

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2875–2884 | 2875

 Improved DDoS Detection Models using Autoencoders and Generative

Adversarial Networks for Internet of Things-based Networks

Marram Amitha*1, Dr.Muktevi Srivenkatesh2

Submitted: 29/01/2024 Revised: 07/03/2024 Accepted: 15/03/2024

Abstract: Denial-of-service (DDoS) attacks represent the primary threat to the continuous and efficient performance of the Internet. It may

have been an element in server delays disconnections, host issues, lost revenue and production, and website vulnerability. Standard machine

learning algorithms suffer from increased false-positive rates and reduced rate of detection when new threats develop. Therefore, the DDoS

detection devices must include high-performance machine learning classifiers with low false-positive rates and high prediction accuracy.

This research paper presents an in-depth study into the scalability and resource efficiency of Deep Learning-based DDoS detection models,

specifically convolutional neural networks (CNNs), recurrent neural networks (RNNs), and auto encoders. With a rapid growth of internet

of things (IoT) devices, there has been an increase in both the amount and intensity of network attacks. Attacks which result in a denial of

service (DoS) or distributed denial of service (DDoS) are considered to be the most prevalent in IoT networks in recent years. Since a

majority of current security solutions—firewalls, intrusion detection systems, etc.—filter all valid and malicious data through static,

predefined standards, they have been unable to recognize advanced DoS and DDoS attacks. However, when coupled with techniques based

on artificial intelligence (AI), these solutions can become reliable as well as effective. We also investigate the effectiveness of transfer

learning and model stacking techniques to improve detection performance. Various DDoS scenarios are simulated in a cloud computing

environment to assess real-time performance metrics such as latency, throughput, and resource utilization. Experimental results

demonstrate that while deep learning models provide high accuracy and F1 scores, the application of transfer learning and model stacking

further enhances these metrics. Importantly, we also find that certain architectures demonstrate superior scalability and consume fewer

resources, making them better suited for real-world cloud computing applications. The findings from this research contribute valuable

insights for the deployment of scalable and resource-efficient DDoS detection systems in cloud computing.

Keywords: Distributed denial of service, Internet of Things, intrusion detection, Deep Sparse Auto encoder

1. Introduction

The entire world has evolved into a globally connected place

in the modern period. The evolution is caused by the reality

that knowledge can be transmitted more easily,

communication has become increasingly flexible, and many

aspects of life have been computerized. Information thus

becomes widely available wherever we look. Information

systems, independent of an organization's size or area of

activity, have become essential in this environment.

Information systems have been attacked by malware

infections more frequently recently, while advanced attacks

have proliferated, malware attacks have also seen

significant changes in category. These types of attacks can

be detected and destroyed simply network-based intrusion

detection systems just simply searching the network against

threats. Such circumstances have resulted in a development

of the area of cyber security research and a consequent rise

in the complexity of cyber security.[1]. To provide an

amount of safety that can recognize and avoid these risks,

multiple procedures and advances in technology are

developed. To attempt to decrease service quality, a DDoS

attacker uses a variety of available network devices to send

huge numbers

of produced packets at the target server inside the same

network using different source IP addresses. The attacker

attempts to prevent those with permission from using the

services offered by the victim server by flooding the victim's

device with these packets. A system for early detection and

mitigation of these attacks is required because of this

probability. Effective systems for intrusion detection (IDS)

would protect intellectual property, preserve network

performance, enhance data security, and decrease potential

responsibility for compromised notes or network data[1].

Around the world, it is predicted that crime will cost $6

trillion annually. However, based on Cisco data, there will

be 15.4 million distributed Denial of service (DDoS) of

Service) attacks by 2023. The procedure of identifying

malware and cyberattacks has never been easy.

Organizations in the public and private sectors have been

dedicating an enormous amount of time and resources to

reducing the impact of these threats.

A Distributed Denial of Service (DDoS) attack on Internet

of Things (IoT) devices is a type of cyber attack where

multiple compromised devices are used to flood a targeted

system or network with a large volume of traffic. These

1 Department of Computer Science GITAM Deemed to be University, India

ORCID ID : 0000-0002-0526-1707
2 Department of Computer Science GITAM Deemed to be University, India

ORCID ID : 0000-0001-9631-6402

* Corresponding Author Email: 121962504006@gitam.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2875–2884 | 2876

attacks can overwhelm the target's resources, making it

unable to respond to legitimate requests from users or

clients.

