a network architecture 

hierarchy according to the coarse-to-fine concept in order to 

create a distinct structure in the image. While higher-level 

features can distinguish pen stroke quality to forecast 

forgeries from real signatures, lower-level characteristics 

enable the network to provide higher-quality visuals at the 

boundary region, highlighting similarities between genuine 

signatures. Two Latin databases and two Persian databases 

were used to test the system that was provided. In contrast 

to the current approaches the analyses generated by this 

method for the four signature databases were typically better 

and more accurate. 

A deep CNN technique that uses a single known signature 

specimen for signature verification and forgery detection 

was introduced by Kao and Wen [9]. For extracting the 

desired features from the signature specimen, a method for 

extracting local features has been implemented. An 

evaluation of this approach using the ICDAR2011 Sig 

Comp dataset indicated 92.37% stated accuracy levels. The 

findings showed that increasing the size of the forged 

specimens can effectively improve network performance 

even when working with a single known sample.  

A writer-independent handwritten signature verification 

model, Inverse Discriminative Networks (IDN) was 

suggested by Wei et al. [10]. Each of the four network 

streams in the suggested model has two pairs of signature 

samples. Two set of signature samples are provided: a 

reference pair and a test pair of convolutional feature 

extraction from signatures. The inverted grey reference 

sample of signature and the test signature sample are 

included in the first pair, which focuses on signature strokes. 

Poddar et al. [11] introduced a deep learning technique for 

identifying authentic signatures and detecting forgeries. 

Following the detection of the signatures with the CNN and 

Crest-Trough methods, the SURF and Harris algorithms are 

utilized to detect signature forgeries. The range of accuracy 

reports for forgery detection and signature identification is 

85–89% and 90–94%, respectively. 

Convolutional Auto encoder (CAE) was utilized by 

Vorugunti et al. [12] to obtain features from online 

signatures, which were subsequently coupled with manually 

created feature. The input of the Depth-wise Separable CNN 

was this hybrid set of features. Compared to conventional 

CNNs, DWSCNN used fewer training samples and 

parameters, which results in a lighter Online Signature 

Verification (OSV) framework. The obtained findings 

showed that the suggested framework performs better than 

the most advanced OSV techniques. For the first time, a 

mixed combination of features and few shots learning was 

taken into consideration in the suggested model. Gumusbas 

and Yildirim [13] assessed the effectiveness of a capsule 

network in the identification and confirmation of offline 

signatures. The proposed method used CEDAR database 

and achieved accuracy rates that were higher than those 

obtained using CNN, with results for 64×64 and 32×32 

input resolutions reaching 91.8% and 92.6%, respectively. 

Maergner et al. [14] offered a method to integrate a 

structural approach employing a statistical method that 

utilizes deep triplet networks based on graph edit distance 

for achieving significantly better signature verification. The 

definition of the Multiple Classifier System (MCS) was the 

combination of neural network-based and graph-based 

dissimilarity. On four different datasets, the suggested MCS 

system performs better than the separate GED and CNN 

systems, illustrating the complimentary qualities of 

structural and statistical models. The MCS method provides 

competitive results overcoming challenges like dataset-

specific thresholds, suggesting its potential for signature 

verification across various datasets. 

Jiaxin Lu et al. [15] included studies on the identification of 

authentic signatures by combining dynamic and static data 

through the utilization of deep learning and machine 

learning. To find more intelligible features for accurate 

signature identification, the aim of this work was to combine 

the dynamic elements of digital writing with the constant 

elements of conventional pen and paper writing. This 

research enhanced the classification accuracy of signature 

identification by concentrating on feature extraction and 

integrating the benefits of both static and dynamic features. 

The classification accuracy had increased than the previous 

studies on machine learning but number of words contained 

in each signature is very small which make the identification 

difficult.  

P. Kiran et al. [16] suggested using a back propagation 

neural network architecture and image processing 

techniques to recognize offline signatures. Pre-processing 

signatures can involve image processing techniques such as 

filtering, RGB2Gray conversion, thresholding, altering, and 

canny edge detection followed by image scaling to reduce 

processing time. To obtain processed picture features, a 

back propagation neural network system having a fixed 

number of neurons and hidden layers was employed. Similar 

preparation procedures were used for feature extraction 

from data set images. Better recognition rates were attained 

depending upon the number of hidden layers and neurons. 
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Wee How Khoh et al. [17] aimed to determine whether 

transfer learning might be employed to categorize a 

signature based on hand gestures. Each depth image was 

analyzed by the algorithm to identify and segment the hand 

region. Next, from a variety of images, the significant 

spatial and temporal aspects were created. To classify the 

recently observed image features, the previously trained 

model data was transferred into the model again. 

