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Abstract: This study introduces YOLOv9, a new object detection model building upon the success of YOLOv8. While YOLOv8 has 

delivered impressive results, there was a push to further enhance accuracy and efficiency. We delve into the architectures of both YOLO 

models to understand the trade-off between training speed and accuracy. YOLOv9 introduces additional complexity compared to its 

predecessor, which translates to superior performance. To evaluate the models' capabilities, we leveraged a tomato disease detection dataset 

from Roboflow. This dataset encompasses three disease classes for tomato fruits, along with a healthy class. Our experiments demonstrate 

that YOLOv9 achieves a significant improvement in accuracy (93.6% vs. 92%), while maintaining comparable training efficiency. 

However, it requires slightly longer training times compared to YOLOv8. To further substantiate these results, we present comprehensive 

analyses of precision, recall, F1-score, and loss functions during both training and validation stages. Additionally, in the testing phase, 

YOLOv9 exhibits superior precision in detecting tomato diseases. While requiring slightly more training resources, YOLOv9 offers a 

compelling trade-off between accuracy and efficiency. This makes it a promising choice for applications where precise object detection is 

paramount. 
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1. Introduction 

Deep learning has revolutionized various fields, and object 

detection is no exception. The YOLO (You Only Look 

Once) family stands out for its speed and efficiency. Unlike 

traditional methods, YOLO predicts bounding boxes and 

object probabilities in a single pass. This has led to the 

development of several YOLO versions, each building upon 

the strengths of its predecessor. 

Past iterations of YOLO have focused on specific goals. 

YOLOv3 balanced accuracy and speed, making it suitable 

for real-time applications [1, 2]. YOLOv4 and v6 prioritized 

real-time performance for scenarios like autonomous 

driving [3]. YOLOv5 offered a modular structure for easy 

customization. Recent versions, YOLOv7 and v8, have 

emphasized high accuracy, especially for smaller objects [4, 

5]. 

YOLOv9, currently under development, aims to further 

improve accuracy and efficiency while handling complex 

situations more robustly (based on community discussions 

and resources) [6]. When choosing a YOLO version, 

consider your application's needs: accuracy requirements, 

real-time constraints, and available resources. 

The versatility of YOLO lies in its wide range of 

applications. YOLO models are commonly used for general 

object detection, identifying objects like people, animals, 

vehicles, and everyday items [7 ,8]. They also play a role in 

security systems, detecting people in restricted areas or 

identifying authorized personnel [9, 10, 11, 12]. In 

agriculture, YOLO models have been used to detect plant 

diseases in leaves and fruits [12, 14, 15, 16, 17] and identify 

specific types for yield estimation or quality control [13, 18, 

19]. 

This study delves deeper into YOLOv9, specifically 

comparing its architecture to YOLOv8 in the context of 

object detection. By analyzing their modules, we 

demonstrate how YOLOv9's increased complexity leads to 

improvements in both accuracy and efficiency. This 

positions YOLOv9 as a compelling choice, although it 

requires more memory. To verify these advantages, we 

trained and evaluated both models on a tomato disease 

detection dataset. We analyzed metrics like precision, recall, 
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mean Average Precision (mAP), accuracy, and loss function 

during training and validation phases. Finally, we compared 

their detection performance on the dataset. 

2. PROPOSED METHODS 

In this study, we focus on two methods of YOLO: YOLOv8 

and YOLOv9.  

2.1. YOLOv8 architecture 

YOLOv8, is emerged in 2022. It composed by the following 

three blocs as shown in Fig. 1: 

• Backbone: YOLOv8 utilizes a modified version of 

the CSPDarknet53 architecture as its backbone. This 

network is known for its efficient balance between 

accuracy and computational cost. It employs cross-

stage partial connections to improve information 

flow between different layers. 

• Neck: Uses a simple Path Aggregation Network 

(PANet) for feature fusion, focusing on efficiency. 

• Head: Consists of multiple convolutional layers 

followed by fully connected layers. These layers 

analyze the features extracted by the backbone and 

make predictions for object detection. 