Fig.1.Ddos attacks in IoT network

There are several reasons why IoT devices are particularly

vulnerable to DDoS attacks as shown in figure 1:

Large Attack Surface: IoT devices are often designed with

minimal security measures to keep costs down, making

them easier targets for attackers.

Default Credentials: Many IoT devices come with default

usernames and passwords that users don't change, making it

easy for attackers to gain access.

Limited Processing Power: IoT devices typically have

limited processing power and memory, making them easy to

overwhelm with a flood of traffic.

Always Connected: IoT devices are usually connected to the

internet 24/7, providing a constant target for attackers.

Lack of Security Updates: Manufacturers may not provide

regular security updates for IoT devices, leaving them

vulnerable to known exploits.

To mitigate the risk of DDoS attacks on IoT devices, it's

important to take the following steps:

Change Default Credentials: Always change default

usernames and passwords on IoT devices to unique, strong

credentials.

Update Firmware: Regularly update IoT device firmware to

patch security vulnerabilities and protect against known

exploits.

Network Segmentation: Segment IoT devices onto separate

network segments to limit the impact of a compromised

device on other parts of the network.

Traffic Monitoring: Implement traffic monitoring and

anomaly detection systems to detect and mitigate abnormal

traffic patterns that may indicate a DDoS attack.

Use Firewalls and Access Controls: Configure firewalls and

access controls to restrict incoming and outgoing traffic to

IoT devices, blocking unauthorized access and malicious

traffic.

By implementing these measures, organizations and users

can reduce the risk of DDoS attacks on IoT devices and

enhance overall cybersecurity posture.

Detecting DDoS attacks on IoT devices

It involves monitoring network traffic and looking for

patterns or anomalies that indicate a potential attack. Here

are some methods to help find DDoS attacks on IoT devices:

Traffic Analysis: Use network monitoring tools to analyze

incoming and outgoing traffic on your IoT devices. Look for

sudden spikes in traffic volume or unusual patterns such as

a high number of requests from a single source.

Anomaly Detection: Implement anomaly detection

techniques to identify deviations from normal traffic

behavior. This can involve setting thresholds for acceptable

traffic levels and flagging any traffic that exceeds these

thresholds as suspicious.

DDoS Protection Services: Consider using DDoS

protection services or solutions specifically designed for IoT

devices. These services can help detect and mitigate DDoS

attacks in real-time, reducing the impact on your network

and devices.

Behavioral Analysis: Monitor the behavior of IoT devices

over time to establish a baseline of normal behavior. Any

deviations from this baseline could indicate a DDoS attack

or other security threat.

Logging and Alerting: Enable logging and configure

alerting mechanisms to notify you of suspicious activity or

potential DDoS attacks. Alerts can be based on criteria such

as traffic volume, packet rates, or specific types of traffic

patterns associated with DDoS attacks.

Flow Analysis: Utilize flow analysis tools to examine the

flow of traffic between devices and identify any unusual or

malicious traffic flows that may indicate a DDoS attack.

Collaborate with ISPs: Work closely with your Internet

Service Provider (ISP) to monitor traffic entering your

network. ISPs often have tools and capabilities to detect and

mitigate DDoS attacks at the network level before they

reach your IoT devices.

By combining these methods and staying vigilant, you can

improve your ability to detect and respond to DDoS attacks

targeting IoT devices, helping to protect your network and

devices from disruption and damage.

Since recently identified malware lacks a signature in the

anti-malware database, antivirus programs typically fail to

detect it. To tackle those problems, our study proposed the

use of deep learning for the identification of DDoS

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2875–2884 | 2877

cyberattacks from the beginning.

DDoS detection methods include methods to recognize and

establish typical features among the enormous quantities of

traffic that are used to flood a target's network with DDoS

attacks [2]. We aim to create a hybrid model that uses deep

neural networks and autoencoders to identify deceptive

network traffic and recognize DDoS attacks in Internet of

Things.

