

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2845–2854 | 2845

Unveiling the Potential of YOLOv9 through Comparison with YOLOv8

Hafedh Mahmoud Zayani*1, Ikhlass Ammar2, Refka Ghodhbani3, Taoufik Saidani3, Rahma Sellami4,

Mohamed Kallel5, Amjad A. Alsuwaylimi6, Kaznah Alshammari6, Faheed A. F. Alrslani6, Mohammad H.

Algarni7

Submitted: 29/01/2024 Revised: 07/03/2024 Accepted: 15/03/2024

Abstract: This study introduces YOLOv9, a new object detection model building upon the success of YOLOv8. While YOLOv8 has

delivered impressive results, there was a push to further enhance accuracy and efficiency. We delve into the architectures of both YOLO

models to understand the trade-off between training speed and accuracy. YOLOv9 introduces additional complexity compared to its

predecessor, which translates to superior performance. To evaluate the models' capabilities, we leveraged a tomato disease detection dataset

from Roboflow. This dataset encompasses three disease classes for tomato fruits, along with a healthy class. Our experiments demonstrate

that YOLOv9 achieves a significant improvement in accuracy (93.6% vs. 92%), while maintaining comparable training efficiency.

However, it requires slightly longer training times compared to YOLOv8. To further substantiate these results, we present comprehensive

analyses of precision, recall, F1-score, and loss functions during both training and validation stages. Additionally, in the testing phase,

YOLOv9 exhibits superior precision in detecting tomato diseases. While requiring slightly more training resources, YOLOv9 offers a

compelling trade-off between accuracy and efficiency. This makes it a promising choice for applications where precise object detection is

paramount.

Keywords: YOLOv9, YOLOv8, Object Detection, Training Efficiency, Accuracy.

1. Introduction

Deep learning has revolutionized various fields, and object

detection is no exception. The YOLO (You Only Look

Once) family stands out for its speed and efficiency. Unlike

traditional methods, YOLO predicts bounding boxes and

object probabilities in a single pass. This has led to the

development of several YOLO versions, each building upon

the strengths of its predecessor.

Past iterations of YOLO have focused on specific goals.

YOLOv3 balanced accuracy and speed, making it suitable

for real-time applications [1, 2]. YOLOv4 and v6 prioritized

real-time performance for scenarios like autonomous

driving [3]. YOLOv5 offered a modular structure for easy

customization. Recent versions, YOLOv7 and v8, have

emphasized high accuracy, especially for smaller objects [4,

5].

YOLOv9, currently under development, aims to further

improve accuracy and efficiency while handling complex

situations more robustly (based on community discussions

and resources) [6]. When choosing a YOLO version,

consider your application's needs: accuracy requirements,

real-time constraints, and available resources.

The versatility of YOLO lies in its wide range of

applications. YOLO models are commonly used for general

object detection, identifying objects like people, animals,

vehicles, and everyday items [7 ,8]. They also play a role in

security systems, detecting people in restricted areas or

identifying authorized personnel [9, 10, 11, 12]. In

agriculture, YOLO models have been used to detect plant

diseases in leaves and fruits [12, 14, 15, 16, 17] and identify

specific types for yield estimation or quality control [13, 18,

19].

This study delves deeper into YOLOv9, specifically

comparing its architecture to YOLOv8 in the context of

object detection. By analyzing their modules, we

demonstrate how YOLOv9's increased complexity leads to

improvements in both accuracy and efficiency. This

positions YOLOv9 as a compelling choice, although it

requires more memory. To verify these advantages, we

trained and evaluated both models on a tomato disease

detection dataset. We analyzed metrics like precision, recall,

1 Department of Electrical Engineering, College of Engineering, Northern

Border University, Arar, Saudi Arabia.

ORCID ID : 0000-0001-7195-9743
2 OASIS Laboratory, National Engineering School of Tunis, University of

Tunis El Manar, Tunisia.