 

Fig 1.  YOLOv8 architecture

2.2. YOLOv9 architecture 

YOLOv9, the newest member of the YOLO family of object 

detection models, introduces key improvements focusing on 

accuracy, efficiency, and parameter utilization. The 

architecture of YOLOv9, in [6], based on two concepts: 

 

Fig 2.  Programmable Gradient Information (PGI) 

architecture in YOLOv9 

Programmable Gradient Information (PGI): This 

technique addresses potential information loss during 

training, ensuring accurate model updates. PGI, shown in 

Fig. 2, works by preserving information that retains all data 

required to calculate the model's objective function, leading 

to reliable gradient information for updating network 

weights and balancing efficiency and accuracy. PGI acts as 

a training tool, enhancing gradient backpropagation through 

the network while minimizing inference cost. It achieves 

this by: 

• Main branch: YOLOv9 ensures that no extra 

inference cost is added because the other components 

of PGI are not necessary for the inference step. 

• Removable auxiliary branch: During training, an 

additional branch processes information to generate 

reliable gradients. However, this branch is removed 

at inference time to maintain model compactness and 

speed. 

• Multi-level auxiliary information: This uses an 

integration network to combine gradients from 

various network regions, providing the main branch 

with comprehensive information for accurate 

predictions. 
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Fig 3.  GELAN architecture in YOLOv9 

Generalized Efficient Layer Aggregation Network 

(GELAN): This architecture optimizes lightweight models 

by maximizing parameter efficiency and combining 

strengths of existing approaches. GELAN, shown in Fig. 3, 

surpasses existing methods in its ability to leverage 

parameters effectively utilizing conventional convolution 

operations. It integrates the efficient gradient path planning 

of CSPNet with the fast inference capabilities of ELAN, 

achieving a balance between model size, speed, and 

accuracy. 

YOLOv9 comes in four versions (v9-S, v9-M, v9-C, and v9-

E) with varying parameter counts, offering flexibility based 

on computational resources as shown in Table 1. 

Table 1. YOLOv9 versions 

Module Parameters FLOPs(G) Test size 

YOLOv9-S 7.2 26.7 640 

YOLOv9-M 20.1 76.8 640 

YOLOv9-C 25.5 102.8 640 

YOLOv9-E 58.1 192.5 640 

2.3. Comparison between YOLOv8 and YOLOv9 

Fig. 4 illustrates the differences in modules used by 

YOLOv8 and YOLOv9 during the training process. 

YOLOv9 employs a wider range of modules compared to 

YOLOv8. This suggests that YOLOv9 might have a more 

complex architecture. YOLOv9 replaces C2f module with 

the RepNCSELAN4 module and SPPF module with the 

SPPLAN module. The C2f module's architecture 

incorporates two parallel gradient flow branches to enhance 

the robustness of gradient information flow. The 

architecture of the RepNCSELAN4 module is an enhanced 

version of CSP-ELAN designed to improve the feature 

extraction process. The input from the initial convolutional 

layer is divided into two routes, each processed through a 

sequence of RepNCSP and convolutional layers before 

being combined again. The dual-path technique improves 

gradient flow and feature reuse, boosting the model's 

learning efficiency and inference speed by maintaining 

depth without the usual computational cost of increased 

complexity. 

The Spatial Pyramid Pooling Fusion (SPPF) module in 

YOLOv8 can extract contextual information from photos at 

different scales, which greatly improves the model's ability 

to generalize. SPPLAN integrates Spatial Pyramid Pooling 

(SPP) into the ELAN structure to enhance layer aggregation. 

The process begins with a convolutional layer that modifies 

the channel dimensions, and then proceeds with a sequence 

of spatial pooling operations to gather multi-scale 

contextual information. The combined outputs are then 

processed by an additional convolutional layer to enhance 

the network's ability to extract detailed data from different 

spatial levels. YOLOv9 introduces new modules: Adown, 

CBLinear and CBFuse. Both YOLOv8 and YOLOv9 utilize 

the Upsample module. 

Fig. 4. Modules in: (a) YOLOv9 (b) YOLOv8
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3. EXPERIMENTS 

We explored the potential of YOLOv9 for tomato disease 

detection by comparing it to YOLOv8. The experiment 

utilized Google Colab, a free cloud-based platform, to 

optimize accuracy. While attempting to improve both 

algorithms, we encountered memory limitations with 

YOLOv9, ultimately stopping the training process. 