Predetermined malicious patterns cannot overfit due to the

suggested model. This objective was initiated by the concept

that implementing an autoencoder in addition to a deep

neural network model will produce a more accurate

classifier model for detecting malicious software network

traffic that will work similarly to a conventional neural

network model.

2. Related Work

Kawamura et al. explained the steps for event detection and

measured the deviation of the system clock from the

universal clock under two attack scenarios (with DDoS

attacks and without DDoS attacks), to achieve this author

developed a module focusing on the behavior of the system

under DDoS attacks and utilized NTP as a synchronization

service. Synchronization of the clock between client and

server is of utmost importance, a miss by a few seconds will

lead to great complications. When an IoT device receives a

large amount of data, a delay in communication occurs due

to the alteration in the system clock. So NTP is preferred

over other protocols like Precision Time Protocol since NTP

is right up to one nanosecond. He concluded that all the

attacks are detected successfully by showing high values of

recall and precision in realistic scenarios.

Sadique et al. discussed the importance of the deployment

of IoT devices for effective communication. He also studied

parameters for the security of IoT devices as heterogeneity,

dynamic, and their number. Since we come across IoT

devices in every sphere of life, so they are increasing at a

faster pace[3]. The more is the number of IoT devices, the

more are vulnerabilities.

Gurulakshmi demarcates between usual and weird traffic

using the SVM algorithm and speculates weird traffic. The

underlying approach works in phases, in the very first phase

XOIC tool is used to produce traffic from numerous sources

to a single destination. Since Traffic is of DDoS type, traffic

(which is monitored) is nothing but a sequence of packets

having source address, destination address, and packet

count. Further to analyze the real instances of a packet and

to save these instances for the future, Wireshark (an open

source tool) has been used for obtaining packets and to limit

the amount of space required for computation feature

selection has been applied.

Khan et al. discusses IoT layers and associated protocols.

Then security issues at these layers have been discussed and

block chain is considered to be the best solution for

resolving security issues keeping in mind the implications

these layers face.

Ahmet et al. discussed about crunches in intelligent home

systems and in smart cities applications. He concluded that

despite of the fact that applications at home are very

contented, they are almost used by half of the population and

inferred that all the domains of smart cities deal online

thereby creates glamorous city environment to be attacked

by robber. It is obvious how life will standstill when

admission of attacks is done to signaling system in subway

and traffic, electricity cut off, stopping smart vehicles,

preventing production lines from functioning. The damage

that occurs to IoT devices depends on ransom money that

attackers are willing to give back to these smart systems. A

Distributed Denial of Service (DDoS) attack is a malicious

method to interrupt regular access to a system, resource, or

network by overloading the target or related infrastructure

with traffic. Consequently, there has been an important

decrease in the security of the network environment.

Numerous works have been submitted and provided in

previous research, but as attacker patterns and techniques

are always changing, new ones are frequently proposed. A

DDoS attack detection technique based on extreme learning

machines (ELMs) has been proposed by Kushwah and Ali

(2019). The NSL-KDD dataset was employed to estimate

the solution. CNN and LSTM have been employed in a

model-based deep learning architecture with Pekta and

Acarman for evaluating the fundamental spatial-temporal

features of network flows. The model generated accuracy,

recall, precision, and F1-score of 99.09%, 99.08%, and

99.10%, accordingly, when assessed on the CIDOS 2019

dataset [3]. Researchers discussed the various kinds and

purposes of cyberattacks and methods to avoid them and

minimize their effect on society. Their inspection goals were

to examine closely at common advancements in the field of

cyber security as well as evaluate the challenges,

drawbacks, and benefits of the proposed methods.

3. Dataset

Use The many new descendant attacks are thoroughly

examined. The history of early cyber-security evaluates is

examined together with standard security frameworks.

Furthermore, included are recent developments, security

issues, risks, and new trends in cyber security.

