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Abstract: Early diagnosis and reduced mortality rates are two benefits of early lung cancer detection in patients. This research proposes 

an optimized long short-term memory (LSTM) based on improved grey wolf optimization (IGWO) with opposition-based learning 

(OBL) and local search algorithm (LSA) as an effective lung cancer detection system.  The OBL is utilized with GWO to boost its 

population diversity, and LSA is used with GWO to address its local optimum problem and improve the existing best solution.  Then, 

the hyperparameters of the LSTM are optimized using IGWO, and the optimized LSTM is then used to detect lung cancer disease.  The 

median filter is used to remove the unwanted noises from CT lung images, fuzzy c-means (FCM) is used to segment the affected regions, 

affected area is passed on to the feature extractions stage that extracts the various spectral features for effectively detecting lung disease.  

Finally, extracted features are considered as inputs to the optimized LSTM for detecting lung cancer diseases. High performance was 

achieved by the developed optimized method: 94.65% accuracy, 96.90% precision, 95.05% recall, and 94.94% f-measure.  The 

experimental results revealed that the developed IGWO-LSTM achieved good detection accuracy and a quick convergence rate.   

Keywords: long short-term memory; grey wolf optimization; opposition-based learning; local search algorithm; lung cancer; 

hyperparameter optimization 

1. Introduction  

Significant cancers that cause a high death rate include lung 

cancer. Today's rising cigarette smoking rates are one of the 

major factors contributing to lung cancer in developing 

nations. Because the number of individuals suffering from 

illness is increasing at a rapid pace, the healthcare sector 

offers physicians high-quality services for precise medical 

data analysis. To address issues with patient care, early 

disease prediction, and community services, healthcare 

services are growing in popularity. An important step in 

giving patients the right care is accurate lung cancer disease 

prediction [1, 2].  Deep learning (DL) is a computational 

model consisting of several processing layers that can 

acquire representations of data with various levels of 

abstraction[3].  The class of DL known as LSTM is 

incredibly potent; it can instantiate practically any 

dynamics. LSTM has gained popularity as a model in recent 

years for a wide range of issues[4].  Hyperparameters play a 

crucial role in the performance of several deep learning 

algorithms. Nevertheless, there is no set standard for 

choosing hyperparameters since there is no exact 

mathematical correlation between results and 

hyperparameters. In reality, grid search, random search, and 

Bayesian optimization are the most often utilized techniques 

for finding hyperparameters.  However, these approaches 

have certain drawbacks.   For instance, the hyperparameters 

significantly increase the computing cost of the grid search, 

and the random search approach runs the risk of reaching a 

local optimum. The task of identifying hyperparameters has 

turned into a bottleneck that limits deep learning's 

accuracy[5]. 

Over the past 20 years, metaheuristic optimization 

strategies have gained a lot of traction.  Notwithstanding the 

variations amongst metaheuristics, the majority of them are 

nature-inspired; metaheuristic optimization techniques are 

demonstrated to possess exceptional superiority in 

ergodicity and convergence, as well as the capacity to 

eschew local optima. In the context of hyperparameter 

settings, metaheuristics have gained increasing.  The social 

structure and hunting habits of grey wolves served as the 

model for the biological algorithm known as the GWO[6]. 

Four different kinds of grey wolves are used in GWO to 

simulate the leadership structure. Additionally, three basic 

processes are used in hunting: finding prey, encircling prey, 

and attacking prey. When compared to alternative 

algorithms inspired by nature, the GWO exhibits a notable 

advantage [7, 8].  As such, it can be effective for numerous 

engineering and optimization challenges.  Even though the 

fundamental GWO has remarkable shortcomings such as 

population diversity, low convergence, and local optima [9, 

10]. 

OBL has been used in many studies in the literature to 

improve convergence speed.  However, the literature study 

uses OBL for population initialization and position updating.  

However, position updating using OBL will take more 

iterations and it does not guarantee finding the optimal 
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position. Therefore, this will increase the complexity of the 

search algorithm because in each iteration they determine 

the opposite solutions for all solutions and take elite 

solutions [11]. However, in our work, we use OBL at the 

GWO initialization phase only. Additionally, the GWO 

approach uses LSA developed for position updating to avoid 

local optima problems.  Consequently, the goal is to provide 

an improved GWO (IGWO) that uses OBL and LSA to 

increase the  

GWO's precision and convergence rate.  This paper's 

innovations are concentrated in two areas. To improve the 

global convergence ability and convergence rate, the IGWO 

first employs the OBL technique. To increase the likelihood 

of jumping out of the local optimum, an LSA is then 

introduced to search the neighborhood space of the local 

optimal value. This IGWO aids in improving the trade-off 

between the GWO's capacity for exploration and 

exploitation.  IGWO may be parallelized to concurrently 

explore several hyperparameter space areas. The efficiency 

of hyperparameter tuning can be increased by this 

parallelization, particularly for intricate LSTM architectures 

with several hyperparameters.  The contributions of the 

paper are as follows,  

• The new optimized LSTM is used to detect lung cancer 

diseases. 

• The upgraded GWO is used to tune the hyperparameters 

of LSTM to improve detection accuracy. 

• The IGWO uses OBL to enhance its population 

diversity in the search process and LSA for solving its 

local optimization problem and improving the present 

best solution. 

This study is structured as follows: section 2 covers 

relevant works, section 3 examines research methodology, 

section 4 discusses experimental outcomes, and section 5 

presents research findings.   

