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Abstract: Urban areas have drastically increased their population, which results in a shortage of resources like transportation, electricity, 

water, housing, public services, etc. Therefore, it is important to have a strategy for urban area improvement with the aid of a smart city, 

which is more apparent when using Wireless Sensor Networks. This study suggests a brand-new, machine learning-based technique for 

effective data mining for scheduling in smart cities. This works aims to initiate a data prediction method through Recurrent Neural 

Network, namely recurrent encoder neural netwoks (REncNN) reshold Denoising then remove and discover abstract features of sensory 

data. Hence predicted data are scheduled in multi-layer network design to contain sensor/device networks in the encoder block of the 

network. The simulation is done in MATLAB by picking the parameter such as Packet Delivery Ratio (PDR), throughput, network 

lifetime, Prediction rate, RMSE, RAE. As a result, the proposed REncNN achieves 89.84% of Packet Delivery Ratio, 95.34% of 

throughput, 81% of network lifetime, 80.94% of prediction rate, 43.12% of MAE, 44.32% of RMSE and 41.92% of RAE. 

Keywords: WSN, Data prediction, Internet on Things(IoT), scheduling, pre-processing, neural network, smart city. 

1. Introduction 

Internet of Things (IoT) has advanced quickly in recent 

years, and WSN are now widely used because of their less 

energy consumption, versatility, and large deployment[1, 

2]. These networks work by sensing, gathering, processing, 

and transmitting sensory data by cooperating between 

nodes[3]. The effectiveness of utilizing data prediction 

techniques to eliminate pointless data transmission 

enhances data collecting quality and lengthens network 

lifetime [4]. To forecast specific sensory data, present 

approaches typically rely on periodicity and redundancy 

and base their predictions on previous data, which leads to 

low prediction stability and biassed predictions [5]. Data 

recovery from lost data is aided by correlation of the 

sensory data. The temporal correlation, for instance, can be 

seen when the physical environment is constantly 

changing. 

On the one hand, when the collection length is short 

enough[6], value of successive sensory data for a single 

node is often continuous. Instead, sensors are placed in 

similar physical or environmental settings, and the 

information they gather is typically spatially correlated [7]. 

The prediction method can assist end-users in anticipating 

periodic change of monitored object or area, making it 

possible to manage any potential risks [8]. Data 

pretreatment can enhance data quality by recovering part 

of sensory data that has been lost or converted to a 

distorted version compared to original value [9]. Deep 

learning has advanced considerably in recent years [10]. 

We chose to use deep neural network-based WSNs in this 

work due of these important factors. The following are the 

main contributions of this paper: 

• Quantile Probability Distribution is used here to 

analyse the data from the smart environment for 

further scheduling.  

• The recurrent encoder neural network (REncNN), 

trained to find the ideal next hop, forms the basis 

of the data prediction technique. 

Paper is organized as: In section 1, background of 

wireless sensor networks,data prediction model and 

application of DL in data prediction are discussed 

along withthe contribution. In section 2, existing 

techniques for data prediction in wireless sensor 

networks are discussed. Section 3 gives proposed 

recurrent encoder neural netwoks (REncNN) with 

preprocessing, data analysis, and prediction. Graphs 

are produced and experimental analysis is completed 

in section 4. Section 5, which includes conclusion as 

well as future work, concludes essay. 

2. Related works 

Creating intellectual phenomena, such as a method for data 

evolution, is a component of data prediction. The 

following explanations of data prediction strategies help to 

achieve this goal: According to [13], the data collection 

process in IoT-enabled WSN is congested. A RNN based 
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LSTM termed RNN-LSTM, which separates network into 

multiple layers as well as places them into SNs, is included 

in the provided DMM method in [14]. Adaptive Firefly 

Routing technique is used in conjunction with an unique 

routing method based on the Q-learning framework as well 

as Deep Extreme Learning Machines in [15]. In order to 

achieve an effective and autonomous calibration 

procedure, a novel Received Data Strength Indicator based 

on Indoor Ranging Model utilising Deep Learning 

(IRMDL) was developed in [16]. A SWSNM built on 

GAN method, a type of unsupervised learning technique, is 

introduced in [17]. A generator (G) network and a 

discriminator (D) network make up SWSNM. Proposed 

prediction model is utilised in the WSN-IoT smart city 

architecture shown below to address these problems. 

