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Abstract: The precise management of plant nutrition is paramount for ensuring optimal crop growth, yield, and overall agricultural 

sustainability. Traditional methods of assessing nutrient deficiency in plants frequently rely on labor-intensive, human error-prone 

manual observation. The use of deep learning algorithms has become a viable method for improving and automating the identification of 

nutrient shortages in crops in recent years. In this work, we examine the effectiveness of using deep learning, specifically the VGG 

(Visual Geometry Group) architecture, for precision detection of nutrient deficiency in plants. We leverage large datasets of plant images 

depicting various stages of nutrient deficiency to train and fine-tune the VGG model. Through extensive experimentation and analysis, 

we demonstrate the model's capability to accurately identify and diagnose nutrient deficiencies across different crops and growth stages. 

Furthermore, we explore potential future research directions, including fine-tuning pre-trained models, multi-scale analysis techniques, 

integration with sensor technologies, and enhancing model interpretability. Our findings highlight the transformative potential of deep 

learning in revolutionizing plant nutrition management, offering scalable and efficient solutions to enhance agricultural productivity and 

sustainability.  
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1. Introduction 

The relationship between deep learning and agriculture has 

sparked innovative approaches to address critical 

challenges in crop management. Among these challenges, 

ensuring optimal plant nutrition stands out as a 

fundamental factor in agricultural productivity and 

sustainability. Nutrient deficiency in crops can 

significantly impair growth, yield, and overall plant health, 

thereby affecting food security and economic viability. 

The VGG architecture, characterized by its deep 

convolutional layers and simplicity in design, offers a 

robust foundation for feature extraction and classification 

tasks. By training the VGG model on large datasets of 

plant images depicting various stages of nutrient 

deficiency, we aim to develop a highly accurate and 

efficient system for identifying and diagnosing nutrient 

deficiencies in crops. 

This paper presents a comprehensive exploration of the 

application of the VGG architecture in the context of plant 

nutrition management. We discuss the methodology 

involved in training the model, including data pre-

processing, model architecture, and optimization 

techniques. Additionally, we compare the trained model's 

performance with current approaches and conduct a 

thorough testing process. 

Our research contributes to advancing the field of precision 

agriculture by offering a scalable and reliable solution for 

early detection and diagnosis of nutrient deficiencies in 

crops. By harnessing the capabilities of deep learning, we 

envision a future where farmers and agronomists can make 

informed decisions to optimize plant nutrition, enhance 

crop yields, and promote sustainable agricultural practices. 

2. Literature Review 

Optimal farm management involves prioritizing both the 

quantity and quality of crops. Success hinges on 

identifying nutritional deficiencies. Inadequate nutrition 

detection at an early stage leads to a decline in both quality 

and quantity. Finding the right thing at the right moment is 

a major undertaking. Precise plant nutrition needs are the 

basis of precision farming. Both financial loss and 

environmental consequences can result from fertilizer 

supplies that are either too little or too much. In precision 

farming, there are several equipment that may detect 

nutritional deficiencies, which aids farmers in making 

subsequent decisions. Studies involving machine learning 

and image processing have been ongoing for the past 

decade. In certain instances, nutritional insufficiency can 

be detected and classified using the proximal pictures. The 

author has conducted a survey to identify nutrients at 

different stages [1]. Various sensors were employed to 

capture images, including those that work in the visible 

range, multispectral, hyper spectral, chlorophyll 

fluorescence, and others. Aircraft, satellites, and 

Unmanned Aerial Vehicles (UAVs) are all part of this 

study. The identification and classification of nutrients 

were also examined. Plants typically show signs of nutrient 
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deprivation on their leaves in distinct patterns, which can 

have a negative impact on crop yields. Classification of 

plant nutrient deficit is helpful for increasing agricultural 

output development since it allows for the early detection 

of plant nutrient shortages. A technique for classifying 

plant nutrient deficiencies can guarantee high-quality 

agricultural goods that contribute to economic prosperity. 