Email: Ikhlass_Ammar@yahoo.fr
3 Department of Computer Sciences, Faculty of Computing and

Information Technology, Northern Border University, Rafha, Saudi

Arabia.

Email: refka.ghodhbani@nbu.edu.sa, taoufik.saidan@nbu.edu.sa
4 Department of Computer Science, Applied College, Northern Border

University, Saudi Arabia.

Email: rahma.ali@nbu.edu.sa
5 Department of Physics , Faculty of Sciences and arts, Northern Border

University, Rafha 91911, Saudi Arabia.

Email: mohamed.kallel@nbu.edu.sa
6 Department of Information Technology, Faculty of Computing and

Information Technology, Northern Border University, Rafha 91911, Saudi

Arabia.

Email: amjad.alsuwaylimi@nbu.edu.sa,

khaznah.alshammari2@nbu.edu.sa, f.alrslani@nbu.edu.sa
7 Department of Computer Science, Al-Baha University, Saudi Arabia.

Email: malgarni@bu.edu.sa

* Corresponding Author Email: Hafedh.Zayani@nbu.edu.sa

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2845–2854 | 2846

mean Average Precision (mAP), accuracy, and loss function

during training and validation phases. Finally, we compared

their detection performance on the dataset.

2. PROPOSED METHODS

In this study, we focus on two methods of YOLO: YOLOv8

and YOLOv9.

2.1. YOLOv8 architecture

YOLOv8, is emerged in 2022. It composed by the following

three blocs as shown in Fig. 1:

• Backbone: YOLOv8 utilizes a modified version of

the CSPDarknet53 architecture as its backbone. This

network is known for its efficient balance between

accuracy and computational cost. It employs cross-

stage partial connections to improve information

flow between different layers.

• Neck: Uses a simple Path Aggregation Network

(PANet) for feature fusion, focusing on efficiency.

• Head: Consists of multiple convolutional layers

followed by fully connected layers. These layers

analyze the features extracted by the backbone and

make predictions for object detection.

Fig 1. YOLOv8 architecture

2.2. YOLOv9 architecture

YOLOv9, the newest member of the YOLO family of object

detection models, introduces key improvements focusing on

accuracy, efficiency, and parameter utilization. The

architecture of YOLOv9, in [6], based on two concepts:

Fig 2. Programmable Gradient Information (PGI)

architecture in YOLOv9

Programmable Gradient Information (PGI): This

technique addresses potential information loss during

training, ensuring accurate model updates. PGI, shown in

Fig. 2, works by preserving information that retains all data

required to calculate the model's objective function, leading

to reliable gradient information for updating network

weights and balancing efficiency and accuracy. PGI acts as

a training tool, enhancing gradient backpropagation through

the network while minimizing inference cost. It achieves

this by:

• Main branch: YOLOv9 ensures that no extra

inference cost is added because the other components

of PGI are not necessary for the inference step.

• Removable auxiliary branch: During training, an

additional branch processes information to generate

reliable gradients. However, this branch is removed

at inference time to maintain model compactness and

speed.

• Multi-level auxiliary information: This uses an

integration network to combine gradients from

various network regions, providing the main branch

with comprehensive information for accurate

predictions.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2845–2854 | 2847

Fig 3. GELAN architecture in YOLOv9

Generalized Efficient Layer Aggregation Network

(GELAN): This architecture optimizes lightweight models

by maximizing parameter efficiency and combining

strengths of existing approaches. GELAN, shown in Fig. 3,

surpasses existing methods in its ability to leverage

parameters effectively utilizing conventional convolution

operations. It integrates the efficient gradient path planning

of CSPNet with the fast inference capabilities of ELAN,

achieving a balance between model size, speed, and

accuracy.

YOLOv9 comes in four versions (v9-S, v9-M, v9-C, and v9-

E) with varying parameter counts, offering flexibility based

on computational resources as shown in Table 1.