3. System Models 

The smart city architecture is considered with various 

applications such as smart healthcare, smart agriculture, 

smart transportation and smart education, where sensor 

data in a wireless network sense the data. Hence, it is 

forwarded to the WSN-IoT gateway in the network layer. 

The data prediction and scheduling take place in this layer. 

Hence, the optimized data is transmitted to WSN-IoT 

architecture, which then forward to user devices as given 

in the fig.1. 

 

Fig. 1.  Architecture of WSN-IoT for Data Prediction and 

Scheduling 

3.1 Analyzing Data Quality by Quantile Probability 

Distribution (QDP)  

The sensors are supposed to be unlabeled and fully 

distributed throughout the sensor network, which does not 

contain a fusion centre. Each node uses the edges to 

communicate with its neighbours. The greatest degree is 

dmax, while the degree dn indicates number of neighbours 

at node n. If there is at least one path between each pair of 

nodes in a graph, it is said to be linked. The wireless 

communication channel used by each node n to 

communicate inside neighbourhood Nn is tainted by 

random noise. Equation (1) illustrates how a Quantile 

Probability Distribution (QDP) produces the state ωn(i) in 

the following way: 

ωn(i) → θp, ∀n    (1) 

p equals n, the number of nodes. Let ωn(i) and ψn(i) stand 

for the quantile estimate state and an intermediate state 

variable, respectively, at iteration i. Based on the nearby 

measurement information xn for specified constant p, node 

n modifies its state ωn(i). The algorithm starts with a local 

update of intermediate variable ψn(i), which ωn(i) is then 

updated throughout the averaging phase. Equation (2) 

provides the local update step: 

ψn(i)=𝜔𝑛(𝑖)−∝ (𝑖)[𝑢𝜔𝑛(𝑖) − 𝑥𝑛) − 𝑝]     (2) 

where 𝑒𝑖 ≥ 0 is a sequence with deterministic step size. 

Following that, as indicated in equation (3), the averaging 

step is carried out at node n: 

ψn(i+1)=𝜔𝑛(𝑖) − 𝛽(𝑖) ∑ ψn(i) − (ψn(i) + π(i)]𝑖∈𝑁  (3) 

Where ψn (i)  represents the state that is transferred from 

node I while being affected by communication random 

noise at node n, π(i)n represents set of node neighbours, 

and 𝛽(𝑖) is step-size that regulates the exchange rate 

between node n and its neighbours at any given time. 

Iterative procedure is used in the Quantile Probability 

Distribution (QDP) method. As demonstrated in equation 

(4), the step-size I must drop more quickly than the data 

for i → ∞,  to converge as α(i) 

ω(i + 1) = ω(i) − η(i)L ω(i) − α(i)y(i) − α(i)y(i) –π (i) (4) 

3.2 Data Preprocessing using Dohono Threshold 

Denoising 

Equation (5) illustrates how the fundamental noise model 

can be represented if the original data is assumed to be f(t) 

and the polluted noise data is assumed to be s(t): 

s(t) = f(t) + σe(t)     (5) 

When the noise is represented by e(t) and the noise 

strength by σ. We typically assume that e(t) is Gaussian 

white noise. 

Ti = σ √2logN     (6) 

Risk given by estimate is the one that is closest to 

lowest theoretical risk it as shown in equation (7).  

k(u, v) = corr(u, v) *
√𝑃𝑤(𝑢)/𝑃𝑐𝑜𝑟𝑟(𝑣)

𝑤(𝑢,𝑣)
   (7) 

where,𝑃𝑤(𝑢) = ∑ 𝑤(𝑢, 𝑣)2
𝑣 , ‘*’ indicates convolution, 

𝑃𝑐𝑜𝑟𝑟(𝑣) = ∑ 𝑐𝑜𝑟𝑟(𝑢, 𝑣)2
𝑣  

The modulus values are more than one or less than one at 

various scales, depending on the various properties of 
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random noise and coefficients of data. New specification h 

(u, v) should be defined as per equation (8): 

h(u, v) = 1 − ln|k(u, v)|    (8) 

 

Thus, equation (9) shows how the new double threshold 

approach is set: 