2. Related works  

Relevant research is essential to the growth and 

improvement of DL methods for lung cancer detection.  

Because DL can evaluate vast amounts of medical imaging 

data efficiently and accurately, it is important in the 

identification of lung cancer.  The following paragraphs 

discuss some related works regarding lung cancer detection 

using DL methods.   P. M. Shakeel et al. (2022) new ML 

approach is presented to predict lung cancer. Images from 

the non-small cell lung cancer CT scan dataset are collected 

to detect lung cancer. The multilayer brightness preserving 

technique is used to analyze the acquired images, effectively 

examining every pixel, removing noise, and improving the 

lung image quality. The afflicted region is separated from the 

noise-removed lung image using an enhanced deep neural 

network (DNN), which uses network layers to segment the 

region and extract numerous features [12].  D. Mhaske et al. 

(2019) [13] created a sophisticated computer-aided 

diagnosis (CAD) system that uses DL algorithms to rapidly 

extract data from CT scan pictures and give exact and timely 

analysis of lung cancer. The CT scan pictures are segmented 

with (OTSU) Thresholding. The developed method focuses 

on using DL techniques, notably Convolutional Neural 

Networks (CNN) for feature extraction and LSTM for lung 

cancer classification, and achieves high accuracy. 

H. Yu et al. (2020) established a new technique based on an 

adaptive hierarchical heuristic mathematical model 

(AHHMM). The lung CT picture is segmented to extract any 

relevant features, and a special feature extraction approach 

is used. The test evaluation revealed that the proposed model 

could detect the absence or presence of lung cancer with 

96.67% accuracy [14].  P. M. Shakeel et al. (2019) [15] focus 

on improving the quality of lung images and diagnosing lung 

cancer by reducing misclassification. The lung CT images 

are obtained from the Cancer Imaging Archive (CIA) 

dataset; noise is removed using a weighted mean histogram 

equalization approach, which effectively removes noise 

while improving image quality; and the affected region is 

segmented using an improved profuse clustering technique 

(IPCT). The damaged region generates a wide range of 

spectral properties. These are investigated using DL to 

predict lung cancer.  R. R. Subramanian et al. (2020) [16] 

suggested a new model based on CNN. Pretrained ImageNet 

models like LeNet, AlexNet, and VGG-16 are used to 

identify lung cancer. The suggested model employs the 

AlexNet model, with the features obtained from the 

network's last fully connected layer serving as distinct input 

to the softmax classifier.  The suggested model provides a 

reliable and long-term diagnosis paradigm for lung cancer 

detection. 

S. Lakshmanaprabu et al. (2019) [17] proposed using the 

Optimal DNN (ODNN) and Linear Discriminant Analysis 

(LDA) using CT scans of lung pictures. Deep characteristics 

are collected from CT lung images and then dimensionally 

reduced using LDR to categorize lung nodules as cancerous 

Algorithm 1: Median filter 

Step 1: Assume that there are M rows and N columns in the input matrix "A." 

Step 2: Add zeros to the sides of the input matrix to create a matrix with M + 2 rows and N + 2 columns. 

Step 3: Take a three-by-three mask. 

Step 4: Apply the mask to the first element in matrix "A," that is, the element on the first row and first column. 

Step 5: Choose every element that the mask lists, then arrange them in ascending order. 

Step 6:  Replace element A (1, 1) with the median value (the middle element) that you took from the sorted array. 

Step 7: Move the mask to the subsequent component. 

Step 8: Continue following steps 4 through 7 until all matrix "A" components have been swapped out for the matching median value. 
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or benign. The ODNN is applied to CT images and then 

optimized using the Modified Gravitational Search 

Algorithm (MGSA) to find lung cancer classification.  A. 

Asuntha et al. (2020) [18] developed a new method for 

detecting cancerous lung nodules in the supplied input lung 

image and classify the lung cancer and its severity. This 

study employs revolutionary DL techniques to determine the 

location of malignant lung nodules.  After collecting 

textural, geometric, volumetric, and intensity features, the 

Fuzzy Particle Swarm Optimization (FPSO) is used to 

determine the best feature. Finally, the characteristics are 

categorized using DL.  A revolutionary FPSOCNN lowers 

the computational complexity of CNN.  The experimental 

findings demonstrate that the new FPSOCNN outperforms 

other approaches. 

D. Moitra et al. (2020) [19] created a more accurate DL 

model by combining convolutional and bidirectional RNNs. 

The study employed the NSCLC Radiogenomics dataset, 

which included 211 patients.  The proposed model may 

contribute greatly to the automated prognosis of NSCLC and 

other forms of malignancies.  M. Pradhan et al. (2023) [20] 

introduced a new Multi-objective MROA (MMROA) for 

hyperparameter tuning that treats accuracy and sensitivity 

equally as fitness functions.  Initially, the histopathology 

images from the Lung and Colon 25000 (LC25000) dataset 

are adjusted using color normalization and segmented using 

the saliency-driven edge-dependent top-down level set 

(SDREL) technique. The attributes are extracted using the 

Grey Level Cooccurrence Matrix (GLCM) and GoogleNet, 

followed by selection using the improved grasshopper 

optimization algorithm (EGOA). MMROA optimizes the 

selected features, which are subsequently fed into the LSTM 

classifier.   

3. Problem statement  

The possibility of false positives and the difficulties of 

detecting early-stage malignancies make lung cancer 

detection both accurate and efficient a key challenge in 

healthcare. The current strategy lacks precision despite 

developments in screening techniques and imaging 

technology, which results in inferior patient outcomes, 

unnecessary invasive procedures, and delays in diagnosis. 