Concerning the datasets used in IDS, the most widely used

ones are KDD99, NSL-KDD, and UNSW-NB15. Statistics

from 2015 to 2018 showed that 38% of the total NSL-KDD

dataset, 23% for KDD99, and 12% for UNSW-NB15 had

been used. Previously, researchers additionally utilized the

KDD99 and NSL-KDD datasets for developing machine

learning and data dimensional reduction methods. The

experiment in the current study carried out employing the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2875–2884 | 2878

UNSW-NB15 dataset due of its important advantages

compared to the KDD99 and NSL-KDD datasets. In

addition, work performed by IDS during the years 2015 and

2018 shows the low classifying effectiveness of their

methods employing the UNSW-NB15 dataset. Thus, one

challenge is improving the method of classification to

achieve better results on this dataset. Using the IXIA tool,

the UNSW-NB15 dataset was developed for the purpose to

extract offensive and current conduct from ACSC research

completed in 2015. The data includes 2,540,044 instances,

49 features, and 9 various kinds of attacks in this dataset.

Table 1 includes the features in order of appearance.

 [4]. This dataset includes nine various kinds of attacks, such

as analysis, backdoor, doS, exploits, fuzzers, generic,

reconnaissance, shellcode, and worms. A component of the

dataset has been separated into training and testing datasets,

which have been frequently utilized in professional

experiments. Table 2 presents detailed information about

the datasets. In the experiments, we implement the training

dataset (82.332 instances) and test dataset (175.341

instances) separately provided in UNSW-NB15 to avoid

overfitting compared to performing k-fold cross-validation.

Combining the UNSW-NB15 dataset to the NSL-KDD

dataset indicates several potential advantages. Firstly off

everything, it involves equally broad attack operations and

current, acceptable conduct. Second, there's a similarity

among the training and test the data set's distributions of

probability. Finally, it combines an array of features from

the package's header and content in order to produce

effective network packets as shown in fig 2.

Fig.2.Sample data in UNSW-NB15

Finally, the amount of data necessary for analyzing UNSW-

NB15 applying modern methods of classification shows the

dataset's intricate patterns. This means that the dataset could

be used to evaluate conventional and novel classification

methods.In above dataset screen first row represents dataset

column names and remaining rows represents dataset values

and in last column we can see class label as Normal or

Attack Name. So by using above dataset we will train and

test performance of GAN model.

he UNSW-NB15 dataset is a widely used dataset for

network intrusion detection research, including DDoS

attacks. It contains network traffic data captured from a

realistic IoT environment, making it suitable for analyzing

various types of cyber threats, including DDoS attacks.

Features relevant to IoT DDoS attacks in datasets like

UNSW-NB15 may include:

spkts: Source packets - The number of packets sent by the

source (originating) device in a network communication.

dpkts: Destination packets - The number of packets

received by the destination device in a network

communication.

sbytes: Source bytes - The total number of bytes sent by the

source device.

dbytes: Destination bytes - The total number of bytes

received by the destination device.

rate: Rate - The data transfer rate or throughput, typically

measured in bits per second (bps) or packets per second

(pps).

sttl: Source time to live - The remaining time-to-live (TTL)

value of packets sent from the source. TTL is a field in IP

packets that limits the lifespan of a packet in the network.

dttl: Destination time to live - The remaining TTL value of

packets received at the destination.

sload: Source load - The traffic load or utilization on the

source side, often measured in bits per second (bps) or

packets per second (pps).

dload: Destination load - The traffic load or utilization on

the destination side.

sloss: Source loss - The number of packets lost or dropped

on the source side during communication.

dloss: Destination loss - The number of packets lost or

dropped on the destination side.

sinpkt: Source inter-arrival time - The time interval

between successive packets sent by the source.

dinpkt: Destination inter-arrival time - The time interval

between successive packets received by the destination.

sjit: Source jitter - The variation in inter-arrival times of

packets sent by the source.

djit: Destination jitter - The variation in inter-arrival times

of packets received by the destination.

swin: Source window size - The TCP window size

advertised by the source device.

stcpb: Source TCP base sequence number - The initial

sequence number used in TCP communication from the

source.

dtcpb: Destination TCP base sequence number - The initial

sequence number used in TCP communication at the

destination.

dwin: Destination window size - The TCP window size

advertised by the destination device.

tcprtt: TCP round-trip time - The time is taken for a TCP

packet to travel from source to destination and back (RTT).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2875–2884 | 2879

synack: SYN-ACK segment count - The number of SYN-

ACK segments exchanged during TCP connection

establishment.

ackdat: ACK data segment count - The number of data

segments acknowledged by ACK during TCP

communication.

smean: Source mean packet size - The average size of

packets sent by the source device.