𝑤(𝑖. 𝑗) =

{

𝑠𝑔𝑛(𝑤𝑗, 𝑘) ∗ [𝑤𝑗, 𝑘] − 𝜇1𝑒𝜇1−𝜇2]       𝑤ℎ𝑒𝑟𝑒, [𝑤𝑗, 𝑘] ≥ 𝜇1

𝑠𝑔𝑛(𝑤𝑗, 𝑘) ∗ [𝑤𝑗, 𝑘] − 𝜇1𝑒𝜇1−𝑤𝑗,𝑘]     𝑤ℎ𝑒𝑟𝑒𝜇1 < 𝜇2

0       𝑤ℎ𝑒𝑟𝑒[𝑤𝑗, 𝑘] < 𝜇1

  (9) 

where 𝜇2 is the upper threshold and𝜇1is the lower 

threshold, satisfying 𝜇1 = k𝜇2 and 0<k<[𝑤𝑗, 𝑘] function is 

continuous at both threshold points, 𝜇1<[𝑤𝑗, 𝑘] < 𝜇2as 

[𝑤𝑗, 𝑘]increases as shown in fig. 2. 

 

Fig. 2.  Flow Chart for Improving Data Quality 

3.3 Efficient Data Prediction and Scheduling 

Recurrent encoder neural networks (REncNN) incorporate 

weighted-importance of input relevant series into 

consideration as compared to single attention encoder-

decoder design, as seen in fig. 3. 

 

 

Fig. 3. Data Prediction and Scheduling using Recurrent 

Encoder Neural Netwoks (REncNN)  

Finally, as stated in equation (10) the encoding procedure 

is updated: 

Encode stage: ht = f1 ( xt, ht-1)   

 (10) 

 

The equation (11) illustrates the transformation of each 

original component into a weighted one. 

xt= (α1
t x1

t, α2
t x2

t, α3
t x3

t…… αn
txn

t) T   (11) 

The hidden state ht-1 and entire kth relevant sequence xk= 

[xk
1, xk

2, . . . ,xk
T ] in all time steps define the attention 

weight ak
t. The second attention model used here uses a 

softmax normalisation and another completely linked 

network, as indicated in equations (12) and (13): 

ek
t= vT

etanh(We[ht-1; xk]),       1≤ k ≤ n  (12) 

and 

αt 
k = 𝑒−𝑥𝑡√𝑛 − 1       (13) 

Neuron i in layer m produces signal depicted in equation 

(14): 

𝐼𝑖
(𝑚)

= 𝑓𝑅𝑒𝐿𝑢(𝑏(𝑚,𝑖) + ∑ 𝐼𝑗
(𝑚−1)

𝑊𝑗
(𝑚,𝑖)

𝑗 )                                

(14) 

Here, 𝑓𝑅𝑒𝐿𝑢(. ) Rectified Linear Unit (ReLU) with the 

activation function 𝑓𝑅𝑒𝐿𝑢(𝑎) = max (0, 𝑎). Here, two 

distinct output function types are taken into consideration. 

The softmax function is a typical output function in 

classification problems with K classes, as demonstrated in 

equations (15) and (16): 

      𝑓𝑖 =
exp (𝐼𝑖

(𝑜)
)

∑ exp (𝐼
𝑗
(𝑜)

)𝑗

                                                    

(15) 

𝐼𝑖
(𝑜)

= 𝑏(𝑜,𝑖) + ∑ 𝑊𝑘
(𝑜,𝑖)𝑘

𝑘=1 𝐼𝑘
(𝑁)

   (16) 

We additionally take into account the logistic output 

function variation represented by equation (17): 
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𝑓 = 𝑎 + (𝑏 − 𝑎)(1 + exp (𝑏(𝑜) + ∑ 𝑊𝑗
(𝑜)

𝑗 𝐼𝑗
(𝑁)

)−1  (17) 

This generates a continuous output f with parameters 

𝑏(𝑜)𝑎𝑛𝑑𝑊(𝑜)that must fall within the range (a, b). The 

decoding process's equation is presented as illustrated in 

equation (18): 

Decode stage: dt = f2( ct,yt, dt-1)   (18) 

The Long Short Term Memory unit is primarily used 

because it can circumvent issue of vanishing gradients as 

well as more effectively record long-term interdependence 

of time series. The required result is produced by feature 

representation in the previous time step yT+1, as illustrated 

in equation (19): 

yT+1 = F(y1,y2……yT,x1,x2,…..xT,z1,z2,…..zT )               

(19) 

A multi-level feature fusion perspective might be used to 

explain the use of cT in final prediction phase. All of the 

embedded data from the encoder module is included in cT 

because it is weight-sum of (h1, h2,...,hT). Gradient range 

is maintained by this skip connection in a manner similar 

to that of res-block or dense-block. 

