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Abstract: Denial-of-service (DDoS) attacks represent the primary threat to the continuous and efficient performance of the Internet. It may 

have been an element in server delays disconnections, host issues, lost revenue and production, and website vulnerability. Standard machine 

learning algorithms suffer from increased false-positive rates and reduced rate of detection when new threats develop. Therefore, the DDoS 

detection devices must include high-performance machine learning classifiers with low false-positive rates and high prediction accuracy. 

This research paper presents an in-depth study into the scalability and resource efficiency of Deep Learning-based DDoS detection models, 

specifically convolutional neural networks (CNNs), recurrent neural networks (RNNs), and auto encoders. With a rapid growth of internet 

of things (IoT) devices, there has been an increase in both the amount and intensity of network attacks. Attacks which result in a denial of 

service (DoS) or distributed denial of service (DDoS) are considered to be the most prevalent in IoT networks in recent years. Since a 

majority of current security solutions—firewalls, intrusion detection systems, etc.—filter all valid and malicious data through static, 

predefined standards, they have been unable to recognize advanced DoS and DDoS attacks. However, when coupled with techniques based 

on artificial intelligence (AI), these solutions can become reliable as well as effective. We also investigate the effectiveness of transfer 

learning and model stacking techniques to improve detection performance. Various DDoS scenarios are simulated in a cloud computing 

environment to assess real-time performance metrics such as latency, throughput, and resource utilization. Experimental results 

demonstrate that while deep learning models provide high accuracy and F1 scores, the application of transfer learning and model stacking 

further enhances these metrics. Importantly, we also find that certain architectures demonstrate superior scalability and consume fewer 

resources, making them better suited for real-world cloud computing applications. The findings from this research contribute valuable 

insights for the deployment of scalable and resource-efficient DDoS detection systems in cloud computing. 
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1. Introduction 

The entire world has evolved into a globally connected place 

in the modern period. The evolution is caused by the reality 

that knowledge can be transmitted more easily, 

communication has become increasingly flexible, and many 

aspects of life have been computerized. Information thus 

becomes widely available wherever we look. Information 

systems, independent of an organization's size or area of 

activity, have become essential in this environment. 

Information systems have been attacked by malware 

infections more frequently recently, while advanced attacks 

have proliferated, malware attacks have also seen 

significant changes in category. These types of attacks can 

be detected and destroyed simply network-based intrusion 

detection systems just simply searching the network against 

threats. Such circumstances have resulted in a development 

of the area of cyber security research and a consequent rise 

in the complexity of cyber security.[1]. To provide an 

amount of safety that can recognize and avoid these risks, 

multiple procedures and advances in technology are 

developed. To attempt to decrease service quality, a DDoS 

attacker uses a variety of available network devices to send 

huge numbers  

of produced packets at the target server inside the same 

network using different source IP addresses. The attacker 

attempts to prevent those with permission from using the 

services offered by the victim server by flooding the victim's 

device with these packets. A system for early detection and 

mitigation of these attacks is required because of this 

probability. Effective systems for intrusion detection (IDS) 

would protect intellectual property, preserve network 

performance, enhance data security, and decrease potential 

responsibility for compromised notes or network data[1]. 

Around the world, it is predicted that crime will cost $6 

trillion annually. However, based on Cisco data, there will 

be 15.4 million distributed Denial of service (DDoS) of 

Service) attacks by 2023. The procedure of identifying 

malware and cyberattacks has never been easy. 

Organizations in the public and private sectors have been 

dedicating an enormous amount of time and resources to 

reducing the impact of these threats.  

A Distributed Denial of Service (DDoS) attack on Internet 

of Things (IoT) devices is a type of cyber attack where 

multiple compromised devices are used to flood a targeted 

system or network with a large volume of traffic. These 
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attacks can overwhelm the target's resources, making it 

unable to respond to legitimate requests from users or 

clients. 

 

Fig.1.Ddos attacks in IoT network 

There are several reasons why IoT devices are particularly 

vulnerable to DDoS attacks as shown in figure 1: 

Large Attack Surface: IoT devices are often designed with 

minimal security measures to keep costs down, making 

them easier targets for attackers. 

Default Credentials: Many IoT devices come with default 

usernames and passwords that users don't change, making it 

easy for attackers to gain access. 

Limited Processing Power: IoT devices typically have 

limited processing power and memory, making them easy to 

overwhelm with a flood of traffic. 

Always Connected: IoT devices are usually connected to the 

internet 24/7, providing a constant target for attackers. 