These parameters provide detailed information about

network traffic characteristics, TCP/IP communication

attributes, packet loss, inter-arrival times, and other metrics

that are valuable for network analysis, intrusion detection,

and cybersecurity research.

3.1 Packet Attributes

Features related to packet characteristics, such as packet

size, packet duration, packet rate, and packet payload

content. These attributes can provide insights into the nature

of network traffic generated by IoT devices during DDoS

attacks[5].

3.2 Protocol Information

Features describing the communication protocols used by

IoT devices, including TCP, UDP, ICMP, and other

application-layer protocols. Protocol-specific features such

as protocol type, protocol flags, and protocol-specific

payload characteristics can help identify anomalous or

suspicious traffic patterns indicative of DDoS attacks.

3.3 Connection Attributes

Features related to network connections established by IoT

devices, such as source and destination IP addresses, source

and destination port numbers, connection duration, and

connection state. Analyzing connection-level attributes can

reveal patterns associated with DDoS attack traffic, such as

high connection rates, unusual port usage, or connections to

known malicious IP addresses[6].

3.4 Traffic Behavior

Features capturing the behavior of IoT devices and their

interactions with network resources, including traffic

volume, traffic patterns, traffic directionality, and traffic

anomalies. Behavioral features can help differentiate

between legitimate and malicious activities, enabling the

detection of DDoS attacks based on deviations from normal

traffic behavior.

3.5 Device Characteristics

Features related to the characteristics of IoT devices

involved in DDoS attacks, such as device type, device

firmware version, device manufacturer, and device-specific

attributes. Understanding the properties of compromised

IoT devices can aid in identifying vulnerabilities exploited

by attackers and implementing targeted mitigation

strategies.

3.6 Botnet Indicators

Features indicative of botnet activity, such as botnet

command and control (C&C) communication patterns,

botnet propagation mechanisms, and botnet membership

information. Detecting botnet-related features can help

identify compromised IoT devices participating in DDoS

attacks and disrupt botnet operations through appropriate

countermeasures [7].

3.7 Anomaly Scores

Features derived from anomaly detection algorithms or

machine learning models trained to detect DDoS attacks

based on statistical deviations from normal network

behavior. Anomaly scores calculated for various network

attributes can serve as input features for detecting and

classifying DDoS attacks in real-time or offline analysis

scenarios. By leveraging these features, security analysts

and researchers can develop effective detection and

mitigation strategies to combat IoT DDoS attacks and

safeguard IoT ecosystems against malicious activities.

Analyzing these parameters within the context of the

UNSW-NB15 dataset can help researchers and practitioners

understand the behavior of DDoS attacks in IoT

environments, develop detection algorithms, and devise

effective mitigation strategies to protect IoT infrastructures

from such threats.

4. Data preprocessing

4.1 Upload UNSW-NB15 Dataset

Through the use of this module, we can submit a dataset to

an application that will then read all of the dataset values

and generate a graph displaying the number of attacks that

were identified throughout the dataset.

4.2 Pre-process Dataset

By using this module, the dataset will be filtered by

replacing any values that are missing. All non-numeric data

is subsequently converted to numeric values using a label

encoder, and the filtered and processed dataset values will

be normalized.

4.3 Cleaning of Data

It involves recognizing inappropriate, insufficient,

unnecessary, or absent data before changing, deleting, or

replacing it. Most of the work is focused on ensuring that

the input data is mistake-free and clean, as poor-quality data

can lead to biased results, including low accuracy and high

error rates in the model. The ones that follow are the pre-

model training cleaning steps: We observed that while

performing the EDA process, the input data included noise

in a variety of missing or NaN values, infinity, and negative

values.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2875–2884 | 2880

In contrast to other research, we did not remove the noisy

data; instead, we impute negative values with 0 and values

that are infinite with NaN. Lastly, the Missforest (MF)

approach is used to infer the missing or NaN data. As a non-

parametric method, MF works well with both numeric and

discrete data characteristics. It employs an iterative

approach to impute by training a random forest model.

Fig.3. Various attacks in the dataset

4.4 Dataset Train & Test Split

The data set will be split between train and test using this

module, with the program using 80% of the data set for

training and 20% for testing.