Furthermore, examined the adaptability the proposed 

technique towards common types of forgeries like skilled 

and random. Additionally, the suggested strategy 

demonstrated its adaptability to various forgery assaults by 

obtaining low error rates. 

An automatic technique based on optimal features selection 

and multi-level features fusion was suggested by Faiza Eba 

Batool et al. [18] for OSV. Eight geometric characteristics 

and 22 Gray Level Co-occurrences Matrix were computed 

for this purpose using pre-processing signature samples. An 

alternative approach based on high-priority index feature 

(HPIF) fuses these features. Skewness-kurtosis controlled 

PCA (SKcPCA), a skewness-kurtosis based features 

selection method, was also suggested. It selects the finest 

characteristics to be used in the final categorization of 

genuine and forged signatures. The suggested system was 

validated using MCYT, GPDS simulated, and CEDAR 

datasets, providing improvements in FAR and FRR when 

compared to current techniques.  

The review focuses on significant developments in signature 

verification approaches, ranging from image processing to 

deep learning. But there is a clear research gap regarding the 

limited investigation of real-world settings, as most studies 

concentrate on artificial datasets and controlled 

environments. The lack of inherent variability in writing 

styles, such as differences in rhythm, intensity, and personal 

preferences, makes it difficult for existing signature 

verification techniques to be applied. Another significant 

deficiency is the lack of focus on the interpretability and 

explainability of complicated models especially with neural 

network and kernel-based systems. It takes a lot of work to 

choose the right kernel, increase training complexity, and 

extend to multi-class settings. The overall accuracy of 

classification is reduced when majority class labels are 

incorrectly labelled due to imbalanced datasets. Retraining 

neural networks to account for variations in the quantity of 

signature classes is a time-consuming and computationally 

costly process. These approaches perform inadequately with 

small sample sizes because they don't have a precise strategy 

for taking data uncertainties into account and force the 

creation of new data. Memory needs are a problem that 

affect system performance, particularly for big training 

datasets. Moreover, partial occlusion, clutter susceptibility, 

and the creation of large feature vectors increase storage 

costs and localization errors, which reduces the overall 

efficacy of signature verification. 

3. Materials and Methods 

In offline signature verification, the authenticity and 

explainability is crucial. Most existing offline signature 

verification technique approaches image processing to deep 

learning techniques. So, in this paper for improving the 

information flow and learning in deep networks, a dual path 

network architecture is developed. Figure 3 shows the 

schematic block diagram illustrating the proposed 

methodology. 

 

Fig.3. Schematic Block diagram representation of Proposed Methodology
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3.1 Handwritten Signature Dataset 

The dataset of handwritten signature has been collected 

from the Kaggle Repository, 

https://www.kaggle.com/datasets/sinjinir1999/sigcomp-

signature-verification. The dataset consists with both 

genuine and forged signature images which have to be 

verified. Some sample images in the dataset are showed in 

Figure 4. 

 

Fig.4. Sample Images in the Dataset 

3.2 Data Pre-processing and Augmentation 

The most important phase in the workflow for data analysis 

is data pre-processing. In order to prepare raw data for 

analysis or model training, it must be cleaned and 

transformed. The effectiveness and consistency of the 

outcomes from data-driven tasks can be greatly impacted by 

proper data pre-processing. It often involves filtering, 

normalisation etc. Filtering is the process of adding or 

eliminating specific characteristics or patterns from data. 

Normalization in pre-processing refers to the transformation 

or scaling of data to bring within a specific range. The 

normal range in which data is to be normalised is typically 

between 0 and 1. Data augmentation is a method that uses 

pre-existing data to create modified copies of a dataset, 

thereby artificially expanding the training set. It includes 

either creating new data sets through deep learning or 

making slight modifications to the dataset. The data 

augmentation techniques using here are rotation, flipping, 

shearing, zooming, and filling [19]. 

3.3 Proposed Model Architecture 

3.3.1 Convolutional Neural Network 

CNN is a feed-forward deep neural network (DNN) that 

used for visual imagery analysis. It functions similarly to 

how people perceive things. CNNs that use different multi-

layer perceptron algorithms reduce the amount of pre-

processing that is necessary for the incoming data. CNNs 

are made up of neurons that have biases and weights that 

can be learned. After receiving inputs and performing a dot 

product, each neuron has the option to add non-linearity. A 

single differentiable score function is created between the 

class scores on one end and the raw image pixels on the 

other throughout the network. CNNs furthermore feature a 

loss function on the final (fully-connected) layer, such as 

Softmax. The CNN layer differs significantly from other 

neural networks in that each unit is a two-dimensional filter, 

or high-dimensional filter, convolved with the layer's input 

rather than via general matrix multiplication [20]. Millions 

of neurons are arranged in multiple hierarchical levels 

within a typical CNN. The basic convolutional network 

architecture is given in Figure 5. 