Lack of Security Updates: Manufacturers may not provide 

regular security updates for IoT devices, leaving them 

vulnerable to known exploits. 

To mitigate the risk of DDoS attacks on IoT devices, it's 

important to take the following steps: 

Change Default Credentials: Always change default 

usernames and passwords on IoT devices to unique, strong 

credentials. 

Update Firmware: Regularly update IoT device firmware to 

patch security vulnerabilities and protect against known 

exploits. 

Network Segmentation: Segment IoT devices onto separate 

network segments to limit the impact of a compromised 

device on other parts of the network. 

Traffic Monitoring: Implement traffic monitoring and 

anomaly detection systems to detect and mitigate abnormal 

traffic patterns that may indicate a DDoS attack. 

Use Firewalls and Access Controls: Configure firewalls and 

access controls to restrict incoming and outgoing traffic to 

IoT devices, blocking unauthorized access and malicious 

traffic. 

By implementing these measures, organizations and users 

can reduce the risk of DDoS attacks on IoT devices and 

enhance overall cybersecurity posture. 

Detecting DDoS attacks on IoT devices  

It involves monitoring network traffic and looking for 

patterns or anomalies that indicate a potential attack. Here 

are some methods to help find DDoS attacks on IoT devices: 

Traffic Analysis: Use network monitoring tools to analyze 

incoming and outgoing traffic on your IoT devices. Look for 

sudden spikes in traffic volume or unusual patterns such as 

a high number of requests from a single source. 

Anomaly Detection: Implement anomaly detection 

techniques to identify deviations from normal traffic 

behavior. This can involve setting thresholds for acceptable 

traffic levels and flagging any traffic that exceeds these 

thresholds as suspicious. 

DDoS Protection Services: Consider using DDoS 

protection services or solutions specifically designed for IoT 

devices. These services can help detect and mitigate DDoS 

attacks in real-time, reducing the impact on your network 

and devices. 

Behavioral Analysis: Monitor the behavior of IoT devices 

over time to establish a baseline of normal behavior. Any 

deviations from this baseline could indicate a DDoS attack 

or other security threat. 

Logging and Alerting: Enable logging and configure 

alerting mechanisms to notify you of suspicious activity or 

potential DDoS attacks. Alerts can be based on criteria such 

as traffic volume, packet rates, or specific types of traffic 

patterns associated with DDoS attacks. 

Flow Analysis: Utilize flow analysis tools to examine the 

flow of traffic between devices and identify any unusual or 

malicious traffic flows that may indicate a DDoS attack. 

Collaborate with ISPs: Work closely with your Internet 

Service Provider (ISP) to monitor traffic entering your 

network. ISPs often have tools and capabilities to detect and 

mitigate DDoS attacks at the network level before they 

reach your IoT devices. 

By combining these methods and staying vigilant, you can 

improve your ability to detect and respond to DDoS attacks 

targeting IoT devices, helping to protect your network and 

devices from disruption and damage. 

Since recently identified malware lacks a signature in the 

anti-malware database, antivirus programs typically fail to 

detect it. To tackle those problems, our study proposed the 

use of deep learning for the identification of DDoS 
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cyberattacks from the beginning.  

DDoS detection methods include methods to recognize and 

establish typical features among the enormous quantities of 

traffic that are used to flood a target's network with DDoS 

attacks [2]. We aim to create a hybrid model that uses deep 

neural networks and autoencoders to identify deceptive 

network traffic and recognize DDoS attacks in Internet of 

Things.  

Predetermined malicious patterns cannot overfit due to the 

suggested model. This objective was initiated by the concept 

that implementing an autoencoder in addition to a deep 

neural network model will produce a more accurate 

classifier model for detecting malicious software network 

traffic that will work similarly to a conventional neural 

network model. 

2. Related Work  

Kawamura et al. explained the steps for event detection and 

measured the deviation of the system clock from the 

universal clock under two attack scenarios (with DDoS 

attacks and without DDoS attacks), to achieve this author 

developed a module focusing on the behavior of the system 

under DDoS attacks and utilized NTP as a synchronization 

service.  Synchronization of the clock between client and 

server is of utmost importance, a miss by a few seconds will 

lead to great complications. When an IoT device receives a 

large amount of data, a delay in communication occurs due 

to the alteration in the system clock. So NTP is preferred 

over other protocols like Precision Time Protocol since NTP 

is right up to one nanosecond. He concluded that all the 

attacks are detected successfully by showing high values of 

recall and precision in realistic scenarios.   