Specifically, we set the batch size to 10 and progressively 

increased the number of training epochs (iterations) until 

YOLOv9's memory requirements became excessive. 

3.1. Experimental platform 

For object detection of tomato diseases, we employed the 

YOLOv8l and YOLOv9c models. To accelerate and 

optimize training, we leveraged the powerful 12GB 

NVIDIA Tesla T4 GPU available on free Google Colab. 

To validate our model's performance, we used a dataset of 

159 images. Each image was resized to 640 pixels, 

achieving a balance between model accuracy and training 

efficiency. 

3.2. Units 

This experiment employed a dataset acquired from 

Roboflow, specifically focusing on three tomato disease 

classes in addition to a healthy class. The dataset 

encompasses a total of 789 images shown in Fig 5. 

To facilitate training and evaluation, the dataset was 

strategically divided into three subsets: 

• Training set: Comprises 70% (551 images) of the 

dataset, used to train the YOLO model. 

• Validation set: Represents 20% (159 images), 

utilized to assess model performance during training 

and prevent overfitting. 

• Testing set: Consists of the remaining 10% (79 

images), employed for final evaluation of the trained 

model's generalizability. 

 

Fig. 5. Number of images for each category 

3.3. Evaluation index 

YOLO models' performance is evaluated using a variety of 

metrics, including precision, recall, F1score, and accuracy. 

Precision: is a statistic that represents the number of true 

positive projections inside the affirmative classification. 

The formula is shown in Eq. (1). 

𝑃 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
                                 (1) 

Where 𝑇𝑝 represents the True Positive images that was 

correctly classified as positive, 𝐹𝑝 represents the False 

Positive images that was incorrectly classified as positive. 

Recall: is a statistic that measures the number of accurate 

class projections generated by the dataset's successful 

instances. Recall is expressed as shown in Eq. (2). 

𝑅 =
𝑇𝑝

𝑇𝑝+𝐹𝑁
                                     (2) 

Where 𝐹𝑁 represents the False Negative that was incorrectly 

classified as negative 

F1 score: is a measure of the harmonic mean of precision 

and recall. The formula is given in Eq. (3). 

𝐹1 =
𝑃∗𝑅

𝑃+𝑅
                                   (3) 

Accuracy: refers to the proportion of occurrences 

anticipated accurately by the system. The accuracy formula 

is given in Eq. (4). 

𝑅 =
𝑇𝑝+𝑇𝑁

𝑇𝑝+𝐹𝑁+𝑇𝑁+𝐹𝑝
                               (4) 

Where 𝑇𝑁 represents the True Negative that was correctly 

classified as negative.  

3.4. Experimental results analysis 

This section presents the outcomes of training both YOLO 

algorithms on the tomato disease detection dataset. We 

evaluated their performance based on three key metrics: 

precision, recall, and mean Average Precision (mAP). 

Fig. 6 visually depicts the trend of YOLOv8 through a 

graph, showcasing the evolution of precision, recall, and 

mAP as the number of epochs increases. We observed a 

positive correlation between the number of training epochs 

and the performance metrics. As the number of epochs 

increased, the values of precision, recall, and mAP 

improved, indicating that the model learned and refined its 

ability to accurately detect tomato diseases. Therefore, it is 

important to find the optimal number of epochs that 

balances training and generalization performance. 

While YOLOv9 achieved improvements in performance 

compared to YOLOv8, it comes at the cost of increased 

complexity and computational demands. YOLOv9 utilizes 

a significantly deeper network with 724 layers compared to 

YOLOv8's 268 layers. This increased complexity allows the 

model to potentially learn more patterns that are intricate 
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and achieve higher accuracy. However, it also translates to 

the following: 

 

Fig. 6. Performance metrics for different epoch in 

YOLOv8 

Higher computational cost: YOLOv9 requires 237.7 

GFLOPs for calculations, whereas YOLOv8 uses 164.8 

GFLOPs. This difference indicates that YOLOv9 may 

require more powerful hardware or longer training times.  

Increased number of parameters: YOLOv9 has 50,965,560 

parameters, surpassing YOLOv8's 43,609,692 parameters. 

More parameters can lead to better fitting of complex data 

but also increase the risk of overfitting and the need for 

larger datasets for training. 