 

Fig.5. Basic architecture of CNN 

CNN designs with three fundamental layers: convolutional, 

fully-connected (FC) and pooling. The convolutional layers 

are responsible for feature extraction through convolution 

operations, pooling layers for down sampling and feature 

selection, activation functions to introduce non-linearities 

and enhance model expressiveness, and fully connected 

layers for making final predictions based on the extracted 

features. In certain cases, pooling layers are partially 

https://www.kaggle.com/datasets/sinjinir1999/sigcomp-signature-verification
https://www.kaggle.com/datasets/sinjinir1999/sigcomp-signature-verification
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connected and for decreasing the size of the input images. 

CNN's fully connected layer, or output, primarily functions 

as a classifier. The learnability of the networks is determined 

by the hidden layers found in the FC and convolution layers. 

The number of layers in a CNN correlates with its depth, 

and the deeper the layer, the higher the degree of 

characteristics it retrieves. Since hidden layer neuron 

connect to neurons in the layer below, it is easier to resize 

images of higher quality. Visual stimuli boost the input layer 

neurons in CNN processing. The convolution layer's 

primary function is feature extraction from images, which 

are then used to drive computations into hidden layers and 

retrieve the findings through the output layer. Activation 

functions frequently help transport important and vital 

information between hidden layers so that the subsequent 

layers can use it. The basic convolution operation is given 

by Equation 1. 

𝑦[𝑚, 𝑛] = ∑ ∑ 𝑥[𝑚 + 1, 𝑛 + 𝑗]𝑘−1
𝑗=0

𝑘−1
𝑖=0 . 𝑤[𝑖, 𝑗]                     

(1) 

where w [m, n] represents the filter values, x [m, n] 

represents the input data word, and y [m, n] represents one 

data word in the output. A pixel and its surrounding pixels 

are multiplied by a tiny filter matrix known as a kernel in 

image convolution, and the resultant output central pixel is 

then added up. A CNN's convolutional layers process the 

input image using a convolution operation before sending 

the outcome to the following layer. From the input image, 

this layer pulls different features for additional analysis. A 

convolution layer uses a number of distinct kernels to follow 

various tasks like sharpening, edge detection, and blurring 

[21]. There exist some hyper parameters involving like 

kernel size, stride, zero padding etc. The Figure 6 illustrates 

the pooling procedure. 

 

Fig.6. Pooling or subsampling 

The CNN's pooling or down sampling layer is responsible 

of progressively decreasing the dimension of the feature 

maps generated by the convolution layer. The convolution 

layer's depth is unaffected by the pooling layer. By 

eliminating unnecessary geographic information, the 

pooling layer reduces computational expenses and helps 

avoid over fitting. Local or global pooling layers in 

convolutional networks combine the output of neurons from 

the preceding layer into a single neuron for the subsequent 

layer. The two most popular methods for pooling layers are 

max pooling and average pooling [22].   

Feature map of the input is denoted as I, the size of the 

pooling window, also called pool size as 𝑘 × 𝑘, and the 

resulting pooled feature map as P. The Equation 2 gives max 

pooling operation. 

 𝑃(𝑖, 𝑗) = 𝑚𝑎𝑥𝑚=0
𝑘−1 𝑚𝑎𝑥𝑛=0

𝑘−1𝐼(𝑖. 𝑠 + 𝑚, 𝑗. 𝑠 + 𝑛)              (2) 

where: 

P (i, j) is the value of pooled feature map at position (i, j) 

𝐼(𝑖. 𝑠 + 𝑚, 𝑗. 𝑠 + 𝑛) is the value of input feature map at 

position (𝑖. 𝑠 + 𝑚, 𝑗. 𝑠 + 𝑛) 

𝑘 × 𝑘 is the dimension of the pooling window 

S is the stride (the step size of the pooling operation) 

At each position (i, j) of the pooled feature map, the 

maximum value within the corresponding 𝑘 × 𝑘 region of 

the input feature map is selected. By calculating the 

maximum value inside each pooling window, max pooling 

efficiently down samples the feature map while keeping the 

most notable features. Max pooling is more frequently 

utilized in practice for CNNs than average pooling, which 

evaluates the average value inside each pooling window. In 

order to add non-linearity to neural networks and enable 

them to detect non-linear properties in the input data, 

activation functions are performed on the input. 