Sadique et al. discussed the importance of the deployment 

of IoT devices for effective communication. He also studied 

parameters for the security of IoT devices as heterogeneity, 

dynamic, and their number. Since we come across IoT 

devices in every sphere of life, so they are increasing at a 

faster pace[3]. The more is the number of IoT devices, the 

more are vulnerabilities.   

Gurulakshmi demarcates between usual and weird traffic 

using the SVM algorithm and speculates weird traffic. The 

underlying approach works in phases, in the very first phase 

XOIC tool is used to produce traffic from numerous sources 

to a single destination. Since Traffic is of DDoS type, traffic 

(which is monitored) is nothing but a sequence of packets 

having source address, destination address, and packet 

count. Further to analyze the real instances of a packet and 

to save these instances for the future, Wireshark (an open 

source tool) has been used for obtaining packets and to limit 

the amount of space required for computation feature 

selection has been applied.   

Khan et al. discusses IoT layers and associated protocols. 

Then security issues at these layers have been discussed and 

block chain is considered to be the best solution for 

resolving security issues keeping in mind the implications 

these layers face.  

Ahmet et al. discussed about crunches in intelligent home 

systems and in smart cities applications. He concluded that 

despite of the fact that applications at home are very 

contented, they are almost used by half of the population and 

inferred that all the domains of smart cities deal online 

thereby creates glamorous city environment to be attacked 

by robber. It is obvious how life will standstill when 

admission of attacks is done to signaling system in subway 

and traffic, electricity cut off, stopping smart vehicles, 

preventing production lines from functioning. The damage 

that occurs to IoT devices depends on ransom money that 

attackers are willing to give back to these smart systems. A 

Distributed Denial of Service (DDoS) attack is a malicious 

method to interrupt regular access to a system, resource, or 

network by overloading the target or related infrastructure 

with traffic. Consequently, there has been an important 

decrease in the security of the network environment. 

Numerous works have been submitted and provided in 

previous research, but as attacker patterns and techniques 

are always changing, new ones are frequently proposed.  A 

DDoS attack detection technique based on extreme learning 

machines (ELMs) has been proposed by Kushwah and Ali 

(2019). The NSL-KDD dataset was employed to estimate 

the solution. CNN and LSTM have been employed in a 

model-based deep learning architecture with Pekta and 

Acarman for evaluating the fundamental spatial-temporal 

features of network flows. The model generated accuracy, 

recall, precision, and F1-score of 99.09%, 99.08%, and 

99.10%, accordingly, when assessed on the CIDOS 2019 

dataset [3]. Researchers discussed the various kinds and 

purposes of cyberattacks and methods to avoid them and 

minimize their effect on society. Their inspection goals were 

to examine closely at common advancements in the field of 

cyber security as well as evaluate the challenges, 

drawbacks, and benefits of the proposed methods. 

3. Dataset 

Use The many new descendant attacks are thoroughly 

examined. The history of early cyber-security evaluates is 

examined together with standard security frameworks. 

Furthermore, included are recent developments, security 

issues, risks, and new trends in cyber security. 

Concerning the datasets used in IDS, the most widely used 

ones are KDD99, NSL-KDD, and UNSW-NB15. Statistics 

from 2015 to 2018 showed that 38% of the total NSL-KDD 

dataset, 23% for KDD99, and 12% for UNSW-NB15 had 

been used. Previously, researchers additionally utilized the 

KDD99 and NSL-KDD datasets for developing machine 

learning and data dimensional reduction methods. The 

experiment in the current study carried out employing the 
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UNSW-NB15 dataset due of its important advantages 

compared to the KDD99 and NSL-KDD datasets. In 

addition, work performed by IDS during the years 2015 and 

2018 shows the low classifying effectiveness of their 

methods employing the UNSW-NB15 dataset. Thus, one 

challenge is improving the method of classification to 

achieve better results on this dataset. Using the IXIA tool, 

the UNSW-NB15 dataset was developed for the purpose to 

extract offensive and current conduct from ACSC research 

completed in 2015. The data includes 2,540,044 instances, 

49 features, and 9 various kinds of attacks in this dataset. 

Table 1 includes the features in order of appearance. 

 [4]. This dataset includes nine various kinds of attacks, such 

as analysis, backdoor, doS, exploits, fuzzers, generic, 

reconnaissance, shellcode, and worms. A component of the 

dataset has been separated into training and testing datasets, 

which have been frequently utilized in professional 

experiments. Table 2 presents detailed information about 

the datasets. In the experiments, we implement the training 

dataset (82.332 instances) and test dataset (175.341 

instances) separately provided in UNSW-NB15 to avoid 

overfitting compared to performing k-fold cross-validation. 