4.5 Train Deep Learning GAN Algorithm

The generalized adversarial network (GAN) algorithm will

employ 80% on the training data to develop a model, that

will then be applied to 20% of the data to be tested to assess

prediction accuracy.The comparison Graph will plot the

accuracy and precision comparison between GAN

algorithms.

This module will be utilized employed for uploading test

data, that GAN will examine to generate a possible signature

to determine if the test result is involves attacks.

5. Methodology

DDoS are becoming more sophisticated, it is essential to use

intrusion detection systems; since they can help the

organization understand the deficiencies in the early

remediation. IDS can help organizations monitor

illegitimate access that affects the confidentiality, integrity,

or availability of information resources. They can also

provide the capability to monitor and analyze the activities

of both users and systems, assessing the integrity of file and

systems, analyzing the unusual sequence of patterns, and

possibly tracking if any user is violating the policies laid

down by organizations. The signature-based intrusion

detection system (IDS) can differentiate normal traffic from

DDoS traffic. Techniques based on machine learning have

shown promising results in intrusion detection since they

can cater the complexity of security demands of a network.

Hence, unlike machine learning, deep learning can handle

huge amount of data and hence Intrusion detection system

based on deep learning can be well suited to detect

cyberattacks. They can identify if there is any anomaly in

the network traffic from the previous traffic. Another

challenge is finding the latest datasets, as much research is

available on out-of-date datasets (KDD99 and NSL-KDD).

These datasets must be continuously updated with the latest

DDoS attack information to prove to be more efficient in

detecting novel cyberattacks. In addition, it is recommended

that the techniques be enhanced by optimizing the feature

selection to enhance the capability to detect cyber-attacks

with reduced features[8].

5.1. Proposed Algorithm

A hybrid model combining an auto encoder and a

Generative Adversarial Network (GAN) is often referred to

as a "GAN-DAE" (GAN with Denoising Auto encoder) or a

"GAN-VAE" (GAN with Variational Auto encoder),

depending on the type of auto encoder used. Both

architectures aim to generate realistic data samples while

learning useful representations.

Here's a high-level overview of how you could combine

these two models:

5.2. Generator (GAN)

Synthetic data samples have been produced using the

generator according to the GAN architecture. It seeks to

generate data that is similar to actual data through utilizing

random noise as input.

Discriminator (GAN): The discriminator in the GAN

framework is responsible for distinguishing between real

and synthetic data. It is trained to classify whether the input

data is real or generated by the generator.

5.3. Auto encoder

The auto encoder knows how to recombine the data it

receives. A decoder network then reconstructs the original

data from this representation, when an encoder network

compresses the input data into a lower-dimensional latent

space representation. Identifying the objective functions for

both the reconstruction loss minimization and the

adversarial training is required for determining the

mathematical formulations for the hybrid model that

combines a with a Denoising Auto encoder (DAE). Let us

analyse the derivation.

5.4. Generative Adversarial Network (GAN)

The adversarial training aims to minimize the Jensen-

Shannon divergence between the distribution of real data

and the distribution of generated data.

• Let D(x) represent the discriminator's output,

indicating the probability that input x is real.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2875–2884 | 2881

• Let G(z) represent the generator's output, where z

is the input noise vector.

• The discriminator's objective is to maximize the

probability of correctly classifying real and fake

data:

maxDEx∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]

(1)

The generator's objective is to minimize the probability of

the discriminator correctly classifying fake data:

minGEz∼pz(z)[log(1−D(G(z)))] (2)

5.5. Reconstruction Loss Minimization (DAE):

The reconstruction loss minimization aims to minimize the

difference between the input data and the reconstructed data.

Let E(x) represent the encoder's output, compressing input

x into a latent representation. Let D′(E(x)) represent the

decoder's output, reconstructing the original input from the

latent representation. The objective is to minimize the

reconstruction loss between the original input and the

reconstructed output:

minE,D′Ex∼pdata(x)[∥x−D′(E(x))∥2] (3)

5.6. Hybrid Model Objective

Whereλ1 and λ2 are hyper parameters controlling the

relative importance of the adversarial loss and the

reconstruction

5.6.1 loss Training Phase

This mathematical formulation provides a framework for

training the hybrid model, combining the adversarial

training of GANs with the reconstruction loss minimization

of DAEs. Adjustments to hyper parameters and network

architectures may be necessary for specific applications and

datasets. During the training phase, the auto encoder is

trained on the real data to reconstruct it accurately. This

helps in learning a compact representation of the data.