Training Interrupted at Epoch 70: Due to insufficient 

memory, YOLOv9 could not complete training the dataset 

for all 70 epochs on Google Colab. Fig. 7 shows the specific 

error message encountered. The proposed data produces the 

same error message regardless of the chosen training 

parameters. This occurs when using: 

• A batch size of 16 and 10 epochs, and 

• A dataset containing 3,000 images and 10 epochs. 

 

 

Fig. 7. Training outcome on Google Colab for 70 epochs 

with the YOLOv9 algorithm 

 

Fig. 8. Performance metrics for different epoch in 

YOLOv9 

Performance Trend: Similar to YOLOv8, YOLOv9 

exhibits a positive correlation between the number of 

training epochs and performance metrics (precision, recall, 

and mAP).  Fig. 8 illustrates a graph that shows the 

evolution of the performance metrics. This suggests that the 

model continues to learn and refine its detection accuracy as 

the training progresses. 

Confusion matrix: This matrix helps us understand how 

well the model distinguished between different classes 

(healthy tomatoes versus different disease categories) and 

identify potential areas for further improvement. Fig. 9 and 

Fig 10 display the confusion matrix for YOLOv8n and 

YOLOv9-c, respectively. Both models achieve reasonably 

good performance in classifying the five categories 

(“BlossomEndRot”, “Healthy”, “Splitting”, “SunScaled”, 

and “Background”). YOLOv9 seems to perform slightly 

better than YOLOv8 in terms of overall accuracy, with 

higher values on the diagonal (representing correct 

classifications) for most classes. For “BlossomEndRot” 

disease, both models perform well, correctly classifying 

over 90% of instances (YOLOv8: 93%, YOLOv9: 95%). 

However, YOLOv8 incorrectly classifies a slightly higher 

proportion of “Healthy” tomatoes category compared to 

YOLOv9 (YOLOv8: 3%, YOLOv9: 6%). In addition, 

YOLOv8 misclassifies more “Splitting” and “SunScaled” 

instances than YOLOv9 (YOLOv8: 28%, YOLOv9: 13%) 

and (YOLOv8: 14%, YOLOv9: 3%), respectively. Thus, 

YOLOv8 performs well for “BlossomEndRot” and 

“SunScaled” but struggle with “Splitting” category and 

classifying some “Healthy” tomatoes correctly. YOLOv9 

shows improvement in “Splitting” classification compared 

to YOLOv8 and achieves slightly higher accuracy for 

“BlossomEndRot” class, but incorrectly classify a few more 

“Healthy” tomatoes category. 

 

Fig. 9. Confusion matrix on YOLOv8n 
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Fig. 10. Confusion matrix on YOLOv9-c 

Overall, both YOLOv8 and YOLOv9 demonstrate 

promising results in classifying tomato disease categories. 

YOLOv9 appears to achieve slightly better overall 

performance and improvements in specific areas like 

“Splitting” classification and “Background” 

misclassification. However, it also exhibits slightly higher 

misclassification of “Healthy” class as “Background” class. 

3.5. Comparison results 

This section provides a comparison of the experimental 

results based on the following characteristics: 

Time of training: Table 2 reveals that YOLOv8 consistently 

finishes training faster than YOLOv9 across all epochs 

shown. The table shows the difference in training time in the 

last column, with positive values indicating that YOLOv9 is 

between 0.08 and 0.44 slower than YOLOv8. 

Table 2. Speed for both YOLO 

Number 

of 

Epochs 

YOLOv8 

(hours) 

YOLOv9 

(hours) 

Training 

Time 

Difference 

10 0.11 0.195 +0.085 

20 0.269 0.349 +0.08 

30 0.334 102.8 +0.196 

40 0.456 0.53 +0.237 

50 0.603 0.693 +0.285 

60 0.668 0.888 +0.44 

70 0.772 
CUDA out of 

memory 
- 

 

Fig. 11. Comparison of metrics for performance between YOLOv8 and YOLOv9

Performance metrics: Fig. 11 shows the precision, recall, 

and mAP (mean Average Precision) for YOLOv8 and 

YOLOv9 on the tomato disease detection task. The x-axis 

represents the number of epochs (training iterations) for 

both YOLOv8 and YOLOv9 and the y-axis represents the 

values of precision, recall, and mAP. These metrics usually 

range from 0 to 1, where: the precision measures the 

proportion of true positives (correctly identified diseased 

tomatoes) among all positive predictions (including both 

correct and incorrect classifications as diseased), recall 

measures the proportion of true positives out of all actual 

diseased tomatoes in the data (identifies most diseased 

tomatoes with minimal false negatives) and mAP provides 

a comprehensive overview of detection performance by 

considering both precision and recall across different classes 

(healthy and various disease types). Generally, increasing 

epochs lead to improvements in performance metrics. 