Combining the UNSW-NB15 dataset to the NSL-KDD 

dataset indicates several potential advantages. Firstly off 

everything, it involves equally broad attack operations and 

current, acceptable conduct. Second, there's a similarity 

among the training and test the data set's distributions of 

probability. Finally, it combines an array of features from 

the package's header and content in order to produce 

effective network packets as shown in fig 2. 

 

Fig.2.Sample data in UNSW-NB15 

Finally, the amount of data necessary for analyzing UNSW-

NB15 applying modern methods of classification shows the 

dataset's intricate patterns. This means that the dataset could 

be used to evaluate conventional and novel classification 

methods.In above dataset screen first row represents dataset 

column names and remaining rows represents dataset values 

and in last column we can see class label as Normal or 

Attack Name. So by using above dataset we will train and 

test performance of GAN model. 

he UNSW-NB15 dataset is a widely used dataset for 

network intrusion detection research, including DDoS 

attacks. It contains network traffic data captured from a 

realistic IoT environment, making it suitable for analyzing 

various types of cyber threats, including DDoS attacks. 

Features relevant to IoT DDoS attacks in datasets like 

UNSW-NB15 may include: 

spkts: Source packets - The number of packets sent by the 

source (originating) device in a network communication. 

dpkts: Destination packets - The number of packets 

received by the destination device in a network 

communication. 

sbytes: Source bytes - The total number of bytes sent by the 

source device. 

dbytes: Destination bytes - The total number of bytes 

received by the destination device. 

rate: Rate - The data transfer rate or throughput, typically 

measured in bits per second (bps) or packets per second 

(pps). 

sttl: Source time to live - The remaining time-to-live (TTL) 

value of packets sent from the source. TTL is a field in IP 

packets that limits the lifespan of a packet in the network. 

dttl: Destination time to live - The remaining TTL value of 

packets received at the destination. 

sload: Source load - The traffic load or utilization on the 

source side, often measured in bits per second (bps) or 

packets per second (pps). 

dload: Destination load - The traffic load or utilization on 

the destination side. 

sloss: Source loss - The number of packets lost or dropped 

on the source side during communication. 

dloss: Destination loss - The number of packets lost or 

dropped on the destination side. 

sinpkt: Source inter-arrival time - The time interval 

between successive packets sent by the source. 

dinpkt: Destination inter-arrival time - The time interval 

between successive packets received by the destination. 

sjit: Source jitter - The variation in inter-arrival times of 

packets sent by the source. 

djit: Destination jitter - The variation in inter-arrival times 

of packets received by the destination. 

swin: Source window size - The TCP window size 

advertised by the source device. 

stcpb: Source TCP base sequence number - The initial 

sequence number used in TCP communication from the 

source. 

dtcpb: Destination TCP base sequence number - The initial 

sequence number used in TCP communication at the 

destination. 

dwin: Destination window size - The TCP window size 

advertised by the destination device. 

tcprtt: TCP round-trip time - The time is taken for a TCP 

packet to travel from source to destination and back (RTT). 
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synack: SYN-ACK segment count - The number of SYN-

ACK segments exchanged during TCP connection 

establishment. 

ackdat: ACK data segment count - The number of data 

segments acknowledged by ACK during TCP 

communication. 

smean: Source mean packet size - The average size of 

packets sent by the source device. 

These parameters provide detailed information about 

network traffic characteristics, TCP/IP communication 

attributes, packet loss, inter-arrival times, and other metrics 

that are valuable for network analysis, intrusion detection, 

and cybersecurity research. 

3.1 Packet Attributes 

Features related to packet characteristics, such as packet 

size, packet duration, packet rate, and packet payload 

content. These attributes can provide insights into the nature 

of network traffic generated by IoT devices during DDoS 

attacks[5]. 

3.2 Protocol Information  

Features describing the communication protocols used by 

IoT devices, including TCP, UDP, ICMP, and other 

application-layer protocols. Protocol-specific features such 

as protocol type, protocol flags, and protocol-specific 

payload characteristics can help identify anomalous or 

suspicious traffic patterns indicative of DDoS attacks. 

3.3 Connection Attributes  

Features related to network connections established by IoT 

devices, such as source and destination IP addresses, source 

and destination port numbers, connection duration, and 

connection state. Analyzing connection-level attributes can 

reveal patterns associated with DDoS attack traffic, such as 

high connection rates, unusual port usage, or connections to 

known malicious IP addresses[6]. 