3.3.2 Proposed Dual Path network 

The images which are pre-processed and augmented are fed 

to the proposed Dual Path Network model. A convolutional 

neural network that exhibits an internal connection route 

topology is called a Dual Path Network (DPN). The goal of 

this architecture is to improve gradient flow during training 

and prevent the vanishing gradient issue. The network can 

simultaneously capture high-level and low-level 

characteristics due to the dual path design, which improves 

its capacity to learn hierarchical representations. DPNs have 

shown enhanced performance across a range of computer 

vision applications, proving their efficiency in managing the 

difficulties associated with deep learning architectures. The 

Dual Path Network architecture that has been suggested is 

aimed at obtaining high-level semantic information and 

fine-grained details from the incoming data. The network 
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consists of two separate branches, each of which goes 

through a series of pooling and convolutional layers to 

process the input data. In order to extract features at diverse 

scales, these branches have distinct convolutional kernel 

sizes (3x3 and 7x7 for branch1 and branch2, respectively). 

The purpose of DPNs is to improve learning and 

information flow in deep networks through the use of neural 

network architecture [23]. This image model block in 

convolutional neural networks shares common traits and 

facilitates the investigation of new features using dual path 

architectures [24]. DPN is intended to improve learning and 

information flow in deep networks. Using a "main path" for 

conventional feature learning and a "dual path" for 

additional information flow via a more complex pathway, 

DPNs introduce a dual path structure. The proposed model 

architecture is given in Figure 7. 

 

Fig.7. Proposed Model Architecture 

The network can effectively identify local and global 

patterns in the input images by using different kernel sizes. 

Each branch's outputs are flattened and connected using the 

concatenate layer after feature extraction, resulting in a 

fused representation that incorporates the many features that 

each branch has learned. This combination of data is 

essential to improving the model's comprehension of 

complicated trends and variances in the input data. 

Following a shared fully connected layer having 256 

neurons and a ReLu activation function, the concatenated 

features are then fed via an output layer with activation 

function of Softmax for classification. The Dual Path 

Network architecture that has been suggested seeks to 

enhance the model's representation learning skills for 

signature forgery classification using advantage of multi-

scale feature extraction. The algorithm of proposed method 

is given below.

 

Algorithm.1. Pseudo code of the proposed methodology 

Input: Handwritten Signature Images 

Output: Forged Signature Classification 

Begin  

• Dataset collection 

• Preprocessing and data augmentation: Cleaning, organizing, and converting raw data into a format suitable for 

analysis. 
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❖ Applying filtering, normalization  

❖ Rotation, flipping, shearing, zooming and filling can be used for data augmentation 

• Data Splitting: Splitting of data to training and testing set 

• Dual Path Network:  

❖ Main path for traditional feature learning and dual path for additional information flow 

❖ Initialize with different convolutional kernel size: 3x3 and 7x7 for branch1 and branch2, respectively 

❖ Convolutional and pooling layer for processing input data 

❖ After convolution, applying activation function (e.g. ReLu)  

❖ Extracting features from different convolutional layers  

❖ Concatenate or sum features for fusion 

• Dense Layer with Softmax Classifier: 

❖ Flattened the fused features for input to the softmax classifier 

❖ Apply softmax function for the  classification 

❖ Select the class with the greatest probability to be given the predicted label. 

End  

3.4 Hardware and Software Setup 

The model was developed and trained on Google 

Collaboratory, where the entire process was completed 

using Python and Tensorflow. The Adam optimizer, binary 

cross entropy loss function, and accuracy as the evaluation 

metric are used to create the model. For training, a batch size 

of 128 samples per iteration is used, and the procedure is 

carried out over ten epochs. The table representing the hyper 

parameters and its values are given in Table 1. 

Table.1. Hyper parameter Specifications 

Hyper parameter Values 

Optimizer Adam 

No. of epochs 10 

Loss Function Binary Cross entropy 

Batch Size 128 

4. Result and Discussion 

4.1 Performance Evaluation 

Accuracy, recall, precision, and F1-Score were used for the 

evaluation of the suggested Dual path network. The 

accuracy of the model is determined by taking the ratio of 

accurate predictions to the total number of predictions. 

Accuracy can be mathematically expressed as in Equation 

3. 