Because nutrients are mobile in plants and there are early 

and late-stage indications of nutrient insufficiency, 

classifying black gram nutrient deficits is difficult [2]. At 

this early period, there is no discernible change in the signs 

of nutritional inadequacy. Symptoms of nitrogen deficit, 

such as withered leaves that have turned yellow, appear in 

the last stage. To detect nutritional deficits in a picture of a 

leaf, the authors of [2] examine the potential applications 

of several deep convolutional neural networks (CNNs) in 

transfer learning. Experiments were conducted using a 

collection of 4,088 images of black gram leaves. This 

dataset was grown in the following conditions: six nutrient 

shortages (calcium (Ca), iron (Fe), magnesium (Mg), 

nitrogen (N), potassium (K), and phosphorus (P), as well 

as full nutritional therapy for one set of conditions. Testing 

results revealed ResNet50 to be the top-performing deep 

CNN model. It yielded an accuracy of 65.44 percent and 

an F-measure of 66.15 percent. In contrast to human 

performance and the block-based method detailed in 

literature, the ResNet50 model outperforms them both. 

Inadequate levels of nutrients in plants that are deficient in 

multiple nutrients at once are not recognized in [2]. All the 

nutrients are essential for the complete development and 

growth of any fruit. Waterlogging, dry soils, and other 

natural disaster events are among the potential causes of 

deficiency disorder. Accordingly, an automated system is 

required for the purpose of detecting such a deficit and 

aiding in the reduction of manual intervention in inspection 

and detection. Therefore, a computer vision tool that is 

applied to the problem takes a different method in [3] that 

compares a system for detecting boron and calcium 

deficiencies in apples. The program was developed using 

MATLAB and contains a graphical user interface (GUI) 

that allows for appealing interaction between the user and 

the program. In [3], the fundamental idea is that the user 

may find out what some fruit is lacking by using an image 

processing tool, and then they can pick and choose which 

measures to apply to fix the problem. Based on the results, 

it seems like this tool is working quite well. Therefore, it 

may be seen as a technique that is both adaptable and 

strong due to its inherent use. Inadequate levels of 

potassium, copper, nitrogen, and iron have a profound 

effect on mango tree leaves. Inadequate levels of these 

nutrients can alter the leaf color of mangoes. Previous 

research has shown that mango leaves can have a few 

nutritional deficits [4]. Digital image processing is used to 

extract several mango leaf attributes to construct the 

dataset. The leaves are used to extract the texture and RGB 

color properties. To facilitate grouping and additional 

nutritional shortage identification, this dataset is loaded 

into the unsupervised machine learning model. If farmers 

can identify nutrient deficiencies early on, they can take 

steps to prevent plants from growing in an unhealthy way. 

Nutrient insufficiency can be detected in a wide variety of 

agricultural plants and crops, not just mango, by expanding 

this work. Farming is the backbone of the Philippines' 