3.4 Traffic Behavior  

Features capturing the behavior of IoT devices and their 

interactions with network resources, including traffic 

volume, traffic patterns, traffic directionality, and traffic 

anomalies. Behavioral features can help differentiate 

between legitimate and malicious activities, enabling the 

detection of DDoS attacks based on deviations from normal 

traffic behavior. 

3.5 Device Characteristics  

Features related to the characteristics of IoT devices 

involved in DDoS attacks, such as device type, device 

firmware version, device manufacturer, and device-specific 

attributes. Understanding the properties of compromised 

IoT devices can aid in identifying vulnerabilities exploited 

by attackers and implementing targeted mitigation 

strategies. 

3.6 Botnet Indicators 

Features indicative of botnet activity, such as botnet 

command and control (C&C) communication patterns, 

botnet propagation mechanisms, and botnet membership 

information. Detecting botnet-related features can help 

identify compromised IoT devices participating in DDoS 

attacks and disrupt botnet operations through appropriate 

countermeasures [7]. 

3.7 Anomaly Scores  

Features derived from anomaly detection algorithms or 

machine learning models trained to detect DDoS attacks 

based on statistical deviations from normal network 

behavior. Anomaly scores calculated for various network 

attributes can serve as input features for detecting and 

classifying DDoS attacks in real-time or offline analysis 

scenarios. By leveraging these features, security analysts 

and researchers can develop effective detection and 

mitigation strategies to combat IoT DDoS attacks and 

safeguard IoT ecosystems against malicious activities. 

Analyzing these parameters within the context of the 

UNSW-NB15 dataset can help researchers and practitioners 

understand the behavior of DDoS attacks in IoT 

environments, develop detection algorithms, and devise 

effective mitigation strategies to protect IoT infrastructures 

from such threats. 

4. Data preprocessing 

4.1 Upload UNSW-NB15 Dataset  

Through the use of this module, we can submit a dataset to 

an application that will then read all of the dataset values 

and generate a graph displaying the number of attacks that 

were identified throughout the dataset. 

4.2 Pre-process Dataset 

By using this module, the dataset will be filtered by 

replacing any values that are missing. All non-numeric data 

is subsequently converted to numeric values using a label 

encoder, and the filtered and processed dataset values will 

be normalized. 

4.3 Cleaning of Data 

It involves recognizing inappropriate, insufficient, 

unnecessary, or absent data before changing, deleting, or 

replacing it. Most of the work is focused on ensuring that 

the input data is mistake-free and clean, as poor-quality data 

can lead to biased results, including low accuracy and high 

error rates in the model. The ones that follow are the pre-

model training cleaning steps: We observed that while 

performing the EDA process, the input data included noise 

in a variety of missing or NaN values, infinity, and negative 

values.  
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In contrast to other research, we did not remove the noisy 

data; instead, we impute negative values with 0 and values 

that are infinite with NaN. Lastly, the Missforest (MF) 

approach is used to infer the missing or NaN data. As a non-

parametric method, MF works well with both numeric and 

discrete data characteristics. It employs an iterative 

approach to impute by training a random forest model.  

 

Fig.3. Various attacks in the dataset 

4.4 Dataset Train & Test Split  

The data set will be split between train and test using this 

module, with the program using 80% of the data set for 

training and 20% for testing. 

4.5 Train Deep Learning GAN Algorithm  

The generalized adversarial network (GAN) algorithm will 

employ 80% on the training data to develop a model, that 

will then be applied to 20% of the data to be tested to assess 

prediction accuracy.The comparison Graph will plot the 

accuracy and precision comparison between GAN 

algorithms. 

This module will be utilized employed for uploading test 

data, that GAN will examine to generate a possible signature 

to determine if the test result is involves attacks. 

5.  Methodology 

DDoS are becoming more sophisticated, it is essential to use 

intrusion detection systems; since they can help the 

organization understand the deficiencies in the early 

remediation. IDS can help organizations monitor 

illegitimate access that affects the confidentiality, integrity, 

or availability of information resources. They can also 

provide the capability to monitor and analyze the activities 

of both users and systems, assessing the integrity of file and 

systems, analyzing the unusual sequence of patterns, and 

possibly tracking if any user is violating the policies laid 

down by organizations. The signature-based intrusion 

detection system (IDS) can differentiate normal traffic from 

DDoS traffic. Techniques based on machine learning have 

shown promising results in intrusion detection since they 

can cater the complexity of security demands of a network.  