Table 1. YOLOv9 versions

Module Parameters FLOPs(G) Test size

YOLOv9-S 7.2 26.7 640

YOLOv9-M 20.1 76.8 640

YOLOv9-C 25.5 102.8 640

YOLOv9-E 58.1 192.5 640

2.3. Comparison between YOLOv8 and YOLOv9

Fig. 4 illustrates the differences in modules used by

YOLOv8 and YOLOv9 during the training process.

YOLOv9 employs a wider range of modules compared to

YOLOv8. This suggests that YOLOv9 might have a more

complex architecture. YOLOv9 replaces C2f module with

the RepNCSELAN4 module and SPPF module with the

SPPLAN module. The C2f module's architecture

incorporates two parallel gradient flow branches to enhance

the robustness of gradient information flow. The

architecture of the RepNCSELAN4 module is an enhanced

version of CSP-ELAN designed to improve the feature

extraction process. The input from the initial convolutional

layer is divided into two routes, each processed through a

sequence of RepNCSP and convolutional layers before

being combined again. The dual-path technique improves

gradient flow and feature reuse, boosting the model's

learning efficiency and inference speed by maintaining

depth without the usual computational cost of increased

complexity.

The Spatial Pyramid Pooling Fusion (SPPF) module in

YOLOv8 can extract contextual information from photos at

different scales, which greatly improves the model's ability

to generalize. SPPLAN integrates Spatial Pyramid Pooling

(SPP) into the ELAN structure to enhance layer aggregation.

The process begins with a convolutional layer that modifies

the channel dimensions, and then proceeds with a sequence

of spatial pooling operations to gather multi-scale

contextual information. The combined outputs are then

processed by an additional convolutional layer to enhance

the network's ability to extract detailed data from different

spatial levels. YOLOv9 introduces new modules: Adown,

CBLinear and CBFuse. Both YOLOv8 and YOLOv9 utilize

the Upsample module.

Fig. 4. Modules in: (a) YOLOv9 (b) YOLOv8

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2845–2854 | 2848

3. EXPERIMENTS

We explored the potential of YOLOv9 for tomato disease

detection by comparing it to YOLOv8. The experiment

utilized Google Colab, a free cloud-based platform, to

optimize accuracy. While attempting to improve both

algorithms, we encountered memory limitations with

YOLOv9, ultimately stopping the training process.

Specifically, we set the batch size to 10 and progressively

increased the number of training epochs (iterations) until

YOLOv9's memory requirements became excessive.

3.1. Experimental platform

For object detection of tomato diseases, we employed the

YOLOv8l and YOLOv9c models. To accelerate and

optimize training, we leveraged the powerful 12GB

NVIDIA Tesla T4 GPU available on free Google Colab.

To validate our model's performance, we used a dataset of

159 images. Each image was resized to 640 pixels,

achieving a balance between model accuracy and training

efficiency.

3.2. Units

This experiment employed a dataset acquired from

Roboflow, specifically focusing on three tomato disease

classes in addition to a healthy class. The dataset

encompasses a total of 789 images shown in Fig 5.

To facilitate training and evaluation, the dataset was

strategically divided into three subsets:

• Training set: Comprises 70% (551 images) of the

dataset, used to train the YOLO model.

• Validation set: Represents 20% (159 images),

utilized to assess model performance during training

and prevent overfitting.

• Testing set: Consists of the remaining 10% (79

images), employed for final evaluation of the trained

model's generalizability.

Fig. 5. Number of images for each category

3.3. Evaluation index

YOLO models' performance is evaluated using a variety of

metrics, including precision, recall, F1score, and accuracy.

Precision: is a statistic that represents the number of true

positive projections inside the affirmative classification.

The formula is shown in Eq. (1).

𝑃 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
 (1)

Where 𝑇𝑝 represents the True Positive images that was

correctly classified as positive, 𝐹𝑝 represents the False

Positive images that was incorrectly classified as positive.

Recall: is a statistic that measures the number of accurate

class projections generated by the dataset's successful

instances. Recall is expressed as shown in Eq. (2).