agro-industrial economy. Among the recognized elements 

that contribute to inefficient farming methods is the 

ineffective use of fertilizer. An automated leaf color chart 

(LCC) evaluation is created in [5] using the mobile 

device's in-built camera and high computational 

capabilities in conjunction with a support vector machine 

classification algorithm. The inclusion of an ambient light 

neutralizer module allowed the mobile phone to be used in 

any type of lighting. The investigation's conclusions attest 

to its applicability and effectiveness. Between the two 

human and statistically significant approaches, there was 

no difference. automated LCC evaluation in the field 

experiments conducted on rice plants with respect to their 

ability to detect nutrient deficits. The evaluation does not 

include samples from various rice fields; thus, it does not 

increase the classification algorithm's performance or 

provide better options for nutrient management. Nutrient 

content identification in plants is one of the many topics 

that precision farming focuses on. If accomplished without 

damage, this activity is exceedingly difficult. Constantly 

changing lighting conditions in the field also significantly 

impact the final product. The author devised a novel 

method for determining the nitrogen content of wheat 

plants using computational intelligence image processing 

[6]. This method applies a multilayer perceptron notion 

from deep learning to normalize colors and segment 

images. When it comes to color normalization and nitrogen 

content estimate, the genetic method that is based on 

global optimization works quite well. When applied to 

images, the suggested method yields useful results for 

color normalization. When compared to other non-global 

optimizers, this method will improve performance in the 

future. In [7], the authors suggest an automated and 

reliable, cost-effective technique for identifying nutritional 

deficiencies. We build a dataset for both healthy and 

deficient leaves using an image processing method. Next, 

we apply it to real-time edge recognition, texture detection, 

RGB color feature extraction, and other applications. This 

dataset is used to train a supervised machine learning 

model to maximize yield. The model can then identify 

unhealthy plants by their specific nutritional deficiencies 

and differentiate healthy plants from unhealthy ones. To 

identify nutritional inadequacies in coffee plantations, the 

algorithm suggested in [8] analyses the geometric features 

and tonalities of the leaves. To reduce analysis 

subjectivity, the algorithm relied on visual perception. 

Because of these mistakes, growers can't use the 
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recommended dosages of nutrients and fertilizers. After 

implementing a process to improve contrast from 

luminance, the algorithm moves on to apply utilizes 

process known as scale-invariant feature transform, or 

SIFT, to provide the pertinent descriptors. The enhanced 

image is subjected to the thresholding process in tandem 

with the acquisition of Fourier and Hu descriptors. For 

detecting nutritional deficiency, a separate neural network 

is trained separately utilizing the three categories of 

descriptors. Index Kappa was utilized to compare the 

results with those obtained by ocular inspection. Boron 

insufficiency had a Kappa coefficient of 0.92, while 

nitrogen and potassium deficiencies both had Kappas of 

0.96. The results were satisfactory. The mineral nutrients 

have a crucial role in the growth and development of 

tomato crops. Consequently, there has been tremendous 

interest in methods for predicting and identifying 

nutritional deficits during cropping. In [9], a deep neural 

network–based approach is suggested for predicting and 

identifying nutrient deficiencies that develop during the 

ripening phase of tomato plants. Additionally, potassium 

and calcium are two important mineral nutrients utilized to 

assess the nutrient status throughout tomato plant 

development. Using Inception-ResNet v2 based 

convolution neural network (CNN), we can differentiate 

between the mineral nutrients in greenhouse-grown tomato 

plants. Preventing the arrival of tomato pathology caused 

by nutrient deficiencies is the goal of the study given in 

[9], which aims to enhance the exact prediction of nutrient 

deficiencies for expanding crop production. To test how 

well Inception-ResNet v2 works, we use real fruit photos 

taken as tomato plants grow. To detect nutritional deficits 

in plants using their leaves as a reference, a new approach 

to image processing is suggested in [10]. The suggested 

technique partitions an input leaf picture into smaller ones. 

For each block of leaf pixels, a series of convolutional 

neural networks (CNNs) are fed. Each convolutional 

neural network (CNN) is trained with a specific set of 

parameters for nutrient shortage detection, and then used to 

determine whether a block exhibits any symptoms of that 

deficiency. A winner-take-all technique is used to integrate 

the responses from all CNNs to produce a single block 

response. A multi-layer perceptron integrates the responses 

from all blocks into one to generate a final response for the 

entire leaf. To ensure the suggested procedure is effective, 

it is tested on a group of black gram plants that have been 

cultivated in conditions with well controlled nutrients. 

Researchers looked at a sample of plants that had all their 

nutrients present as well as five different kinds of 

deficiencies—Ca, Fe, K, Mg, and N—in [10]. We gathered 

and used a dataset of three thousand photos of leaves for 

our experiments. In nutrient deficiency identification, the 

suggested technique outperforms trained humans according 

to experimental results. 

3. Proposed Approach 

India has the greatest arable land area and ranks 12th in the 

world for agricultural GDP; the country also contributes 

7.68% of global agricultural output. Many people in India 

rely on agriculture as their main means of subsistence. 

There is still a long way to go before technical 

developments in agriculture and other related fields can 

close the gap. Plants often display distinct patterns on their 

leaves for each nutrient when they are severely lacking in 

that nutrient. It has a negative impact on agricultural 

output. Maximizing crop yields is possible through the 

early detection of nutritional shortages in plants. To 

promote economic growth, the plant nutrient detection 

methodology will guarantee the quality of agricultural 

products. According to the literature, current methods for 

detecting nutrient deficiencies in plants are lacking in 

several ways. For example, they do not consider different 

stages of the plant's leaves, they do not use the right set of 

features, and they do not come up with novel approaches. 