To enable early detection and individualized treatment 

approaches, a holistic solution that solves the shortcomings 

of current screening tools, strengthens risk assessment 

strategies, and increases patient engagement is urgently 

needed.   

Let 𝐼 be an illustration of a lung image, and let 𝑌 be the 

binary outcome variable that indicates whether lung cancer 

is present or not in the image; 𝑌 = 1 indicates that lung 

cancer is present, while 𝑌 = 0   indicates that it is not. The 

goal is to develop a prediction model 𝑓(𝐼) that can correctly 

forecast the likelihood of lung cancer in the image 𝐼 given a 

dataset 𝐷 of 𝑁 images, each represented as ((𝐼𝑖 , 𝑌𝑖)). 

4. Research methods  

4.1 Pre-processing using a median filter  

Median filters are more effective than linear filters at 

smoothing images with spiky noise distributions due to the 

reject extremes (outliers).  The image's sharpness is 

preserved while noise is eliminated using the median filter.  

As implied by the name, the median value of the surrounding 

pixels is used to replace each pixel. This filter makes use of 

a 3 x 3 window. Among the standard filters that eliminate 

speckle noise, +is is one of the best.   An important function 

of spatial processing is to maintain edge detail and remove 

non-impulsive noise using an adaptive median filter. The 

median filter keeps the edges and any minor structure in the 

image. The window size of the median filter is different for 

every pixel [21].  Algorithm 1 shows the description of the 

median filter.   

4.2 Image segmentation using FCM 

Unsupervised fuzzy logic-based FCM is an 

unsupervised classification technique first proposed by 

Dunn in 1973 and then refined by Bezdek in 1981 which is 

widely applied to image segmentation. In contrast to 

traditional partitioning techniques like k-means, where each 

data point is assigned to a single partition, a point in FCM is 

assigned to every class with a degree of membership that 

ranges from 0 to 1. The centers of the clusters are what 

represent them [22, 23].  This is how the centers are 

computed:   

𝐶𝑗 =
∑ 𝜇𝑖𝑗

𝑚𝑥𝑖
𝑁
𝑖=1

∑ 𝜇𝑖𝑗
𝑚𝑁

𝑖=1

                          (1) 

𝑁 denotes the total number of data points, 𝑥𝑖 denotes the 

𝑗𝑡ℎdata point, 𝑥𝑖  𝑚 (𝑚 > 1) denotes the fuzzifier, and 𝜇𝑖𝑗 

which is determined as follows, is the membership degree of 

the  𝑗𝑡ℎ pixel that is a member of cluster i.  

µ𝑖𝑗 =
1

∑
𝑑
𝑖𝑗

2
𝑚−1

𝑑𝑖𝑗

𝑁𝐶
𝑙

                            (2) 

Where 𝑑𝑙𝑗  is the Euclidian distance between the 𝑗𝑡ℎ pixel 

and cluster the 𝑙, the 𝑐  is the number of clusters. The 

objective function is minimized to determine the 

membership degrees and cluster centers that are ideal. 

𝐽𝑚 = ∑ ∑ 𝜇𝑖𝑗
𝑚𝑑𝑖𝑗

𝑛𝑐
𝑖=1

𝑁
𝑗=1                         (3) 

Constraints as follows,  

{
∀𝑗 ∈ [1, 𝑁], ∀𝑖 ∈ [1, 𝑛𝑐]: µ𝑖𝑗 ∈  [0,1]

∀𝑗 ∈ [1, 𝑁] ∶  ∑ µ𝑖𝑗 = 1𝑛𝑐
𝑖=1

           (4)

                   

 

4.3 Feature extraction  

The segmented picture is sent to the feature extraction 

phase, which produces several spectral features such as 

 

Figure 1 : LSTM architecture 
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mean, third-moment skewness, standard deviation, and 

fourth movement kurtosis because they successfully detect 

lung cancer-related features [15].  The predictable spectral 

features are shown in Table 1.   

4.4 Long short-term memory  

In theory, recurrent networks can employ feedback networks 

to store representations of recent input events in the form of 

activations. However, erroneous signals that travel 

backward in time tend to explode or vanish.  The cell state, 

which functions as a conveyor belt, is crucial to LSTMs. The 

cell state flows directly down the entire chain, with just 

modest linear interactions.  LSTMs, which are controlled by 

structures known as gates, can delete or add information to 

the cell state. Thus, LSTM was purposefully developed to 

prevent the long-term reliance issue.  Each cell in the LSTM 

has three gates. These are the forget, input, and output gates.  

The 𝑥(𝑡) and ℎ(𝑡 − 1) are the inputs, and a series of 

equations can be used to define the computation for each cell 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑋𝑡] +  𝑏𝑓)                      (5) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑋𝑡] +  𝑏𝑖)                    (6)                 

𝑔𝑡 = tanh(𝑊𝑔 ∙ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑔)                (7)          

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑋𝑡] +  𝑏𝑜)                     (8) 

𝑐𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑔𝑡 ∙ 𝑖𝑓                         (9) 

𝑔𝑡 = tanh(𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑔𝑡 ∙  𝑖𝑡) ∙ 𝑜𝑡                     (10) 

Where the timestamp 𝑡, cell state 𝐶𝑡, and the output 𝑦𝑡  which 

also serves as the input for the next timestamp, ′ ∙ ′ denotes 

the hadamard product 𝑖𝑡, 𝑓𝑡, 𝑔𝑡 and 𝑜𝑡 are the output of the 

gates. 𝑊𝑖, 𝑊𝑓 , 𝑊𝑜 , 𝑊𝑔 , 𝑏𝑖  ,  𝑏𝑓  ,  𝑏𝑜  ,  𝑏𝑔   are coefficient 

matrixes.  As distinct cells' input and output interact with one 

another, errors spread with the data.  