The GAN framework is trained simultaneously [9]. The

generator tries to generate synthetic data samples to fool the

discriminator, while the discriminator tries to distinguish

between real and synthetic data. The generator can use the

latent space representations learned by the auto encoder to

generate more realistic data samples. This is achieved by

feeding random noise into the decoder part of the auto

encoder to generate samples.

5.6.2 Generating Phase:

During the generating phase, you can use the trained

generator to produce synthetic data samples. This is done by

generating random noise and passing it through the decoder

part of the auto encoder, utilizing the learned latent space

representation. By combining these models, you can

potentially leverage the benefits of both auto encoders

(learning useful representations) and GANs (generating

realistic data samples). This approach is often used in tasks

such as data generation, image synthesis, and anomaly

detection[10].

5.6.3 Stacked Auto encoder

A neural network with many layers comprised of multiple

auto encoders, each of which feeds its output into the one

before it, and so on, until the final encoder delivers its output

into an array of decoders, is referred to as a stacked auto

encoder. This gives the user greater authority at each stage

of the process as they compress and decompress the input

data step by step. An ideal stacked auto encoder’s output is

equal to its input, just like auto encoders [11].

Fig.4. Structure of Auto encoder

The input data is transformed into a hidden representation

utilizing an encoder, and the input data is rearranged from

the hidden representation utilizing a decoder. They are

considering the provided dataset unlabeled.

5.6.4 Single Auto encoder

Primarily composed of an encoder and a decoder, a single

auto encoder is the fundamental building component. The

encoder transforms the input data into a lower-dimensional

representation by compression data; the decoder then uses

the resulting representation to reassemble the original data

[6].

5.6.5 Stacking Layers

Stacked auto-encoders are produced by layering these

separate auto encoders across multiple layers. The output of

the previous layer serves as an input for the subsequent layer

of the auto-encoder.

5.6.6 Layer-wise Training

Layer-wise training is a common approach to training. To

develop an appropriate representation of the input data, the

first layer is trained separately as an auto-encoder. The next

layer is placed on top of the first layer, which encoder is

frozen once it has been trained. The above process is

repeated for every stratum within the structure of the

hierarchy.

5.6.7 Fine-tuning

Backpropagation is used to adjust the network as a whole

once all layers have been stacked. To improve

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2875–2884 | 2882

reconstruction performance overall, all of the network's

weights and biases have to be modified. These networks

have been utilized in recommendation systems, computer

vision, and natural language processing, amongst various

other areas. These can be efficient tools for deriving useful

features from processed input data.

5.7 Handling imbalanced data

When there are significantly fewer samples in one class than

then are observations in the other, there is a class imbalance.

Many techniques exist to handle data imbalance (Kraiem et

al., 2021). To enhance the minority class samples and

balance both classes, we used SVM together with the

SMOTE over-sampling strategy. It is an advanced version

of SMOTE variations where an SVM classifier is utilized to

address the issue of missing data in borderline [8]. In

addition, after training SVM on every piece of data, the

border is established utilizing support vectors.

Subsequently, a random sequence of lines is created to

connect each minority class support vector to a subset of the

closest neighbors in the synthetic data. The conventional

GAN model is a generative model using DL architectures.

Goodfellow et al. (2014) described the first GAN model

which is difficult to train and unstable. In general, GAN

model has a generator model and a discriminator model. The

figure shows the generator model. The GAN generator

model takes random vector data with fixed length as input

and outputs the generated examples in the domain. A source

of noise (random vector) is required for the generative

purposes. They are obtained from the Gaussian distribution.

After training, a compressed representation of data

distribution is formed as called latent space. From the latent

space, the generator model takes new points as input and

generates new examples. The generated examples are

discriminated by a discriminator model shown in figure 5.