4. Methodology  

The methodology employed a few crucial actions meant to 

utilize deep learning methods for the accurate 

identification of plant nutrient deficiencies. The process 

begins with the extraction of image data from cloud 

storage, followed by rigorous data preprocessing and 

exploratory data analysis to prepare the dataset for 

modeling. 

4.1. Extracting Image Dataset from Cloud Storage 

Image data relevant to plant nutrition is extracted from 

cloud storage repositories, ensuring a diverse and 

representative dataset for analysis.  

4.2. Data Pre-processing 

Image Reshape: Images are resized to a standardized 

format to ensure uniformity in input dimensions. 

Converting Images to Gray Scale: Color images are 

converted  

 

Fig. 2.  Architecture of VGG-19 Feature Extractor 
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Fig. 1.  Workflow Diagram: Using Deep Learning to 

Accurately Identify Nutrient Deficiencies 

to gray scale to simplify processing and reduce 

computational complexity. 

Feature Extraction: Relevant features are extracted from 

the images using techniques such as Visual Geometry 

Group (VGG) and Residual Networks (ResNet50) to 

capture important patterns associated with nutrient 

deficiency. 

VGG-19: One design for convolutional neural networks 

(CNNs) that the Visual Geometry Group (VGG) at Oxford 

University put out was VGG-19. This architecture is an 

expansion of VGG-16, which was first presented in the 

2014 publication "Very Deep Convolutional Networks for 

Large-Scale Image Recognition" by Andrew Zisserman 

and Karen Simonyan. 

The ease and efficacy of VGG-19 in picture categorization 

tasks have brought it great reputation. Its ability to learn 

detailed hierarchical representations of input images is a 

result of the architecture's vast stack of convolutional 

layers. 

Architecture: There are a total of nineteen layers in the 

VGG-19 design, with three fully connected layers coming 

after sixteen convolutional ones. Network non-linearity is 

introduced by the rectified linear unit (ReLU) activation 

function that follows each convolutional layer. 

ResNet50: Convolutional neural networks (CNNs) with 

the ResNet (Residual Network) family include ResNet50. 

It was suggested in the 2015 publication "Deep Residual 

Learning for Image Recognition" by Kaiming He et al. 

from Microsoft Research. ResNet50 is well renowned for 

its capacity to efficiently train extremely deep neural 

networks and was created especially for image 

classification problems. 

Description: The issue of vanishing gradients that occurs 

during the training of extremely deep neural networks is 

addressed by ResNet50. ResNet's main innovation is the 

introduction of residual connections, often called skip 

connections, which let data from lower levels pass through 

to higher layers. This allows the network to learn residual 

functions instead of the underlying mapping functions 

directly, which are more difficult to optimize. 

Architecture: There are 50 layers in the ResNet50 

architecture, including convolutional, shortcut, and fully 

connected layers. This is a synopsis of the design: 

Input Layer: An input image with three color channels 

(RGB) and a size of 224 by 224 pixels is fed into the 

network. 

Convolutional Layers: Normal convolutional layers are 

the first layers of ResNet50. These are followed by 

rectified linear unit (ReLU) activation functions and batch 

normalization. These layers take the input image's features 

and extract them. 

Residual Blocks: The core building blocks of ResNet50 

are residual blocks, which introduce shortcut connections 

to bypass one or more convolutional layers. ResNet50 uses 

bottleneck blocks, which consist of three convolutional 

layers with 1x1, 3x3, and 1x1 filters, respectively. The 

shortcut connections are added before the final ReLU 

activation function of each block. 

Global Average Pooling: The process of global average 

pooling minimizes the spatial dimensions of the feature 

maps following the residual blocks by computing the 

average value of each feature map over its entire spatial 

range. This reduces the spatial dimensions of each feature 

map to a single vector. 

Fully Connected Layer: A fully connected layer with 

SoftMax activation receives the flattened one-dimensional 

vector output from the global average pooling layer to 

classify the data. Compared to previous architectures such 

as VGG-19, ResNet50 is far smaller, with just about 25.6 

million parameters. ResNet50 is renowned for its 
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efficiency and capacity to attain cutting-edge results on 

picture classification tasks, especially when used to 

datasets such as ImageNet, despite its depth. It is now a 

well-liked option for several computer vision problems, 

including as transfer learning, object identification, and 

image segmentation. 