4.5 GWO algorithm 

The grey wolf optimization method replicates wolf 

leadership hierarchy and predatory performance before 

employing grey wolf abilities such as search, encirclement, 

hunting, and other predation activities to reach the 

optimization goal[24].  The number of wolves 𝑁 with search 

area 𝑑, the wolf position can be expressed as: 𝑋𝑖 =

(𝑋𝑖1 ,  𝑋𝑖2 , 𝑋𝑖3, … . , 𝑋𝑖𝑑). The fittest solution, sometimes 

known as the alpha 𝛼, is used to replicate wolves' social 

hierarchy.   

To simulate the social hierarchy of wolves, the fittest 

solution is referred to as the alpha (α).  The second and third-

best solutions are called beta (β) and delta (δ) wolves, 

respectively. The remaining possible solutions are 

considered to be omega (ω) wolves. The algorithm's 

location, the prey's location, matches to the alpha wolf's 

position.  Grey wolves' encircling behavior can be 

analytically modeled as follows: 

𝐷 = |𝐶 × 𝑋𝑝(𝑡) − 𝑋(𝑡)|                             (11) 

𝑋(𝑡 + 1) = 𝑋𝑃(𝑡) − 𝐴 × 𝐷                           (12) 

Where the set t is the current iteration.  𝑋𝑝(𝑡)  and 𝑋(𝑡) are 

the position vectors of the prey and a grey wolf respectively.  

The control coefficient 𝐶 is determined by the following 

formula: 

𝐶 = 2𝑟1                                         (13) 

The set A is convergence factor considered as follows: 

𝐴 = 2𝑎𝑟2 − 𝑎                    (14) 

𝑎 = 2 (1 −
𝑡

𝑇 𝑚𝑎𝑥
)                     (15) 

Where the set 𝑟1 and 𝑟2  are the random variable. The set 𝑎 is 

the control coefficient linearly decreases from 2 to 0, that is, 

𝑎𝑚𝑎𝑥 = 2, 𝑎𝑚𝑖𝑛=0.  When grey wolves catch prey, the leader 

wolf α directs the outside wolves to encircle it.  The α wolf 

guides the β and δ wolves to catch the prey and closest to the 

prey, allowing their positions to be used to determine its 

location. The mathematical model is as follows. 

𝐷𝛼 = |𝐶1 × (𝑋𝛼 (𝑡) − 𝑋(𝑡))|                        (16) 

𝐷𝛽 = |𝐶2 × (𝑋𝛽  (𝑡) − 𝑋(𝑡))|                        (17)  

𝐷𝛿 = |𝐶3 × (𝑋𝛿  (𝑡) − 𝑋(𝑡))|               (18) 

𝑋1 = (𝑋𝛼 − 𝐴1) × 𝐷𝛼                         (19) 

𝑋2 = (𝑋𝛽 − 𝐴2) × 𝐷𝛽                             (20) 

𝑋3 = (𝑋𝛿 − 𝐴3) × 𝐷𝛿                          (21)                                      

𝑋(𝑡 + 1) =
𝑋1+𝑋2+𝑋3

3
                       (22) 

4.6 Opposition based learning (OBL) 

The OBL was developed by H R Tizhoosh to obtain the 

opposite estimate from the current estimate and enhance the 

capability of the provided response [25].  Population-based 

optimization techniques often start by generating a set of 

solutions.  Either prior information or random selection can 

be used to create the population.  The optimization 

procedure is then applied to update the populations.  On the 

other hand, if the answer is unknown beforehand, the 

provided solution cannot converge to a global solution.  

Additionally, it takes longer for the global solution to 

converge.  Numerous research has been conducted using the 

advantages of the OBL method for initializing and updating 

the population to overcome these drawbacks.   

The OBL is supposed to increase population variety and 

boost global search capabilities.  For example, the OBL 

method is used to accelerate the convergence rate of 

numerous nature-inspired optimizations [26-31] and neural 

networks [32, 33].  The OBL algorithm offers a way to create 

optimization strategies that travel in the opposite direction 

of the existing solution.  The current solution is selected as 

the best option after being compared to the opposite 
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alternative.  This OBL technique produces a solution that 

approaches the ideal solution quickly.  The ensuing 

subsections explain the OBL methodology. 

a) Opposite number   

Assume, 𝑥 is the real number that ranges between 𝑚 and 

𝑛: 𝑥 ∈ [𝑚, 𝑛].  The opposite value is assumed by �̄�  

determined as follows,  

�̄� = 𝑚 + 𝑛 − 𝑥                              (23) 

The opposite number specified for multidimensional 

space, let 𝑥 = (𝑥1, 𝑥2, . . . . , 𝑥𝐷) samples with 𝐷 dimensional 

space.  𝑥1, 𝑥2, . . . . , 𝑥𝐷 ∈ 𝑅 and 𝑥𝑖[𝑚𝑖, 𝑛𝑖]∀𝑖 ∈ {1,2, . . . . . 𝐷}.  