𝑅 =
𝑇𝑝

𝑇𝑝+𝐹𝑁
 (2)

Where 𝐹𝑁 represents the False Negative that was incorrectly

classified as negative

F1 score: is a measure of the harmonic mean of precision

and recall. The formula is given in Eq. (3).

𝐹1 =
𝑃∗𝑅

𝑃+𝑅
 (3)

Accuracy: refers to the proportion of occurrences

anticipated accurately by the system. The accuracy formula

is given in Eq. (4).

𝑅 =
𝑇𝑝+𝑇𝑁

𝑇𝑝+𝐹𝑁+𝑇𝑁+𝐹𝑝
 (4)

Where 𝑇𝑁 represents the True Negative that was correctly

classified as negative.

3.4. Experimental results analysis

This section presents the outcomes of training both YOLO

algorithms on the tomato disease detection dataset. We

evaluated their performance based on three key metrics:

precision, recall, and mean Average Precision (mAP).

Fig. 6 visually depicts the trend of YOLOv8 through a

graph, showcasing the evolution of precision, recall, and

mAP as the number of epochs increases. We observed a

positive correlation between the number of training epochs

and the performance metrics. As the number of epochs

increased, the values of precision, recall, and mAP

improved, indicating that the model learned and refined its

ability to accurately detect tomato diseases. Therefore, it is

important to find the optimal number of epochs that

balances training and generalization performance.

While YOLOv9 achieved improvements in performance

compared to YOLOv8, it comes at the cost of increased

complexity and computational demands. YOLOv9 utilizes

a significantly deeper network with 724 layers compared to

YOLOv8's 268 layers. This increased complexity allows the

model to potentially learn more patterns that are intricate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2845–2854 | 2849

and achieve higher accuracy. However, it also translates to

the following:

Fig. 6. Performance metrics for different epoch in

YOLOv8

Higher computational cost: YOLOv9 requires 237.7

GFLOPs for calculations, whereas YOLOv8 uses 164.8

GFLOPs. This difference indicates that YOLOv9 may

require more powerful hardware or longer training times.

Increased number of parameters: YOLOv9 has 50,965,560

parameters, surpassing YOLOv8's 43,609,692 parameters.

More parameters can lead to better fitting of complex data

but also increase the risk of overfitting and the need for

larger datasets for training.

Training Interrupted at Epoch 70: Due to insufficient

memory, YOLOv9 could not complete training the dataset

for all 70 epochs on Google Colab. Fig. 7 shows the specific

error message encountered. The proposed data produces the

same error message regardless of the chosen training

parameters. This occurs when using:

• A batch size of 16 and 10 epochs, and

• A dataset containing 3,000 images and 10 epochs.

Fig. 7. Training outcome on Google Colab for 70 epochs

with the YOLOv9 algorithm

Fig. 8. Performance metrics for different epoch in

YOLOv9

Performance Trend: Similar to YOLOv8, YOLOv9

exhibits a positive correlation between the number of

training epochs and performance metrics (precision, recall,

and mAP). Fig. 8 illustrates a graph that shows the

evolution of the performance metrics. This suggests that the

model continues to learn and refine its detection accuracy as

the training progresses.

Confusion matrix: This matrix helps us understand how

well the model distinguished between different classes

(healthy tomatoes versus different disease categories) and

identify potential areas for further improvement. Fig. 9 and

Fig 10 display the confusion matrix for YOLOv8n and

YOLOv9-c, respectively. Both models achieve reasonably

good performance in classifying the five categories

(“BlossomEndRot”, “Healthy”, “Splitting”, “SunScaled”,

and “Background”). YOLOv9 seems to perform slightly

better than YOLOv8 in terms of overall accuracy, with

higher values on the diagonal (representing correct

classifications) for most classes. For “BlossomEndRot”

disease, both models perform well, correctly classifying

over 90% of instances (YOLOv8: 93%, YOLOv9: 95%).