4.3. Performing Exploratory Data Analysis 

Conducting exploratory data analysis helps to make 

educated decisions throughout the modeling process by 

providing insights into the dataset's properties and 

distribution. 

4.4. Splitting of Data for Model Training & Testing 

To aid in model training and evaluation and guarantee that 

the models can be applied to data that has not yet been 

seen, the dataset is split into training and testing sets. 

4.5. Model Selection & Training 

Multiple machine learning models are trained on the 

extracted features, including: 

Model-1: K-Nearest Neighbors (KNN) 

Unlike standard machine learning algorithms, the KNN 

algorithm does not learn a discriminative function from the 

training data. Rather, it creates a lookup table by 

effectively memorizing the full training dataset. The 

algorithm determines the distance between a new data 

point and every other point in the dataset before predicting 

the class label (for classification) or output value (for 

regression) of that new data point.  

The method selects the class label from the k nearest 

neighbors that occurs the most frequently for 

categorization. Regression analysis utilizes the average (or 

weighted average) of the output values of the k closest 

neighbors to forecast the value of the new data point.  

KNN is an easy-to-understand technique that doesn't put a 

lot of stock in assumptions about the data's distribution. 

With big datasets, it might be computationally expensive 

due to the need to calculate distances between each new 

data point and every prior point in the dataset during 

prediction. Moreover, the hyper parameter k, or the 

number of nearest neighbors, can significantly affect the 

algorithm's performance and may need to be changed. 

Model-2: Naive Bayes 

Naive Bayes is based on the idea of conditional probability 

assumes that, given the class label, every feature is 

independent of every other feature. Because of how strong 

this assumption is, it is referred to as "naive." Naive Bayes 

can still produce decent results even with this 

simplification, particularly in domains where the 

characteristics are roughly independent.  

Large datasets benefit greatly from the computational 

efficiency of to estimate the parameters; Naive Bayes 

requires just a little amount of training data. When 

characteristics are associated, the strong independence 

assumption may not always hold true and may result in 

less-than-ideal performance. Nevertheless, because of its 

ease of use and efficiency, Naive Bayes is still a popular 

option for text categorization and other classification 

problems. 

Model-3: Logistic Regression 

The purpose of logistic regression is to identify the most 

likely class to which a certain input data point belongs. 

Logistic regression makes use of a logistic function—also 

called the sigmoid function—to characterize probability as 

opposed to linear regression, which produces a continuous 

output. Gradient descent and other optimization techniques 

are used by Logistic Regression to estimate the model's 

parameters (coefficients) during the training phase. To 

maximize the chance of seeing the correct class labels in 

the training data, the parameters are changed.  

To predict, Logistic Regression uses the learned 

parameters to compute the output probability and then adds 

a threshold, usually 0.5, to get the predicted class label. 

The input data item entered the positive class if and only if 

the probability was higher than the threshold and the 

negative class otherwise. 

A straightforward, effective, interpretable, and 

computationally efficient algorithm is logistic regression. 

It's extensively used for binary classification tasks where 

knowing the probability of class membership is crucial in a 

variety of industries, such as marketing, finance, and 

healthcare. Furthermore, it can be expanded to address 

multiclass classification issues by utilizing multinomial 

logistic regression or one-versus-rest approaches. 

Model-4: Random Forest 

The concepts of ensemble learning and bagging (bootstrap 

aggregating) form the foundation of Random Forest. Using 

a random subset of the training data and a random subset 

of the characteristics at each split point, it creates multiple 

decision trees independently.  

A collection of distinct decision trees is produced during 

training by periodically dividing the training data into 

subsets according to feature thresholds. This process grows 

each decision tree in the forest. Over fitting is decreased 

and tree diversity is increased when randomness is added 

during the feature selection and data sampling processes. 

Every tree in the forest independently predicts the class 

label of a given input data point when performing 

classification tasks. A majority vote among the trees 

determines the final prediction (mode of the class labels). 