Hence, the opposite estimation �̄� is well-defined as follows,  

 �̄�𝑖 = 𝑚𝑖 + 𝑛𝑖 − 𝑥𝑖 , 𝑖 = 1,2, . . . . , 𝐷                (24) 

b) Opposition-based optimization    

Let 𝑓(𝑥) is a function and 𝑔(. ) is a proper evaluation 

function.  Guess the value of 𝑓(𝑥)
 
and 𝑓(�̃�)

 
in every 

iteration.  The learning procedure continues with 𝑥 if 

𝑔 (𝑓(𝑥) ≥  𝑔 (𝑓(�̃�), otherwise with �̃� and it could be 

weight, a fitness function, or an error function.   

4.7 Local search algorithm (LSA) 

The best current location of any SI algorithm can be 

found with the freshly created LSA algorithm. At the end of 

each EHO iteration, LSA will be called to refine the current 

best solution.  LSA first records the value of the best solution 

GWO in the local variable. LSA iterates several times in an 

attempt to enhance local values. Every time it runs, LSA 

randomly chooses three features from a saved list. LSA uses 

its parameters to set or reset the specified features. The 

fitness value of the new solution will likewise be ascertained 

by LSA. If it surpasses the fitness value of the previous 

solution, it is set to the local value; otherwise, it stays  

Proposed IGWO .The Original GWO  method as  

challenges such as local optima traps and search bias, 

particularly towards the coordinate system's origin. 

Additionally, search variety is limited.  The two 

modifications are incorporated with the standard GWO 

algorithm which is discussed in this present section.  First, 

the OBL method is used to initialize the initial population 

during GWO's initialization phase to increase population 

diversity.   

Second, LSA utilizing with GWO to enhance its 

exploitation and prevent it from being trapped in local 

optima.  Specifically, IGWO first uses OBL to generate the 

GWO population. Subsequently, the fittest wolves are 

selected to occupy the starting and opposing wolf positions. 

Furthermore, the starting population will consist of the best 

wolf among these n fittest wolves.    In addition, these n 

wolves will have their positions updated by applying the 

main loop.  Now, LSA will be applied to the current to check 

and find a better solution than the best one currently found 

at the end of the ISSA main loop. GWO will ultimately 

provide the finest answer. 

Population initialization   

The evolutionary algorithm is mainly based on the concept  

of population  search and it  enhances the algorithmic 

solving capabilities. The evolutionary algorithm is 

combined with the Global convergence for the purpose of 

the Population initialisation.The initial population is 

computed based on the fitness function.The fitness values 

are used to choose fronm the original population.OBL 

Strategy is used to generate the possible values of the present 

and the reverse values. The fitness values are used to choose 

the new population, sometimes referred to as the original 

population.The type of algorithm which makes use of the  

population set is called as the Genetic algorithm.The genetic 

algorithm also makes use of the cross valuation and 

validation for the generation of the population set,. 

 

BL-based population initialization   

 OBL can effectively broaden the population under search 

and enhance algorithmic solving capabilities. It can be 

combined with evolutionary algorithms.  Global 

convergence and optimization results are significantly 

impacted by population initialization. Based on the section 

analysis, this research presents the OBL strategy 

initialization approach to create initial GWO populations.  

The OBL expands the given solution by generating a 

population.  An initial population X by guessing the opposite 

solution x ̃_i for x_i.  Compute the fitness values for both 

present and reverse values, and then compare them to get the 

best initial values for a given solution's beginning 

population.  The fitness values are used to choose the new 

population, sometimes referred to as the original 

population.The new population helps in finding the possible 

set of values for the fitness function and the strategy for the 

set of Operational values. 
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LSA learning strategy 

Throughout iterations, the optimal solution is crucial to 

GWO as it directs a population toward the global best value. 

However, the population search will quickly stagnate if the 

ideal solution becomes stuck at a local optimal value.   The 

LSA contracts to the absolute minimum after adjusting to the 

local environment.  

Therefore, throughout iterations, the optimal solution will be 

disturbed by the LSA approach to explore the neighborhood 

space of the local optimal value and strengthen the 

likelihood of jumping out of the local optimum.  By 

employing this disruption on the local optimal solution, it 

can more effectively utilize search space and find superior 

persons with greater ease.  

4.8 Optimized IGWO-LSTM 

The LSTM network consists of memory cells and feedback 

connections. Much research has shown that an LSTM 

network can extract useful characteristics from low-volume 

input.  The parameters of an LSTM network are often 

established by user experience. The detecting capabilities of 

the model will be affected by the parameters chosen.   

Therefore, for convenience, autonomous algorithmic 

approaches with the potential to converge faster and acquire 

an optimal/near-optimal solution within an acceptable 

period can be used to boost the performance of the LSTM.  

Hence, the research work uses the IGWO method for 

optimizing the LSTM for enhancing lung cancer detection 

accuracy with fast convergence.  This work defines wolves 

as dimensional variables that reflect the parameters of 

LSTM.  The LSTM is often used for the generation of the 

low volume inputs for the generation of the autonomous 

capability of the memory cells for the set of the parameters 

chosen.A random population is chosen for the determination 

of the fitness function. 

 

 

Figure 2: Flowchart of IGWO-LSTM detection method 

 

 
Random population 𝑋 Opposite population 𝑋 

 

Select N fittest solution from 𝑋  𝑋  

Random population 𝑋 

YES 
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Traverse the grey wolf pack  
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Update  , ẟ, α position using LSA 
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NO 

Search for prey  

 

LSTM 

Train set  

Data 

Test set  
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Assign m hyperparameters to the grey wolf pack as prey, 

and use the real impact of LSTM's data prediction as a 

criterion to determine each gray wolf's position. Next, 

simulate an iterative search for the prey. In Figure 2, the 

flowchart of the proposed IGWO-LSTM is displayed.  