Accuracy =
TP+TN

TP+TN+FP+FN
                            (3) 

The precision is measured as the ratio of all samples 

correctly classified (or incorrectly labeled as positive) to all 

samples correctly classed as positive. The accuracy 

measures how precisely the model classifies a sample as 

positive. It can be expressed as in Equation 4. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                       (4) 

The ratio of correctly categorized positive samples to the 

total number of positive samples is used to compute the 

recall. Recall evaluates how the model can identify positive 

samples effectively. The value of recall will be high if more 

positive samples are detected. The mathematical expression 

is given in Equation 5. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                             (5) 

The harmonic mean of recall and precision determines an 

F1 score. The F1 score combines precision and recall into a 

single metric for evaluation purposes in binary and multi-

class classification to improve comprehension of model 

performance. F1 score is mathematically expressed as in 

Equation 6.         

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                (6)                     

Table 2 presents the performance analysis result of the 

proposed approach for offline signature verification in terms 

of recall, f1 score, accuracy, and precision. 

Table.2. Classification Report of Proposed Method 

Performance Parameters Result Obtained (%) 

Accuracy 97.39 

Precision 96.79 

Recall 97.00 

F1- Score 97.20 

 

From Table 2 it is clear that with an accuracy of 97.39%, the 

model's performance indicators show great overall 

efficiency. With a precision score of 96.79%, the model 

effectively minimizes false positives by correctly 
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identifying positive cases within its predictions. With a 97% 

recall rate, the model minimizes false negatives by capturing 

a large percentage of true positive cases. A well-balanced 

trade-off between recall and precision is shown by the F1-

score, which takes both factors into account and comes out 

at 97.20%. All of these findings point to the model's stability 

and dependability, as well as its high degree of accuracy and 

careful handling of both false positives and negatives while 

accurately recognizing positive cases. 

A model's performance throughout training iterations or 

epochs is visually represented by an accuracy plot, which 

indicates how correctly the model predicts outcomes. A loss 

plot displays the model's error or loss function as it 

decreases across training iterations, showing how the 

model's parameters are optimized for improved 

performance and convergence. Here accuracy plot and loss 

plot are illustrated in Figure 8 and Figure 9. 

 

Fig.8. Accuracy Plot of proposed method 

 

Fig.9. Loss Plot of proposed method 

A confusion matrix shows accuracy of classification model. 

The total number of false positives, true positives, false 

negatives and true negatives is shown. The confusion matrix 

of the proposed model is given in Figure 10. 

 

Fig.10. Confusion Matrix 

4.2 Performance Comparison 

The performance analysis of the suggested dual path 

network is compared with the current approaches mostly 

based on deep learning and machine learning. The 

performance is assessed by comparing the values of 

accuracy, recall, precision, and F1 score values obtained 

from existing methods as illustrated in Table 3. 

Table.3. Comparison of proposed model with existing methods 

Authors and 

year 

Methodology Accuracy 

(%) 

Precision (%) Recall (%) F1 score (%) 

Narwade et al. 

(2018) 

Support vector 

machine 

89.58 - - - 

Upadhyay et al. 

(2020) 

Support vector 

machine 

88 80 90 89 

Chandra 

(2020). 

Machine learning 92 90 - 88 

Kao et al. Deep learning 89.5 - - - 
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(2020) 

Khoh et al. 

(2021) 

Transfer learning 87.43 - - - 

Sharif et al. 

(2020) 

Feature selection 

algorithm 

88.8 - - - 

Sharma et al. 

(2022) 

Siamese CNN 80 76 83 79 

Proposed method 97.39 96.79 97 97.20 

5. Conclusion 

Signature verification methods are useful for confirming a 

document's authenticity. The systems are also employed for 

the purpose of authenticating signatures on financial 

documents such as money orders, cheques, and other ones. 

In particular, signature verification techniques are essential 

for verifying author identity and document validity in 

security and financial contexts. A significant advance in this 

area is the suggested deep learning-based offline signature 

verification technique that uses a dual path network 

architecture and an extensive dataset. With balanced 

precision, recall rates, F1 score and great accuracy, the 

model distinguishes between real and fake signatures with 

ease. Moreover, its ability to extract features on many scales 

and visualize training progress shows potential for 

improving document security and authenticity. The present 

study highlights the capacity of deep learning algorithms to 

deal with the complexity involved in signature verification 

procedures, hence providing opportunities for additional 

investigation and real-world implementations in this field. 

With 97.39% accuracy, 96.79% precision, 97% recall, and 

97.20% F1-Score, the suggested model performs 

remarkably well. These findings demonstrate the efficacy of 

the deep learning-based technique in precisely confirming 

signatures and identifying suspected forged. 
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