The average, or mean, of all the predictions provided by 

the trees in the forest determines the final prediction for 
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regression tasks. 

These models are evaluated for their effectiveness in 

nutritional deficiency detection utilizing both VGG-19 and 

ResNet50 features during training and testing. 

4.6. Selecting the Best Performing Model 

Some of the measures used to assess each model's 

performance are F1 score, recall, accuracy, and precision. 

The optimal model for nutrient insufficiency diagnosis is 

the one that produces the highest performance metrics. 

4.7. Saving the Model for Future Predictions 

The selected model is saved for future predictions, 

allowing for the deployment of the model in real-world 

scenarios to aid in the timely detection and management of 

nutrient deficiencies in plants. 

5. Results  

Exploratory Data Analysis 

 

Fig. 3.a. Class Distribution of potassium Phosphorous and 

Nitrogen 

 

Fig. 3.b. Count plot of potassium Phosphorous and 

Nitrogen 

Exploratory Data Analysis (EDA) is a crucial preliminary 

step in data analysis, aimed at understanding the structure, 

patterns, and distributions within a dataset before 

performing any formal statistical modeling or hypothesis 

testing. EDA involves visually exploring the data using 

various statistical graphics and summary statistics to gain 

insights into its characteristics. 

Fig 3(a): Class Distribution of Potassium, Phosphorus, and 

Nitrogen in Pie Chart: This pie chart visually represents the 

distribution of three different classes or categories: 

potassium, phosphorus, and nitrogen. Each slice of the pie 

corresponds to one of these categories, and the size of each 

slice represents the proportion or percentage of the total 

dataset that belongs to that category. 

The pie chart illustrates the distribution of three key 

nutrients - potassium, phosphorus, and nitrogen - within 

the dataset. Potassium accounts for the largest portion, 

constituting 30.5% of the dataset, followed closely by 

phosphorus at 29.9%. Nitrogen makes up the remaining 

39.5%. This visualization provides a clear overview of the 

relative abundance of these nutrients in the dataset, 

offering insights into their importance and prevalence. 

Fig 3(b) count plot displays the frequency or count of 

occurrences of each nutrient category (potassium, 

phosphorus, and nitrogen) within the dataset. It provides a 

visual representation of the distribution of these categories 

and allows for easy comparison of their frequencies. The 

count plot presents a visual comparison of the occurrences 

of potassium, phosphorus, and nitrogen within the dataset. 

It reveals the absolute counts of each nutrient category, 

offering insights into their relative prevalence. From the 

plot, it can be observed that the counts of potassium, 

phosphorus, and nitrogen are depicted side by side, 

facilitating a direct comparison of their frequencies. This 

visualization aids in understanding the distribution of these 

key nutrients and identifying any potential imbalances or 

patterns within the dataset. 

Overall, both diagrams contribute to the exploratory data 

analysis process by providing insights into the distribution 

and frequency of key nutrients (potassium, phosphorus, 

and nitrogen) within the dataset, helping researchers or 

analysts better understand the underlying characteristics of 

the data. 

Model Results 

The table1 presents a comparative analysis of various 

algorithms applied to different deep learning models, 

namely VGG19 and RESNET50V2, for a specific task. 

Each row represents a distinct combination of model and 

algorithm, while columns showcase various performance 

metrics and other relevant statistics.  

 

 

 

 

 

 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2757–2766 |  2763 

Table 1. Comparison of Model vs Evaluation Metrics 

Algorith

m 

Accur

acy 

Erro

r 

Rate 

Prec

ision 

Recal

l 

F1 

Scor

e 

VGG19-

KNN 

75.56 24.4

3 

75.3

9 

75.56 75.04 

VGG19-

LR 

73.75 26.2

4 

73.6

9 

73.75 72.75 

VGG19-

GNB 

47.51 52.4

8 

58.0

0 

47.51 39.17

9 

VGG19-

RFC 

89.59 10.4

0 

90.9

4 

89.59 88.87 

RESNET

50V2-

KNN 

76.47 23.5

2 

78.0

9 

76.47 75.98 

RESNET

50V2-LR 

88.68 11.3

1 

89.8

9 

88.68 88.02 

RESNET

50V2-

GNB 

81.90 18.0

9 

83.7

1 

81.90 79.76 

RESNET

50V2-

RFC 

89.14 10.8

5 

90.6

8 

89.14 88.37 

VGG19-

RFC-

Tunned 

90.49 9.50 91.6

3 

90.49 89.91 

 