However, YOLOv8 incorrectly classifies a slightly higher

proportion of “Healthy” tomatoes category compared to

YOLOv9 (YOLOv8: 3%, YOLOv9: 6%). In addition,

YOLOv8 misclassifies more “Splitting” and “SunScaled”

instances than YOLOv9 (YOLOv8: 28%, YOLOv9: 13%)

and (YOLOv8: 14%, YOLOv9: 3%), respectively. Thus,

YOLOv8 performs well for “BlossomEndRot” and

“SunScaled” but struggle with “Splitting” category and

classifying some “Healthy” tomatoes correctly. YOLOv9

shows improvement in “Splitting” classification compared

to YOLOv8 and achieves slightly higher accuracy for

“BlossomEndRot” class, but incorrectly classify a few more

“Healthy” tomatoes category.

Fig. 9. Confusion matrix on YOLOv8n

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2845–2854 | 2850

Fig. 10. Confusion matrix on YOLOv9-c

Overall, both YOLOv8 and YOLOv9 demonstrate

promising results in classifying tomato disease categories.

YOLOv9 appears to achieve slightly better overall

performance and improvements in specific areas like

“Splitting” classification and “Background”

misclassification. However, it also exhibits slightly higher

misclassification of “Healthy” class as “Background” class.

3.5. Comparison results

This section provides a comparison of the experimental

results based on the following characteristics:

Time of training: Table 2 reveals that YOLOv8 consistently

finishes training faster than YOLOv9 across all epochs

shown. The table shows the difference in training time in the

last column, with positive values indicating that YOLOv9 is

between 0.08 and 0.44 slower than YOLOv8.

Table 2. Speed for both YOLO

Number

of

Epochs

YOLOv8

(hours)

YOLOv9

(hours)

Training

Time

Difference

10 0.11 0.195 +0.085

20 0.269 0.349 +0.08

30 0.334 102.8 +0.196

40 0.456 0.53 +0.237

50 0.603 0.693 +0.285

60 0.668 0.888 +0.44

70 0.772
CUDA out of

memory
-

Fig. 11. Comparison of metrics for performance between YOLOv8 and YOLOv9

Performance metrics: Fig. 11 shows the precision, recall,

and mAP (mean Average Precision) for YOLOv8 and

YOLOv9 on the tomato disease detection task. The x-axis

represents the number of epochs (training iterations) for

both YOLOv8 and YOLOv9 and the y-axis represents the

values of precision, recall, and mAP. These metrics usually

range from 0 to 1, where: the precision measures the

proportion of true positives (correctly identified diseased

tomatoes) among all positive predictions (including both

correct and incorrect classifications as diseased), recall

measures the proportion of true positives out of all actual

diseased tomatoes in the data (identifies most diseased

tomatoes with minimal false negatives) and mAP provides

a comprehensive overview of detection performance by

considering both precision and recall across different classes

(healthy and various disease types). Generally, increasing

epochs lead to improvements in performance metrics.

However, it's important to avoid overfitting, where the

model memorizes the training data too well and performs

poorly on unseen data.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2845–2854 | 2851

Table 3. Comparison between YOLO v8 and v9

 YOLOv8 YOLOv9

Classes P

(%)

R (%) F1

(%)

Acc.

(%)

P

(%)

R (%) F1

(%)

Acc.

(%)

BlossomEndR

ot

82.3 93 43.7 94.6 84.8 95 44.8 95.6

Healthy 78.9 97 43.5 94.2 80.3 94 43.3 94.2

Splitting 60 72 32.7 84.8 70.2 87 38.8 90

SunScaled 86 86 43 94.4 80.2 97 43.9 94.6

Table 4. Comparison between YOLO 8 and 9

 YOLOv8 YOLOv9

Strengths

• YOLOv8 misclassified 3% of “Background”

pixels as “Healthy”.

• Both models in the "BlossomEndRot" category

are incorrectly labeled as SunScaled at 2%.