Algorithm 

Input- sensory data (D={x1,yz,z1,z2,y2,z2,…..xn,yn,zn} 

Output- scheduled data 

Learning (L)= L1 , L2, . . . , Ln; 

start training (t) method 

  ht = Lt(D) 

D0 = φ; 

for i = 1, . . . , m:  

zit = hi (xi ) 

end; 

  For every view 

class cjHj(x) 

if 

 Hj(x)=𝑤𝑖 ∗ ℎ𝑖(𝑥) 

Hj(x)= 𝑤𝑖(𝑗) ∗ ℎ𝑖(𝑥) 

Hj(x)= Hj(x) 

End if 

  Train learnerview on Liter 

     Allocate class probabilities 

for every ui ∊Uiter 

     For every class 

Detect top class=Iter+1 

Update method 

4. Performance Analysis 

Experimental result is carried out in MATLAB-19 

software, and parameters utilized for analysis are Packet 

Delivery Ratio (PDR), throughput, network lifetime, 

Prediction rate, MAE, RMSE,and RAE. These 

specifications are compared with three states of art 

techniques such as RNN based LSTM called RNN-LSTM, 

Q-Deep Extreme Learning Mechanism (Q-DELM) and 

Indoor Ranging Model utilizing DL (IRMDL) with the 

proposed recurrent encoder neural netwoks (REncNN).The 

operational parameter of the network is shown in Table-1. 

Table 1. : Operational Parameters 

Operational Parameters Values 

Epochs 900 

Hidden layers 7 

Batch Size 16 

Learning Rate Drop 1e-2 

Batch normalization 

epsilon 
10-4 

Initial Learn Rate 1e-2 

Learn Rate Drop Period 40 

 

Packet Delivery Ratio (PDR) - It is average ratio of the 

total packets received (R)successfully to the total packets 

originally sent (S)as shown in equation (20): 

PDR= ∑
𝑅

𝑆

𝑁
0     (20) 

Table 2 shows the comparison of Packet Delivery Ratio 

(PDR)between existing RNN-LSTM Q-DELM, IRMDL 

and proposed REncNN techniques. 

Table 2. Comparison of Packet Delivery Ratio (PDR) 

Number 

of Epochs 

RNN-

LSTM[14] 

Q-

DELM[15] 
IRMDL[16] 

REncNN 

[Proposed] 

100 85 85.2 85.4 89.2 

300 85.6 87 94.9 89.9 

500 86.2 89.2 96.3 90.6 

700 87.3 91.8 98 91.5 

900 89 93 99 93 
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Fig. 4. Comparison of throughput 

 

Fig. 5 gives comparison of throughputbetween existing 

RNN-LSTM Q-DELM, IRMDLmethods,  and proposed 

REncNN technique where X-axis is number of epochs, Y-

axis is number of layers utilized for analysis, and Z-axis is 

thethroughput in %. When compared, existing RNN-

LSTM Q-DELM, IRMDLmethods achieve 

80.82%,88.38% and 85.22%, while proposed REncNN 

method attains 95.34%, which is 15.52% better than RNN-

LSTM,7.04% better than Q-DELM and 10.12% better than 

REncNN. 

• Network Lifetime (NL)- Network lifespan is the 

maximum amount of time that all nodes in the 

network can last before one or more of them run out 

of energy. Equation (22) illustrates the formula as 

follows: 

NL=∑ 𝐸𝑡𝑥(𝑘, 𝑑) + ∑ 𝐸𝑟𝑥(𝑘)𝑟
𝑟=1

𝑇
𝑇=1  

 (22) 

Where,Etx(k, d) is the transmitted energy betweennode k 

and d,Erx(k) is the remaining energy at the destination 

side x(k) 

Table 3 gives comparison of network lifetime between 

existing RNN-LSTM Q-DELM, IRMDL and proposed 

REncNN techniques. 