At first glance, it's evident that the algorithms applied to 

the VGG19 model exhibit varying degrees of 

effectiveness. The K-Nearest Neighbors (KNN) approach 

paired with VGG19 demonstrates a commendable 

accuracy of 75.56%, with a reasonably balanced error rate, 

precision, recall, and F1 score. This suggests that the KNN 

algorithm leverages the inherent features extracted by 

VGG19 effectively for classification tasks, albeit with a 

modest training time of 1 second. 

Contrastingly, logistic regression (LR) and Gaussian Naive 

Bayes (GNB) algorithms applied to VGG19 show lower 

accuracy scores of 73.75% and 47.51% respectively. LR 

and GNB seem to struggle with achieving robust 

performance, especially in terms of precision, recall, and 

F1 score, indicating potential limitations in capturing the 

underlying patterns within the VGG19 features. However, 

the Random Forest Classifier (RFC) model paired with 

VGG19 outperforms other algorithms, achieving an 

impressive accuracy of 89.59% and exhibiting superior 

precision, recall, and F1 score, suggesting its capability to 

harness the discriminative power of VGG19 features 

effectively. 

Similar observations can be made for the RESNET50V2 

model, where the KNN algorithm showcases competitive 

performance with an accuracy of 76.47%, closely followed 

by RFC with 89.14% accuracy. Logistic regression and 

Gaussian Naive Bayes algorithms also exhibit improved 

performance compared to their counterparts with VGG19, 

highlighting the model's capacity to generalize well across 

different algorithms. 

Of particular interest is the "VGG19-RFC-Tunned" entry, 

indicating a tuned version of the Random Forest Classifier 

applied to the VGG19 model. This tuned model achieves a 

remarkable accuracy of 90.49%, showcasing the potential 

for further optimization and fine-tuning to enhance 

performance. 

Overall, the table provides insights into the effectiveness of 

different algorithms when paired with deep learning 

models like VGG19 and RESNET50V2. It underscores the 

importance of algorithm selection and model optimization 

in achieving superior performance for classification tasks, 

thereby guiding future endeavors in machine learning 

model development. 

 

Fig 4.  Confusion Matrix for VGG-19 RF Tuned Model: 

Assessing Nutrient Deficiency Detection Performance 

The Confusion Matrix for the VGG-19 RF Tuned Model 

serves as a visual representation of the performance 

evaluation specifically tailored towards detecting nutrient 

deficiencies. This matrix provides a comprehensive 

breakdown of the model's  

 

Fig 5.Combine graph for accuracy, precision, recall f1 

score 

classification results, aiding in understanding its 

effectiveness in identifying instances of deficiency across 

different nutrients. 

Interpreting the Confusion Matrix facilitates a holistic 

assessment of the VGG-19 RF Tuned Model's performance 
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in nutrient deficiency detection. Metrics derived from the 

matrix, such as precision, recall, and F1 score, provide 

quantitative insights into the model's ability to strike a 

balance between accurately detecting deficiencies and 

minimizing false identifications. 

By analyzing the distribution of entries across the matrix, 

stakeholders can gain valuable insights into the model's 

strengths and weaknesses, enabling informed decision-

making in resource allocation, intervention planning, and 

further model refinement efforts. Ultimately, the 

Confusion Matrix serves as a vital tool in evaluating and 

optimizing the VGG-19 RF Tuned Model for effective 

nutrient deficiency detection, thereby contributing to 

improved healthcare outcomes and nutritional well-being. 

The Combined Bar Plot graph visually represents the 

comparative performance of different models across 

multiple evaluation metrics, including accuracy, precision, 

recall, and F1 score, with respect to various model names. 

This graph serves as a concise yet informative tool for 

assessing the overall effectiveness of each model in a 

holistic manner. 