• Both of models could not classify 17% and 23%

of images on "BlossomEndRot" and "Healthy",

respectively.

• YOLOv9 reduced the misclassified of “Background”

class in “Splitting” category from 27% to 13%.

• YOLOv9 showed improvement, only misclassifying

3% of “Background” category as “SunScaled”.

• YOLOv8 misclassified "BlossomEndRot" as

"Background” category by 5%, higher than YOLOv9

by 1%.

• YOLOv9 reduced the percentage of false negatives

in “Splitting” compared to YOLOv8 by 5%.

Weaknesses

• YOLOv8 misclassified 27% of “Background”

class as “splitting”, higher than YOLOv9 by 14%.

• YOLOv8 misclassified “Background” category

as “SunScaled” (9%) and some “Healthy” class

(3%).

• YOLOv9 had a slightly higher misclassification rate

of 6% in “Healthy” class.

• YOLOv9 has higher percentage of false negatives in

“SunScaled” than YOLOv8 at 11%.

Accuracy: Based on the confusion matrix and the equations

Eq. (1), Eq. (2), Eq. (3) and Eq. (4), we calculate the

performance metrics illustrated in Table 3. As results,

YOLOv8 demonstrates the same accuracy for “Healthy” in

comparison to YOLOv9 (94.2%), however for “Splitting”,

YOLOv9 obtains higher accuracy (90%) than YOLOv8

(84.8%). For “BlossomEndRot” and “SunScaled” classes,

YOLOv9 slightly outperforms YOLOv8 in accuracy by 1%

and 0.2%, respectively. Therefore, the accuracy of YOLOv8

and YOLOv9 is equal to 92% and 93.6%, respectively.

Table 4 displays the strengths and weaknesses of both

models.

Fig. 12. Training and validation function loss comparison between YOLOv8 and YOLOv9

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2845–2854 | 2852

Loss function: Fig. 12 displays three different types of loss

functions tracked during both the training and validation

stages for YOLOv8 and YOLOv9 models:

• Boxing Loss (box_loss): Measures the model's

ability to accurately locate and size an object using

bounding boxes.

• Objectness Loss (dfl_loss): Indicates the likelihood

of an object existing within a specific area of the

image. Higher values suggest a greater chance of an

object being present.

• Classification Loss (cls_loss): Evaluates the model's

accuracy in classifying the type of object detected.

For both models, the loss values steadily decrease across

epochs in both the training and validation steps. This

signifies that both YOLOv8 and YOLOv9 are learning and

improving their fitting to the training data. Notably, the

steeper initial drops in the curves suggest faster initial

learning, which gradually slows as the models fine-tune

their performance.

Fig. 13. Performance metrics after validation in YOLOv8

Fig. 14. Performance metrics after validation in YOLOv9

The YOLOv9 loss curves exhibit fewer fluctuations

compared to YOLOv8, implying more stable training and

potentially better generalization to unseen data. YOLOv9

achieves lower overall training loss compared to YOLOv8,

suggesting that it has learned the training data more

effectively and performs better on this specific task. This is

further supported by the zero-validation loss observed in

YOLOv9, which might indicate better alignment between

its trained model and unseen data. Overall, YOLOv9

demonstrates improved learning, stability, and performance

compared to YOLOv8 in the context of this specific tomato

disease detection task, based on the analysis of loss

functions.

Validation step: Having completed the initial step, we

moved on to the validation phase, where we assessed the

performance of the model. Fig. 13 and 14 present the

precision, recall, F1-score, and precision-recall curve for

both YOLOv8 and YOLOv9 models, respectively. These

metrics were obtained after validation. These values are

increased in their average values compared to the last

training epoch (60). While both models exhibit

improvements in these metrics, YOLOv9 consistently

demonstrates superior performance compared to YOLOv8

across all evaluated categories. In other words, YOLOv9

achieves higher precision, recall, F1-score, and a better

precision-recall curve across the entire range of recall

values.