Algorithm 4 includes pseudo-code for the proposed 

developing LSTM model.  The best hyperparameter search 

for LSTM is as follows. First, the population of the proposed 

IGWO version is randomly initialized. Each wolf represents 

one alternative configuration of the optimal LSTM model.  

The training data is used to train the appropriate LSTM 

with specific structure and parameter settings for each wolf.  

The top three fitness solutions are identified as dominant 

wolves, guiding the entire wolf population toward global 

optimality using the suggested IGWO algorithm.   The final 

LSTM model is based on the optimal configuration achieved 

by the best wolf leader.  The model is re-trained with a 

combination of training sets before being tested on new test 

data.  The test set is used to calculate performance metrics.   

5. Experimental results analysis  

Following the division of the images, the previously 

mentioned algorithm was applied in MATLAB 2019R to 

create the pre-processing, segmentation, feature extraction, 

and classification processes. The accuracy of segmented 

lung area images was compared with multiple detection 

algorithms based on the discussion above.  The accuracy, 

recall, precision, and f-score of the suggested optimized 

LSTM approach were evaluated to determine its superiority.  

The performance of LSTM+IGWO is compared with some 

variants of LSTM such as LSTM+GWO, LSTM+IPSO, 

LSTM+PSO, LSTM+ GA, and LSTM. 

A bad selection of network parameters usually results in 

subpar LSTM performance. As a result, research usually 

uses GA and PSO to select the best parameters. 

Nevertheless, several drawbacks exist, including premature 

convergence and local optima. Nonetheless, the PSO's 

weaknesses were resolved by the IPSO. Nevertheless, the 

MPSO's convergence rate is poor. Later, a SI optimization 

technique with a high solution accuracy and a quicker 

convergence rate was created by GWO recently [34]. The 

population diversity, local optima, and convergence rate are 

just a few of the conventional GWO's many drawbacks. To 

improve population diversity, convergence rate, and prevent 

local optima, the current paper suggests doing two 

adjustments using GWO. OBL was used to increase 

population variation, and the LSA algorithm was developed 

to get around the problem of local optima. 

5.1 Datasets  

Lung CT images were collected from the 5043 pictures 

in the Cancer Imaging Archive (CIA) dataset for analysis; 

3000 images were utilized for training and 2043 images for 

testing.   This includes the photos taken from the lung cohort 

of the National Cancer Institute Tumor Analysis 

Consortium. Along with clinical data, the collected patient 

details were connected with the proteome and genome.  For 

experimental results analysis, we show the ten images only 

for performance results comparison of detection algorithms 

which is named as “Image1, Image2, Image3, Image4, 

Image5, Image6, Image7, Image8, Image9, and Image10”.   

5.2 Parameter settings  

Hyperparameter tuning is critical for successfully 

training LSTM networks that are optimal for sequence 

modeling problems because of their ability to capture long-

term dependencies in sequential data. To obtain optimal 

performance, LSTMs are trained by tweaking multiple 

Algorithm 4: IWGO algorithm 

Step 1: Initialize the population 𝑥𝑖 and its opposite �̄�𝑖 
Step 2: Initialize 𝑎, 𝐴, 𝑎𝑛𝑑 𝐶 

Step 3: Compute the fitness  

Step 4: Select 𝑋𝑖 fittest individuals form {𝑋𝑖  𝑂𝑋𝑖} as the next 

population 𝑋𝑖 
Step 5: search the best agents for 𝑋𝛼 , 𝑋𝛽 , and 𝑋𝛿  

Step 6: While (𝑡 < 𝑚𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛s) 

Step 7: Update the dynamic interval boundaries [𝑑𝑎𝑗 , 𝑑𝑏𝑗] in 𝑋𝑖  

Step 8: For 𝑖 = 1 to 𝑋𝑖  
Step 9: Double 𝑘 = 𝑟𝑎𝑛𝑑   
Step 10: For 𝑗 = 1 𝑡𝑜 𝐷 

Step 11: �̌�𝑖,𝑗 = 𝑘. (𝑑𝑎𝑗 + 𝑑𝑏𝑗) − 𝑥𝑗
𝑒  

Step 12: 𝒆𝒏𝒅 𝒇𝒐𝒓  
Step 13: If �̌�𝑖,𝑗 < 𝑎𝑗 𝑜𝑟 �̌�𝑖,𝑗 > 𝑏𝑗 

Step 14: �̌�𝑖,𝑗 = 𝑟𝑎𝑛𝑑(𝑑𝑎𝑗 , 𝑑𝑏𝑗) 

Step 15: 𝒆𝒏𝒅 𝒊𝒇  
Step 16: Calculate the fitness value of �̌�𝑖, 

Step 17: 𝒆𝒏𝒅 𝒇𝒐𝒓  
Step 18: For each search agent  

Step 19: Update the current search agent's position. 

Step 20: End for 

Step 21: Update 𝑎, 𝐴, 𝑎𝑛𝑑 𝐶  

Step 22: Evaluate the fitness of all search agents. 