However, it's important to avoid overfitting, where the 

model memorizes the training data too well and performs 

poorly on unseen data. 
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Table 3. Comparison between YOLO v8 and v9 

 YOLOv8 YOLOv9 

Classes P 

(%) 

R (%) F1 

(%) 

Acc. 

(%) 

P 

(%) 

R (%) F1 

(%) 

Acc. 

(%) 

BlossomEndR

ot 

82.3 93 43.7 94.6 84.8 95 44.8 95.6 

Healthy 78.9 97 43.5 94.2 80.3 94 43.3 94.2 

Splitting 60 72 32.7 84.8 70.2 87 38.8 90 

SunScaled 86 86 43 94.4 80.2 97 43.9 94.6 

Table 4. Comparison between YOLO 8 and 9 

 YOLOv8 YOLOv9 

Strengths 

• YOLOv8 misclassified 3% of “Background” 

pixels as “Healthy”. 

• Both models in the "BlossomEndRot" category 

are incorrectly labeled as SunScaled at 2%. 

• Both of models could not classify 17% and 23% 

of images on "BlossomEndRot" and "Healthy", 

respectively. 

• YOLOv9 reduced the misclassified of “Background” 

class in “Splitting” category from 27% to 13%. 

• YOLOv9 showed improvement, only misclassifying 

3% of “Background” category as “SunScaled”. 

• YOLOv8 misclassified "BlossomEndRot" as 

"Background” category by 5%, higher than YOLOv9 

by 1%. 

• YOLOv9 reduced the percentage of false negatives 

in “Splitting” compared to YOLOv8 by 5%. 

Weaknesses 

• YOLOv8 misclassified 27% of “Background” 

class as “splitting”, higher than YOLOv9 by 14%. 

• YOLOv8 misclassified “Background” category 

as “SunScaled” (9%) and some “Healthy” class 

(3%). 

• YOLOv9 had a slightly higher misclassification rate 

of 6% in “Healthy” class. 

• YOLOv9 has higher percentage of false negatives in 

“SunScaled” than YOLOv8 at 11%. 

Accuracy: Based on the confusion matrix and the equations 

Eq. (1), Eq. (2), Eq. (3) and Eq. (4), we calculate the 

performance metrics illustrated in Table 3. As results, 

YOLOv8 demonstrates the same accuracy for “Healthy” in 

comparison to YOLOv9 (94.2%), however for “Splitting”, 

YOLOv9 obtains higher accuracy (90%) than YOLOv8 

(84.8%). For “BlossomEndRot” and “SunScaled” classes, 

YOLOv9 slightly outperforms YOLOv8 in accuracy by 1% 

and 0.2%, respectively. Therefore, the accuracy of YOLOv8 

and YOLOv9 is equal to 92% and 93.6%, respectively. 

Table 4 displays the strengths and weaknesses of both 

models. 

 

 

Fig. 12. Training and validation function loss comparison between YOLOv8 and YOLOv9 
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Loss function: Fig. 12 displays three different types of loss 

functions tracked during both the training and validation 

stages for YOLOv8 and YOLOv9 models: 

• Boxing Loss (box_loss): Measures the model's 

ability to accurately locate and size an object using 

bounding boxes. 

• Objectness Loss (dfl_loss): Indicates the likelihood 

of an object existing within a specific area of the 

image. Higher values suggest a greater chance of an 

object being present. 

• Classification Loss (cls_loss): Evaluates the model's 

accuracy in classifying the type of object detected. 