Fig. 15. Detection image in YOLOv8 and YOLOv9

Evaluation using the proposed dataset: The final step

involved testing the model on the proposed dataset. We

provided an original image containing various object

classes, and the model's performance was evaluated based

on its ability to accurately detect these classes. Fig. 15

showcases object detection results on an original image

using both YOLOv8 and YOLOv9 models. While both

models successfully detect SunScaled and Healthy objects

with consistent precision for SunScaled at 0.89, YOLOv9

exhibits slightly more consistent precision for "healthy"

objects (0.87 and 0.88) compared to YOLOv8's varying

precision (0.77, 0.9, 0.8).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2845–2854 | 2853

4. Conclusion

Our study explored YOLOv9's potential, revealing its

ability to achieve higher accuracy than YOLOv8 in object

detection. While YOLOv8 trains faster due to its simpler

design, YOLOv9 demonstrates improved training

efficiency, making it a strong contender for diverse

applications that prioritize accuracy. Our experiments using

a tomato disease detection dataset revealed that YOLOv8

can be trained with more epochs and larger batch sizes, but

YOLOv9 achieves better precision, recall, and mAP despite

requiring more memory. After 60 training epochs, YOLOv9

achieved a precision of 93.6%, exceeding YOLOv8's 92%

by 1.6%. However, YOLOv8 completed training in 0.44

hours less than YOLOv9. Additionally, YOLOv9

demonstrated higher accuracy for most classes, achieving

90% for “Splitting” compared to YOLOv8's 84.8%. It has

an accuracy performance similar to YOLOv8 for the

“Healthy” category at 94.2%. Also, YOLOv9 maintains

superior performance in validation metrics (precision,

recall, mAP) compared to YOLOv8. The "Healthy" class

served as an exception, where YOLOv8 achieved slightly

higher recall (94.2%) and mAP (43.5%) compared to

YOLOv9 (94.0% and 43.3%, respectively). YOLOv8

exhibited higher precision in detecting the “SunScaled”

class compared to YOLOv9, with a difference of 5.8%.

Although, both models detect objects successfully,

YOLOv9 shows slightly more consistent accuracy,

suggesting potential advantages in specific tasks. This

analysis positions YOLOv9 as a promising contender in

object detection, offering a balance between efficiency and

accuracy for various applications.

In future work, we test YOLOv9 on a wider range of object

detection tasks and datasets. In addition, we minimize the

number of images in “Background” category to address

potential class imbalance issues. Then, we optimize hyper-

parameters for both YOLOv8 and YOLOv9 to potentially

improve their performance and identify their relative

strengths.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] J. Redmon & Ali Farhadi. “YOLOv3: An Incremental

Improvement. Computer Vision and Pattern

Recognition”, in Computer Vision and Pattern

Recognition , 2018.

[2] Lu Tan, Tianran Huangfu, Liyao Wu & Wenying

Chen. “Comparison of RetinaNet, SSD, and YOLO v3

for real-time pill identification”, in BMC Medical

Informatics and Decision Making, 2021, vol. 21, p.

324.

[3] Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan

Mark Liao. “YOLOv4: Optimal Speed and Accuracy

of Object Detection”, in Computer Vision and Pattern

Recognition, 2020.

[4] Muhammad Abdullah. “YOLO Working principle,

difference between its different Variants and

Versions”, in Medium, 2023, https://medium.com/

@muhabd51/ yolo-working-principle-difference-

between-its-ddifferent-variants-and-versions-

95b8ad7b95ab.

[5] Zhongqiang Luo, Chenghao Wang, Ziyuan Qi,

Chunlan Luo, “A_YOLOv8s: A lightweight-attention

YOLOv8s for oil leakage detection in power

transformers”, in Alexandria Engineering Journal,

2024, vol. 92, pp. 82--91.

[6] Chien-Yao Wang, I-Hau Yeh, Hong-Yuan Mark Liao,

“YOLOv9: Learning What You Want to Learn Using

Programmable Gradient Information”, in Computer

Vision and Pattern Recognition, arXiv:2402.13616,

2024.