Hence, unlike machine learning, deep learning can handle 

huge amount of data and hence Intrusion detection system 

based on deep learning can be well suited to detect 

cyberattacks. They can identify if there is any anomaly in 

the network traffic from the previous traffic. Another 

challenge is finding the latest datasets, as much research is 

available on out-of-date datasets (KDD99 and NSL-KDD). 

These datasets must be continuously updated with the latest 

DDoS attack information to prove to be more efficient in 

detecting novel cyberattacks. In addition, it is recommended 

that the techniques be enhanced by optimizing the feature 

selection to enhance the capability to  detect cyber-attacks 

with reduced features[8]. 

5.1. Proposed Algorithm 

A hybrid model combining an auto encoder and a 

Generative Adversarial Network (GAN) is often referred to 

as a "GAN-DAE" (GAN with Denoising Auto encoder) or a 

"GAN-VAE" (GAN with Variational Auto encoder), 

depending on the type of auto encoder used. Both 

architectures aim to generate realistic data samples while 

learning useful representations. 

Here's a high-level overview of how you could combine 

these two models: 

5.2. Generator (GAN)  

Synthetic data samples have been produced using the 

generator according to the GAN architecture. It seeks to 

generate data that is similar to actual data through utilizing 

random noise as input. 

Discriminator (GAN): The discriminator in the GAN 

framework is responsible for distinguishing between real 

and synthetic data. It is trained to classify whether the input 

data is real or generated by the generator. 

5.3. Auto encoder 

The auto encoder knows how to recombine the data it 

receives. A decoder network then reconstructs the original 

data from this representation, when an encoder network 

compresses the input data into a lower-dimensional latent 

space representation. Identifying the objective functions for 

both the reconstruction loss minimization and the 

adversarial training is required for determining the 

mathematical formulations for the hybrid model that 

combines a with a Denoising Auto encoder (DAE). Let us 

analyse the derivation. 

5.4. Generative Adversarial Network (GAN) 

The adversarial training aims to minimize the Jensen-

Shannon divergence between the distribution of real data 

and the distribution of generated data. 

• Let D(x) represent the discriminator's output, 

indicating the probability that input x is real. 
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• Let G(z) represent the generator's output, where z 

is the input noise vector. 

• The discriminator's objective is to maximize the 

probability of correctly classifying real and fake 

data: 

maxDEx∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]  

(1)  

The generator's objective is to minimize the probability of 

the discriminator correctly classifying fake data: 

minGEz∼pz(z)[log(1−D(G(z)))]      (2) 

5.5. Reconstruction Loss Minimization (DAE): 

The reconstruction loss minimization aims to minimize the 

difference between the input data and the reconstructed data. 

Let E(x) represent the encoder's output, compressing input 

x into a latent representation. Let D′(E(x)) represent the 

decoder's output, reconstructing the original input from the 

latent representation. The objective is to minimize the 

reconstruction loss between the original input and the 

reconstructed output: 

minE,D′Ex∼pdata(x)[∥x−D′(E(x))∥2]                   (3) 

5.6. Hybrid Model Objective 

Whereλ1 and λ2 are hyper parameters controlling the 

relative importance of the adversarial loss and the 

reconstruction  

5.6.1 loss Training Phase 

This mathematical formulation provides a framework for 

training the hybrid model, combining the adversarial 

training of GANs with the reconstruction loss minimization 

of DAEs. Adjustments to hyper parameters and network 

architectures may be necessary for specific applications and 

datasets. During the training phase, the auto encoder is 

trained on the real data to reconstruct it accurately. This 

helps in learning a compact representation of the data. 

The GAN framework is trained simultaneously [9]. The 

generator tries to generate synthetic data samples to fool the 

discriminator, while the discriminator tries to distinguish 

between real and synthetic data. The generator can use the 

latent space representations learned by the auto encoder to 

generate more realistic data samples. This is achieved by 

feeding random noise into the decoder part of the auto 

encoder to generate samples. 

5.6.2 Generating Phase: 

During the generating phase, you can use the trained 

generator to produce synthetic data samples. This is done by 

generating random noise and passing it through the decoder 

part of the auto encoder, utilizing the learned latent space 

representation. By combining these models, you can 

potentially leverage the benefits of both auto encoders 

(learning useful representations) and GANs (generating 

realistic data samples). This approach is often used in tasks 

such as data generation, image synthesis, and anomaly 

detection[10]. 