Step 23: Update 𝑋𝛼, 𝑋𝛽, 𝑋𝛿  

Step 24: Find the current best value using the LSA method 

Step 25: 𝑡 = 𝑡 + 1 

Step 26: End while 

Step 27: Return 𝑋𝛼 

 

Table 1: Details of features 

Features Formula 

Mean 𝜇 =
1

𝑁
∑ 𝑆𝑖
𝑁
𝑖=1   

Standard deviations 
𝜎 = √

1

𝑁
∑ (𝑆𝑖 − 𝜇)

2𝑁
𝑖=1   

Third movement 

skewness  

𝑠𝑘 =

√
1

𝑁×𝜎3
× ∑ (𝑆𝑖 − 𝜇

3)1/3𝑁
𝑖=1  

 
Fourth-moment kurtosis  𝑘𝑢 =

√
1

𝑁×𝜎4
× ∑ (𝑆𝑖 − 𝜇

4)1/4𝑁
𝑖=1  
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hyperparameters.  Hyperparameter optimization aids in 

selecting the best optimizer and tweaking its parameters to 

enhance training success.   Hence, the present research work 

focused on hyperparameter optimization using IGWO to 

obtain optimal parameters.  The IGWO's optimization 

objectives are weight and bias, learning rate, and time 

window size. The model randomly initializes the position 

information of each wolf based on the hyperparameter 

range.  The algorithm creates an LSTM based on wolf 

position hyperparameters and trains it with training data.  

Finally, optimal parameters are shown in Table 2.   

5.3 Performance indicators  

This study used four performance metrics are used to 

evaluate the detection algorithms' performance.  The 

accuracy of a detection algorithm determines its overall 

performance, which may be thought of as follows:    

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%

       
           (25)

                                    
 

The ability to foresee positive cases, such as the true 

positive rate, which can be considered as follows, is known 

as recall.    

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%

                      

(26) 

Precision, also known as a positive predictive value, is 

well-defined as the number of relevant samples among the 

retrieved examples as follows:  

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%

                          

(27) 

The F-score is calculated using the harmonic mean of 

sensitivity and precision, with each given about equal 

weight. This enables prototype comparison, performance 

description, and the combination of precision and sensitivity 

into a single score. 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒 𝑐𝑎𝑙𝑙

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒 𝑐𝑎𝑙𝑙
× 100%       (28) 

False positive (FP) signifies erroneously expected 

normal, whereas false negative (FN) denotes incorrectly 

expected sickness. True positive (TP) indicates effectively 

predicted disease, whereas true negative (TN) indicates 

accurately predicted normal. 

5.4 Results analysis  

The following sections are critical in presenting the 

findings, analyzing the results, debating their implications, 

and evaluating the ability of the optimized LSTM.  The 

section displays the results of the optimized LSTM lung 

cancer prediction model. This covers the accuracy, 

precision, recall, and f-measures performance indicators 

gathered during the model evaluation.  Tables 3-6 and 

Figures 3-6 show the results comparisons of various lung 

cancer classification methods such as LSTM+IGWO, 

LSTM+GWO, LSTM+ IPSO, LSTM+ PSO, LSTM+ GA, 

and LSTM.  Table 3 and Figure 3 show the performance 

results based on accuracy which produced the highest 

accuracy with 95.9%, 94.2%, 93.5%, 96%, 94.8 %, 95%, 

94.8%, 94.5%, 94.4%, and 93.4%. for images 1-10 

respectively.   

Table 4 and Figure 4 show the performance results based 

on accuracy which produced the best performance with 97.9 

%, 97.2 %, 96.7 %, 97.2 %, 96.5 %, 97.4 %, 96.9 %, 96.8 

%, 97.4 %, and 95.7 %, for images 1-10 respectively.   Table 

5 and Figure 5 show the performance results based on 

accuracy which produced the best performance with 95.9%, 

94.2%, 93.5 %, 96 %, 94.8 %, 95 %, 94.8%, 94.5%, 94.4%, 

and 93.4% for images 1-10 respectively.  Table 6 and Figure 

6 show the performance results based on accuracy which 

produced the best performance with 96.5 %, 95.9%, 96.2%, 

96.2 %, 95.6%, 96.5%, 95.9%, 95.6%, 96.0 %, and 95.0 % 

for images 1-10 respectively.   

The efficacy of the proposed LSTM-IGWO has been 

established through a variety of methods, as detailed in the 

previous analysis of experimental results. The optimized 

LSTM’s structure has proven helpful in resolving real-time 

detection issues. The IGWO is offered as a way to improve 

LSTM's performance. It outperforms in terms of 

classification accuracy and convergence rate. The latest 

edition of GWO has produced encouraging results in 

accomplishing this goal. Overall, the LSTM-IGWO 

suggested method outperformed previously used detection 

algorithms and benchmark methodologies.  The proposed 

model is intended to produce consistent and unbiased 

clinical predictions, making it appropriate for real-time 

diagnosis applications and another clinical diagnosis. 

The overall experimental results indicate that IGWO 

outperforms other optimization algorithms in terms of 

exploration capability. The ability of IGWO to search 

through areas of the search space that other algorithms were 

unable to access lends credence to this. This proved that, in 

contrast to other algorithms, IGWO retains solution variety 

quite effectively. Furthermore, IGWO routinely achieves 

better fitness values than other algorithms, indicating its 

ability to avoid local optima.   Through the selection of 

optimal LSTM hyperparameters, IGWO proved to be a more 

capable exploration algorithm than the others. The ability of 

IGWO to select the optimal hyperparametric and its 

Table 2: Parameters details 

LSTM 

Parameter Value 

Activation  Signomoid, Tanh 

Loss function  MSE 

Learning rate  0.057 

epochs  1000 

Expected error  0.0005 

Weight range  -0.5 and 0.5 

Dropout  0.3 

Batch size  5 

Time stap  30 
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superiority over alternative optimization algorithms based 

on the accuracy of the outcomes verified its superiority in 

exploration. 