[7] Haitong Lou, Xuehu Duan, Junmei Guo, Haiying Liu,

Jason Gu, Lingyun Bi, Haonan Chen, “DC-YOLOv8:

Small size Object detection algorithm based on camera

sensor”, 2023, doi:10.20944/preprints202304.0124.v1

[8] Moahaimen Talib, Ahmed H. Y. Al-Noori, Jameelah

Suad, “YOLOv8-CAB: Improved YOLOv8 for Real-

time object detection”, in Karbala International

Journal of Modern Science, 2024.

[9] Savan Agrawal, “Helmet Detection YOLOv3: A

YOLOv3 detector, which can detect helmet”, in

Kaggle, 2020.

[10] Krunal Patel, Vrajesh Patel, Vikrant Prajapati,

Darshak Chauhan, Adil Haji, Sheshang Degadwala,

“Safety Helmet Detection Using YOLOV8” in

International Conference on Pervasive Computing and

Social Networking (ICPCSN), 2023, DOI:

10.1109/ICPCSN58827.2023. 00012.

[11] S. Roy, S. Mukherjee, S. K. Ghosh, “YOLO Based

Real-Time Object Detection for Video Surveillance”,

in 3rd International Conference on Advanced

Computing and Communication Systems (ICACCS),

2019, pp. 1537-1542.

[12] G. R. Goswami, A. K. Singh, H. K. Bajaj, “Real-Time

Object Detection for Security Applications Using

YOLOv3”, in 4th International Conference on Signal

Processing, Computing and Control, 2019, pp. 147-

152, https://ieeexplore.ieee. org/document/8918322.

[13] X. Zhou, Y. Yao, G. Liu, Z. Sun, Y. Hu, “Deep

learning for fine-grained disease classification of

tomato leaves”, in IEEE Access, 2019, 107386-

107400, https://ieeexplore.ieee.org/ document/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2845–2854 | 2854

8804202.

[14] Santosh Adhikari, Bikesh Shrestha, Bibek Baiju, Er.

Saban Kumar K.C, “Tomato Plant Diseases Detection

System using Image Processing”, in 1st Kantipur

Engineering College, Dhapakhel, Lalitpur Conference

Proceedings, 2018.

[15] Md Ershadul Haque, Ashikur Rahman, Iftekhar

Junaeid, Samiul Ul Hoque, Manoranjan Paul, “Rice

Leaf Disease Classification and Detection using

YOLOV5”, 2022, arXiv:2209.01579v.

[16] Md. Janibul Alam Soeb, Md. Fahad Jubayer, Tahmina

Akanjee Tarin, Muhammad Rashed Al Mamun, Fahim

Mahafuz Ruhad, Aney Parven, Nabisab Mujawar

Mubarak, Soni Lanka Karri Islam Md. Meftaul,

“Tealeaf disease detection and identification based on

YOLOv7 (YOLO‑T)”, in Scientific Reports, 2023,

https://doi.org/10.1038/ s41598-023-33270-4.

[17] Mubashiru Olarewaju Lawal, “Tomato detection based

on modified YOLOv3 framework”, in Scientific

Reports, 2021, https://doi.org/10. 1038/s41598-021-

81216-5.

[18] M. R. Shams, S. A. Sharief, M. H. Abdullah,

“Performance Analysis of Deep Learning Techniques

for Rice Disease Detection”, in IEEE Access, 2021,

13132-13141, https://ieeexplore. ieee.org/

document/9414761.

[19] Tran Quang Vinh, Haewon Byeon, Enhancing

“Alzheimer's Disease Diagnosis: The Efficacy of the

YOLO Algorithm Model”, in International Journal of

Advanced Computer Science and

Applications(IJACSA), 2023, vol. 14, Issue 11, DOI:

10.14569/IJACSA.2023.0141182.