For both models, the loss values steadily decrease across 

epochs in both the training and validation steps. This 

signifies that both YOLOv8 and YOLOv9 are learning and 

improving their fitting to the training data. Notably, the 

steeper initial drops in the curves suggest faster initial 

learning, which gradually slows as the models fine-tune 

their performance. 

 

Fig. 13. Performance metrics after validation in YOLOv8 

 

Fig. 14. Performance metrics after validation in YOLOv9 

The YOLOv9 loss curves exhibit fewer fluctuations 

compared to YOLOv8, implying more stable training and 

potentially better generalization to unseen data. YOLOv9 

achieves lower overall training loss compared to YOLOv8, 

suggesting that it has learned the training data more 

effectively and performs better on this specific task. This is 

further supported by the zero-validation loss observed in 

YOLOv9, which might indicate better alignment between 

its trained model and unseen data. Overall, YOLOv9 

demonstrates improved learning, stability, and performance 

compared to YOLOv8 in the context of this specific tomato 

disease detection task, based on the analysis of loss 

functions. 

Validation step: Having completed the initial step, we 

moved on to the validation phase, where we assessed the 

performance of the model. Fig. 13 and 14 present the 

precision, recall, F1-score, and precision-recall curve for 

both YOLOv8 and YOLOv9 models, respectively. These 

metrics were obtained after validation. These values are 

increased in their average values compared to the last 

training epoch (60). While both models exhibit 

improvements in these metrics, YOLOv9 consistently 

demonstrates superior performance compared to YOLOv8 

across all evaluated categories. In other words, YOLOv9 

achieves higher precision, recall, F1-score, and a better 

precision-recall curve across the entire range of recall 

values. 

 

Fig. 15. Detection image in YOLOv8 and YOLOv9 

Evaluation using the proposed dataset: The final step 

involved testing the model on the proposed dataset. We 

provided an original image containing various object 

classes, and the model's performance was evaluated based 

on its ability to accurately detect these classes. Fig. 15 

showcases object detection results on an original image 

using both YOLOv8 and YOLOv9 models. While both 

models successfully detect SunScaled and Healthy objects 

with consistent precision for SunScaled at 0.89, YOLOv9 

exhibits slightly more consistent precision for "healthy" 

objects (0.87 and 0.88) compared to YOLOv8's varying 

precision (0.77, 0.9, 0.8). 
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4. Conclusion 

Our study explored YOLOv9's potential, revealing its 

ability to achieve higher accuracy than YOLOv8 in object 

detection. While YOLOv8 trains faster due to its simpler 

design, YOLOv9 demonstrates improved training 

efficiency, making it a strong contender for diverse 

applications that prioritize accuracy. Our experiments using 

a tomato disease detection dataset revealed that YOLOv8 

can be trained with more epochs and larger batch sizes, but 

YOLOv9 achieves better precision, recall, and mAP despite 

requiring more memory. After 60 training epochs, YOLOv9 

achieved a precision of 93.6%, exceeding YOLOv8's 92% 

by 1.6%. However, YOLOv8 completed training in 0.44 

hours less than YOLOv9. Additionally, YOLOv9 

demonstrated higher accuracy for most classes, achieving 

90% for “Splitting” compared to YOLOv8's 84.8%. It has 

an accuracy performance similar to YOLOv8 for the 

“Healthy” category at 94.2%. Also, YOLOv9 maintains 

superior performance in validation metrics (precision, 

recall, mAP) compared to YOLOv8. The "Healthy" class 

served as an exception, where YOLOv8 achieved slightly 

higher recall (94.2%) and mAP (43.5%) compared to 

YOLOv9 (94.0% and 43.3%, respectively). YOLOv8 

exhibited higher precision in detecting the “SunScaled” 

class compared to YOLOv9, with a difference of 5.8%. 

Although, both models detect objects successfully, 

YOLOv9 shows slightly more consistent accuracy, 

suggesting potential advantages in specific tasks. This 

analysis positions YOLOv9 as a promising contender in 

object detection, offering a balance between efficiency and 

accuracy for various applications.  

In future work, we test YOLOv9 on a wider range of object 

detection tasks and datasets. In addition, we minimize the 

number of images in “Background” category to address 

potential class imbalance issues. Then, we optimize hyper-

parameters for both YOLOv8 and YOLOv9 to potentially 

improve their performance and identify their relative 

strengths. 
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