5.6.3 Stacked Auto encoder 

A neural network with many layers comprised of multiple 

auto encoders, each of which feeds its output into the one 

before it, and so on, until the final encoder delivers its output 

into an array of decoders, is referred to as a stacked auto 

encoder. This gives the user greater authority at each stage 

of the process as they compress and decompress the input 

data step by step. An ideal stacked auto encoder’s output is 

equal to its input, just like auto encoders [11]. 

 

Fig.4. Structure of Auto encoder 

The input data is transformed into a hidden representation 

utilizing an encoder, and the input data is rearranged from 

the hidden representation utilizing a decoder. They are 

considering the provided dataset unlabeled. 

5.6.4  Single Auto encoder  

Primarily composed of an encoder and a decoder, a single 

auto encoder is the fundamental building component. The 

encoder transforms the input data into a lower-dimensional 

representation by compression data; the decoder then uses 

the resulting representation to reassemble the original data 

[6]. 

5.6.5 Stacking Layers  

Stacked auto-encoders are produced by layering these 

separate auto encoders across multiple layers. The output of 

the previous layer serves as an input for the subsequent layer 

of the auto-encoder. 

5.6.6 Layer-wise Training  

Layer-wise training is a common approach to training. To 

develop an appropriate representation of the input data, the 

first layer is trained separately as an auto-encoder. The next 

layer is placed on top of the first layer, which encoder is 

frozen once it has been trained. The above process is 

repeated for every stratum within the structure of the 

hierarchy. 

5.6.7 Fine-tuning  

Backpropagation is used to adjust the network as a whole 

once all layers have been stacked. To improve 
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reconstruction performance overall, all of the network's 

weights and biases have to be modified. These networks 

have been utilized in recommendation systems, computer 

vision, and natural language processing, amongst various 

other areas. These can be efficient tools for deriving useful 

features from processed input data. 

5.7 Handling imbalanced data 

When there are significantly fewer samples in one class than 

then are observations in the other, there is a class imbalance. 

Many techniques exist to handle data imbalance (Kraiem et 

al., 2021). To enhance the minority class samples and 

balance both classes, we used SVM together with the 

SMOTE over-sampling strategy. It is an advanced version 

of SMOTE variations where an SVM classifier is utilized to 

address the issue of missing data in borderline [8]. In 

addition, after training SVM on every piece of data, the 

border is established utilizing support vectors. 

Subsequently, a random sequence of lines is created to 

connect each minority class support vector to a subset of the 

closest neighbors in the synthetic data. The conventional 

GAN model is a generative model using DL architectures. 

Goodfellow et al. (2014) described the first GAN model 

which is difficult to train and unstable. In general, GAN 

model has a generator model and a discriminator model. The 

figure shows the generator model. The GAN generator 

model takes random vector data with fixed length as input 

and outputs the generated examples in the domain. A source 

of noise (random vector) is required for the generative 

purposes. They are obtained from the Gaussian distribution. 

After training, a compressed representation of data 

distribution is formed as called latent space. From the latent 

space, the generator model takes new points as input and 

generates new examples. The generated examples are 

discriminated by a discriminator model shown in figure 5. 

 

Fig.5. Block diagram of the GAN with Auto encoder system 

To enhance data quality and extract useful knowledge, the 

model starts with data pre-processing, an essential initial 

stage in any machine learning process. Organizing and 

cleaning raw data to make it available for the development 

and training of machine learning models is referred to as 

data pre-processing. Initially, multiple statistical summaries 

and visualizations are implemented when combined with 

EDA to assist in recognizing the key characteristics of the 

various input data entities, such as rows and columns [7]. 

Depending on the input data, this method can be costly yet 

very successful. Concerning the data, the EDA generates 

several observations. 

6. Scalability of Proposed Model 

Model Size: more layers in the autoencoder can increase the 

model size this can potentially lead to higher memory 

requirements during training and inference, making 

scalability an issue on resource-limited systems. 

Computational Resources: Training a stacked 

autoencoder requires significant computational resources, 

especially when dealing with large datasets or deep 

architectures. Scaling to larger datasets UNSW-NB15 or 

deeper networks may require distributed computing or 

specialized hardware (e.g., GPUs or TPUs) to speed up 

training. In this work, we used 12GB GPU in Google Colab. 

Data Dimensionality: Stacked autoencoders may face 

challenges with high-dimensional input data. As the 

dimensionality of the input data increases, the complexity of 

learning meaningful representations also increases. 

Techniques such as dimensionality reduction or feature 

engineering may be necessary to improve scalability. 