Table 3. Comparison of Network Lifetime 

Number 

of 

epochs 

RNN-

LSTM[14] 

Q-

DELM[15] 
IRMDL[16] 

REncNN 

[proposed] 

100 62.1 63.2 64.2 76.7 

300 62.5 63.3 65.6 80.5 

500 64.6 64.5 66.7 81.8 

700 65.8 67.8 68.9 84.6 

900 67.5 68.4 69.1 86.4 

 

 

Fig. 5 Comparison of network lifetime between    existing   

and proposed Technique 

Fig. 5. Compares network lifetime between existing RNN-

LSTM Q-DELM, IRMDLmethods,  and proposed 

REncNN technique where X-axis is number of epochs, Y-

axis indicates number of layers utilized for analysis, and Z-

axis is network lifetime values in %.  When compared, 

existing RNN-LSTM Q-DELM, IRMDLmethods achieve 

63.3%,64.24% and 65.9%, while proposed REncNN 

method attains 81%, which is 19.1% better than RNN-

LSTM,17.24% better than Q-DELM and 16.9% better than 

REncNN. 

• Prediction rate-To produce a prediction rate, it 

is necessary to estimate the number of data and 

the residual standard deviation to provide a 

good estimate of the forecast standard deviation.  

Table 5 gives comparison of prediction rate 

between existing RNN-LSTM Q-DELM, IRMDL 

and proposed REncNN techniques. 

Table 4. Comparison of Prediction Rate 

Number 

of epochs 

RNN-

LSTM[14] 

Q-

DELM[15] 
IRMDL[16] 

REncNN 

[proposed] 

100 51.1 53.1 54.2 76.8 

300 52.2 53.3 55.4 80.9 

500 54.5 54.8 56.9 81.1 

700 55.4 57.6 58.4 84.4 

900 57.5 58.4 59.6 86.5 
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Fig. 6 Comparison of prediction rate 

Fig. 6 gives comparison of prediction rate between existing 

RNN-LSTM Q-DELM, IRMDLmethods, and proposed 

REncNN technique where X-axis shows number of 

epochs.  When compared, existing RNN-LSTM Q-DELM, 

IRMDLmethods achieve 53.14%,54.44% and 55.9%, 

while proposed REncNN method attains 80.94%, which is 

27.54% better than RNN-LSTM,26.5% better than Q-

DELM and 25.04% better than REncNN. 

MAE- The error between two observations reflecting the 

same phenomenon is measured by this metric. 

Comparisons between projected and observed data, 

subsequent time and starting time. The formula is given in 

equation (23) as follows: 

MAE= ∑ (𝑦𝑖 − 𝑥𝑖)𝑛
𝑖=1    (23) 

The new REncNN approach is compared to the existing 

RNN-LSTM Q-DELM, IRMDL, and existing RNN-LSTM 

methods in Table 6 in terms of MAE. 

Table 5. Comparison of MAE 

Number 

of 

epochs 

RNN-

LSTM[14] 

Q-

DELM[15] 
IRMDL[16] REncNN[proposed] 

100 66.4 44.2 43.1 41.1 

300 70.9 45.3 43.3 42.2 

500 71.1 46.9 44.8 44.1 

700 74.4 48.4 47.4 45.7 

900 76.5 49.6 48.4 47.5 

 

Fig. 7 Comparison of MAE 

Fig. 7 shows comparison of MAE between 

existing RNN-LSTM Q-DELM, IRMDLmethods,  and 

proposed REncNN technique where X-axis shows number 

of epochs, Y-axis is MAE values in %.  When compared, 

existing RNN-LSTM Q-DELM, IRMDL technique 

achieve 70.86%,45.88% and 44.4%, while proposed 

REncNN method attains 43.12%, which is 27.24% better 

than RNN-LSTM,2.76% better than Q-DELM and 1.32% 

better than REncNN. 

RMSE- It is a frequently employed statistic for contrasting 

values predicted by a model or evaluate with values 

actually observed. Equation (24) gives following formula: 

RMSE = √∑ (𝑦′(𝑡) − 𝑦(𝑡)𝑇
𝑡   

 (24) 

Table 6 gives comparison of RMSE between existing 

RNN-LSTM Q-DELM, IRMDL methods and proposed 

REncNN techniques. 