 

 

 

Table 3 : Performance results based on accuracy 

Detection 

methods 

Image

1 

Image

2 

Image

3 

Image

4 

Image

5 

Image

6 

Image

7 

Image

8 

Image

9 

Image1

0 

LSTM+IGW

O 
0.959 0.942 0.93.5 0.960 0.948 0.950 0.948 0.945 0.944 0.934 

LSTM 

+GWO 

0.936 0.934 0.924 0.927 0.928 0.939 0.938 0.924 0.934 0.924 

LSTM+ IPSO 0.923 0.914 0.892 0.888 0.916 0.918 0.929 0.892 0.912 0.914 

LSTM+ PSO 0.894 0.889 0.884 0.862 0.899 0.885 0.884 0.879 0.883 0.895 

LSTM+ GA 0.877 0.873 0.865 0.857 0.860 0.879 0.870 0.867 0.873 0.883 

LSTM 0.852 0.869 0.849 0.850 0.844 0.858 0.853 0.858 0.867 0.873 

Table 4 : Performance results based on precision 

Detection 

methods 

Image

1 

Image

2 

Imag

3 

Image

4 

Image

5 

Image

6 

Image

7 

Image

8 

Image

9 

Image1

0 

LSTM+IGW

O 
0.979 0.972 0.967 0.972 0.965 0.974 0.969 0.968 0.974 0.957 

LSTM +GWO 0.957 0.953 0.936 0.949 0.946 0.957 0.948 0.948 0.959 0.935 

LSTM+ IPSO 0.936 0.928 0.913 0.924 0.925 0.936 0.939 0.925 0.936 0.925 

LSTM+ PSO 0.897 0.893 0.893 0.894 0.893 0.915 0.916 0.915 0.914 0.916 

LSTM+ GA 0.885 0.885 0.884 0.883 0.880 0.893 0.895 0.895 0.893 0.894 

LSTM 0.873 0.873 0.878 0.877 0.869 0.870 0.883 0.884 0.884 0. 883 

Table 5 :  Performance results based on recall 

Detection 

methods 

Image

1 

Image

2 

Image

3 

Image

4 

 Image

5 

Image

6 

Image

7 

Image

8 

Image

9 

Image1

0 

LSTM+IGW

O 
0.952 0.948 0.958 0.953 

 
0.949 0.957 0.950 0.945 0.948 0.945 

LSTM 

+GWO 

0.946 0.938 0.947 0.934 
 

0.938 0.946 0.938 0.937 0.937 0.935 

LSTM+ IPSO 0.938 0.929 0.930 0.928  0.927 0.924 0.915 0.918 0.915 0.924 

LSTM+ PSO 0.916 0.918 0.914 0.915  0.919 0.913 0.909 0.904 0.908 0.918 

LSTM+ GA 0.895 0.898 0.885 0.896  0.890 0.891 0.896 0.897 0.891 0.884 

LSTM 0.872 0.876 0.874 0.876  0.880 0.875 0.879 0.880 0.875 0.879 

Table 6 :  Performance results based on f-score 

Detection 

Methods 

Image

1 

Image

2 

Image

3 

Image

4 

Image

5 

Image

6 

Image

7 

Image

8 

Image

9 

Image1

0 

LSTM+IGW

O 
0.965 0.959 0.962 0.962 0.956 0.965 0.959 0.956 0.960 0.950 
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LSTM 

+GWO 
0.951 0.945 0.941 0.941 0.941 0.951 0.942 0.942 0.947 0.935 

LSTM+ IPSO 0.936 0.928 0.921 0.925 0.925 0.929 0.926 0.921 0.925 0.924 

LSTM+ PSO 0.906 0.905 0.903 0.904 0.905 0.913 0.912 0.909 0.910 0.916 

LSTM+ GA 0.889 0.891 0.884 0.889 0.884 0.891 0.895 0.895 0.891 0.888 

LSTM 0.872 0.874 0.875 0.876 0.874 0.872 0.880 0.881 0.879 0.880 

 

 

Figure 3 : Results analysis based on accuracy 

 

Figure 4 : Results analysis based on precision 

 

 

Figure 5 : Results analysis based on recall 
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Figure 6 : Results analysis based on F-measures 

6. Conclusions  

The current study suggests an improved LSTM method for 

lung cancer diagnosis that is based on IGWO.  The CIA 

provides CT lung imaging.  After applying a median filter to 

denoise the gathered images, the FCM algorithm is used to 

segment the denoised images. Spectral features are then 

retrieved from the segmented images and fed into an LSTM 

to detect lung cancer diseases.  In terms of accuracy, f-

measure, precision, and recall, the benefits of the suggested 

model have outperformed those of the current models on the 

CT lung images dataset. Comparing the suggested 

hyperparameter optimization model to other lung cancer 

prediction models, the simulation's outcome demonstrates 

that the latter produced inferior predictions.  The system's 

efficiency is assessed using experimental results, and the 

system accurately detects cancer with 94.65% of accuracy, 

96.90% of precision, 95.05% of recall, and 94.94% of f-

measure.  The experimental results confirmed that the 

developed optimized LSTM method produced high 

performance when compared with other detection 

approaches.   
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