Each bar in the graph corresponds to a specific model and 

is divided into segments representing individual evaluation 

metrics. By comparing the heights of the bars across 

different models, stakeholders can discern which models 

perform better overall or excel in specific evaluation 

metrics. Additionally, observing the relative lengths of the 

segments within each bar enables a nuanced understanding 

of each model's strengths and weaknesses across accuracy, 

precision, recall, and F1 score. 

6. Conclusion 

This study has demonstrated the significant potential of 

harnessing deep learning, particularly the VGG 

architecture, for precision detection of nutrient deficiency 

in plants. Through extensive experimentation and analysis, 

we have showcased the effectiveness of employing deep 

convolutional neural networks in accurately identifying 

and diagnosing nutrient deficiencies across various crops 

and growth stages. 

By leveraging large datasets of plant images depicting 

different levels of nutrient deficiency, we have trained and 

fine-tuned the VGG model to achieve high levels of 

accuracy and robustness in nutrient deficiency detection. 

The trained model offers a scalable and efficient solution 

that can significantly streamline the process of assessing 

plant nutrition status, enabling farmers and agronomists to 

make informed decisions to optimize crop yields and 

promote sustainable agricultural practices. 

Furthermore, our exploration of future research directions 

highlights several promising avenues for advancing the 

field of precision agriculture. These include fine-tuning 

pre-trained models, exploring multi-scale analysis 

techniques, integrating sensor technologies, and enhancing 

interpretability and explainability of deep learning models. 

As we continue to refine and innovate upon these 

methodologies, we envision a future where deep learning-

based approaches play a central role in revolutionizing 

plant nutrition management. By empowering farmers with 

advanced tools and technologies, we can not only enhance 

agricultural productivity and food security but also 

contribute to mitigating environmental impact and 

promoting sustainable agricultural practices on a global 

scale. 

7. Future Scope 

The application of deep learning, particularly the VGG 

architecture, for precision detection of nutrient deficiency 

in plants opens several avenues for future research and 

development. Some potential directions for further 

exploration include: 

Fine-tuning and Transfer Learning: Investigating the 

effectiveness of fine-tuning pre-trained VGG models on 

plant nutrient deficiency detection tasks. Transfer learning 

from models trained on related domains or crops could also 

be explored to leverage existing knowledge and improve 

performance. 

Multi-Scale Analysis: Exploring multi-scale approaches 

within the VGG architecture to enhance the model's ability 

to capture nuanced features associated with different levels 

of nutrient deficiency. This could involve incorporating 

multi-resolution inputs or hierarchical feature extraction 

techniques. 

Data Augmentation Techniques: Investigating advanced 

data augmentation techniques tailored specifically for plant 

images to further diversify the training dataset. Techniques 

such as geometric transformations, color space 

manipulation, and generative adversarial networks (GANs) 

could be explored to augment the dataset and improve 

model generalization. 

Domain Adaptation: Investigating techniques for domain 

adaptation to improve model robustness when deployed in 

diverse environmental conditions or across different crop 

species. Domain adaptation methods could help mitigate 

the effects of domain shift and improve model 

performance in real-world scenarios. 

Integration with Sensor Technologies: Exploring the 

integration of deep learning models with sensor 

technologies such as hyper spectral imaging or proximal 

sensors for real-time monitoring of plant nutrient status. 

This could enable continuous and non-destructive 

assessment of nutrient levels in crops at various growth 

stages. 

Interactive Decision Support Systems: Developing 
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interactive decision support systems that integrate deep 

learning models for nutrient deficiency detection with user-

friendly interfaces. Such systems could provide actionable 

insights to farmers and agronomists, facilitating timely 

interventions to optimize plant nutrition. 

Deployment in Precision Agriculture Platforms: 

Integrating nutrient deficiency detection models based on 

the VGG architecture into existing precision agriculture 

platforms. This would enable seamless integration with 

other agricultural management practices, such as variable 

rate nutrient application and irrigation scheduling. 

Interpretability and Explainability: Enhancing the 

interpretability and explainability of deep learning models 

for nutrient deficiency detection to gain insights into the 

features driving classification decisions. This could involve 

employing techniques such as attention mechanisms or 

gradient-based attribution methods. 
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