Generalization: With deeper architectures, there is a risk of 

overfitting, especially when dealing with limited training 

data. Regularization techniques such as dropout or L2 

regularization can help mitigate overfitting and improve the 

generalization of the model. 

Hyperparameter Tuning: As the complexity of the model 

increases, the number of hyper parameters also grows. 

Tuning these hyper parameters effectively becomes crucial 

for achieving good performance and scalability. 

Deployment: Deploying stacked auto encoders in 

production environments may pose challenges, especially if 

real-time inference or low-latency requirements are 

necessary. Optimizing the model for inference speed and 

memory footprint is essential for scalable deployment. In 

summary, while stacked auto encoders offer powerful 

capabilities for learning hierarchical representations of data, 

achieving scalability requires careful consideration of 

model size, computational resources, data dimensionality, 

generalization, hyperparameter tuning, and deployment 

constraints. Proper optimization and tuning are crucial for 

effectively scaling stacked auto encoder models to larger 

datasets and deeper architectures. 

7. Experimental Results 

Computer network always get affected because of viruses 

and worms which can be spread by malicious attackers by 

intercepting communication between two computers in a 

network. In the past many algorithms were introduced but 

all those algorithms were depend on some signature 

matching to distinguish between normal and attack network 

packets and this algorithms accuracy will get decrease if 
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attackers used different signatures.  

To overcome from above issue author employing deep 

learning algorithms to detect attacks from IOT networks. In 

propose work author has utilized unsupervised based 

Generative Adversarial Network (GAN) deep learning 

algorithm which is based on two different networks called 

Generator and Discriminator. Generator is mainly 

responsible to generate new dataset based on original 

dataset and then Discriminator will predict weather 

generated new test data is normal or contains any attack 

signatures. So, by using this model we can detect attacks on 

same or different variant signature.  

Attackers cannot evade from detection even if they change 

signature as Generator can detect signature from all possible 

values and can detect all signatures of attacks. To train and 

test above algorithm performance we have utilized 

UNSW15 dataset which is suitable to train attacks from 

normal or IOT networks. This dataset contains 9 different 

attacks signature. 

GAN model able to achieve accuracy between 95 to 97% 

and this performance we are measuring in terms of 

precision, recall, confusion matrix graph and F1score shown 

in figure 6 

 

Fig.6. Confusion matrix 

Table.1 Comparison of evaluation parameters 

Performance CNN DNN Proposed 

system 

Accuracy 0.73 0.85 0.9836 

F1score 0.74 0.72 0.9843 

precision 0.72 0.76 0.9417 

sensitivity 0.77 0.73 0.9614 

 

Table 1 provided performance metrics for different models: 

Convolution Neural Network, Deep Neural Network, and a 

proposed system. These metrics include Accuracy, F1 

Score, Precision, and Sensitivity. Comparison graph is 

shown in figure 7. 

7.1 Accuracy  

The proportion of correctly classified instances out of the 

total instances. For example, an accuracy of 0.73 for the 

CNN model means that it correctly classified 73% of the 

instances. 

7.2. F1 Score  

The harmonic mean of precision and sensitivity. It provides 

a balance between precision and recall. It's a good metric to 

use when there is an imbalance between the classes in the 

data. 

 

Fig.7. performance analysis graph 

7.3. Precision The proportion of true positive instances 

(correctly predicted positive instances) out of all positive 

predictions. A precision of 0.72 for the CNN model means 

that out of all instances predicted as positive by the model, 

72% were positive. 

7.4. Sensitivity (Recall)  

The amount of actual instances that were positive that the 

model properly recognized. A sensitivity of 0.77 for the 

CNN model means that out of all actual positive instances, 

the model correctly identified 77%. Based on these metrics, 

the hybrid system seems to perform the best overall, with 

the highest scores in Accuracy, F1 Score, Precision, and 

Sensitivity. 

8. Conclusion 

Based on the above result analysis, we can conclude that the 

hybrid model combining an auto encoder with a GAN can 

offer advantages in terms of data generation, representation 

learning, unsupervised learning, and transfer learning 

compared to traditional CNN and DNN architectures, 

especially in tasks were generating realistic data samples 

and learning informative representations are crucial. The 

synergistic interaction between the two components 

facilitates a more informative latent representation and 

prevents mode collapse, leading to better performance and 

generalization across various domains and tasks. 

Additionally, the hybrid model benefits from regularization 

effects, reducing overfitting and improving model 

versatility, making it a powerful framework for a wide range 
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of generative modeling applications. 
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