Table 6. Comparison of RMSE 

Numbe

r of 

epochs 

RNN-

LSTM[14

] 

Q-

DELM[15

] 

IRMDL[16

] 

REncNN[propose

d] 

100 68.4 46.2 45.1 43.1 

300 72.9 47.3 45.3 44.2 

500 73.1 48.9 46.8 45.1 

700 76.4 50.4 49.4 46.7 

900 78.5 52.6 50.4 47.5 
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              Fig. 8. Comparison of RMSE 

Fig. 8 shows the comparison of RMSE between existing 

RNN-LSTM Q-DELM, IRMDLmethods,  and proposed 

REncNN technique where X-axis is number of epochs, Y-

axis is RMSE values obtained in %.  When compared, 

existing RNN-LSTM Q-DELM, IRMDLmethods achieve 

72.86%,47.88% and 46.4%, while proposed REncNN 

method achieves 44.32%, which is 28.54% better than 

RNN-LSTM,3.44% better than Q-DELM and 2.08% better 

than REncNN. 

RAE- When comparing a mean error (also known as a 

residual) to errors produced by a simple or naive model, 

the relative absolute error is expressed as a ratio. The 

formula is given in equation (25) as follows: 

RAE = 
∑ (𝑝𝑖−𝐴𝑖)2𝑛

𝑖=1

∑ 𝐴𝑖𝑛
𝑖=1

   

 (25) 

Table 8 gives comparison of RAE between existing RNN-

LSTM Q-DELM, IRMDL techniques and proposed 

REncNN method. 

Table 7. Comparison of RAE 

Number 

of 

epochs 

RNN-

LSTM[14] 

Q-

DELM[15] 
IRMDL[16] 

REncNN 

[proposed] 

100 61.4 44.2 42.1 40.1 

300 63.9 45.3 44.3 41.5 

500 66.2 47.5 45.5 42.1 

700 69.4 46.4 47.4 44.4 

900 71.3 50.6 48.1 46.5 

 

         Fig. 9 Comparison of RAE 

Fig. 9 gives comparison of RAE between existing RNN-

LSTM Q-DELM, IRMDLmethods,  and proposed 

REncNN technique where X-axis is number of epochs, Y-

axis is RAE values obtained in percentage.  When 

compared, existing RNN-LSTM Q-DELM, IRMDL 

methods achieve 65.44%,45.82% and 44.48%, while 

proposed REncNN method attains 41.92%, which is 

28.54% better than RNN-LSTM,5.44% better than Q-

DELM and 2.08% better than REncNN. 

Table 8 shows the Overall comparison between 

existing RNN-LSTM Q-DELM, IRMDL and proposed 

REncNN techniques. 

Table 8. Overall Cmparison between Proposed and 

Existing Techniques 

Parameters RNN-

LSTM[14

] 

Q-

DELM[15

] 

IRMDL[16

] 

REncNN  

[proposed

] 

PDR(%) 86.62 89.24 94.72 90.84 

Throughput(%

) 

81.82 89.38 86.22 96.34 

Network 

Lifetime(%) 

64.3 65.24 66.9 82 

Prediction 

Ration(%) 

54.14 55.44 56.9 81.94 

MAE(%) 71.86 46.88 45.4 44.12 

RMSE(%) 73.86 48.88 47.4 45.32 

RAE(%) 66.44 46.82 45.48 42.92 

 

5. Conclusion 

The wireless sensor network gathers sensory data from a 

variety of sensors based on nodes, which demonstrates the 

regional variations in a number of environmental 

parameters. In this study, we build a multi-feature method 

based on LSTM and a recurrent encoder NN (REncNN) to 

predict the various sensory inputs. First, to enhance quality 

of data, the Quantile Probability Distribution (QDP) and 

Dohono Threshold Denoising are employed. Then, Dual 

Encoding RNN is utilized to learn prediction features 
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respectively. Finally, scheduling process is done to transfer 

the data.Parameter such as Packet Delivery Ratio (PDR), 

throughput, network lifetime, Prediction rate, RMSE, RAE 

and RAE by comparing with state-of-art methods such as 

RNN based LSTM called RNN-LSTM, Q-Deep Extreme 

Learning Mechanism (Q-DELM) and Indoor Ranging 

Model using Deep Learning (IRMDL). As a result, the 

proposed REncNN achieves89.84% of Packet Delivery 

Ratio, 95.34% of throughput, 81% of network lifetime, 

80.94% of prediction rate, 43.12% of MAE, 44.32% of 

RMSE and 41.92% of RAE. The future work is to include 

a clustering process and secure routing protocol to reduce 

energy consumption in network and to improve the 

machine learning based predictive value analysis. 
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