Fig.5. Block diagram of the GAN with Auto encoder system

To enhance data quality and extract useful knowledge, the

model starts with data pre-processing, an essential initial

stage in any machine learning process. Organizing and

cleaning raw data to make it available for the development

and training of machine learning models is referred to as

data pre-processing. Initially, multiple statistical summaries

and visualizations are implemented when combined with

EDA to assist in recognizing the key characteristics of the

various input data entities, such as rows and columns [7].

Depending on the input data, this method can be costly yet

very successful. Concerning the data, the EDA generates

several observations.

6. Scalability of Proposed Model

Model Size: more layers in the autoencoder can increase the

model size this can potentially lead to higher memory

requirements during training and inference, making

scalability an issue on resource-limited systems.

Computational Resources: Training a stacked

autoencoder requires significant computational resources,

especially when dealing with large datasets or deep

architectures. Scaling to larger datasets UNSW-NB15 or

deeper networks may require distributed computing or

specialized hardware (e.g., GPUs or TPUs) to speed up

training. In this work, we used 12GB GPU in Google Colab.

Data Dimensionality: Stacked autoencoders may face

challenges with high-dimensional input data. As the

dimensionality of the input data increases, the complexity of

learning meaningful representations also increases.

Techniques such as dimensionality reduction or feature

engineering may be necessary to improve scalability.

Generalization: With deeper architectures, there is a risk of

overfitting, especially when dealing with limited training

data. Regularization techniques such as dropout or L2

regularization can help mitigate overfitting and improve the

generalization of the model.

Hyperparameter Tuning: As the complexity of the model

increases, the number of hyper parameters also grows.

Tuning these hyper parameters effectively becomes crucial

for achieving good performance and scalability.

Deployment: Deploying stacked auto encoders in

production environments may pose challenges, especially if

real-time inference or low-latency requirements are

necessary. Optimizing the model for inference speed and

memory footprint is essential for scalable deployment. In

summary, while stacked auto encoders offer powerful

capabilities for learning hierarchical representations of data,

achieving scalability requires careful consideration of

model size, computational resources, data dimensionality,

generalization, hyperparameter tuning, and deployment

constraints. Proper optimization and tuning are crucial for

effectively scaling stacked auto encoder models to larger

datasets and deeper architectures.

7. Experimental Results

Computer network always get affected because of viruses

and worms which can be spread by malicious attackers by

intercepting communication between two computers in a

network. In the past many algorithms were introduced but

all those algorithms were depend on some signature

matching to distinguish between normal and attack network

packets and this algorithms accuracy will get decrease if

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2875–2884 | 2883

attackers used different signatures.

To overcome from above issue author employing deep

learning algorithms to detect attacks from IOT networks. In

propose work author has utilized unsupervised based

Generative Adversarial Network (GAN) deep learning

algorithm which is based on two different networks called

Generator and Discriminator. Generator is mainly

responsible to generate new dataset based on original

dataset and then Discriminator will predict weather

generated new test data is normal or contains any attack

signatures. So, by using this model we can detect attacks on

same or different variant signature.

Attackers cannot evade from detection even if they change

signature as Generator can detect signature from all possible

values and can detect all signatures of attacks. To train and

test above algorithm performance we have utilized

UNSW15 dataset which is suitable to train attacks from

normal or IOT networks. This dataset contains 9 different

attacks signature.

GAN model able to achieve accuracy between 95 to 97%

and this performance we are measuring in terms of

precision, recall, confusion matrix graph and F1score shown

in figure 6

Fig.6. Confusion matrix

Table.1 Comparison of evaluation parameters

Performance CNN DNN Proposed

system

Accuracy 0.73 0.85 0.9836

F1score 0.74 0.72 0.9843

precision 0.72 0.76 0.9417

sensitivity 0.77 0.73 0.9614

Table 1 provided performance metrics for different models:

Convolution Neural Network, Deep Neural Network, and a

proposed system. These metrics include Accuracy, F1

Score, Precision, and Sensitivity. Comparison graph is

shown in figure 7.

7.1 Accuracy

The proportion of correctly classified instances out of the

total instances. For example, an accuracy of 0.73 for the

CNN model means that it correctly classified 73% of the

instances.

7.2. F1 Score

The harmonic mean of precision and sensitivity. It provides

a balance between precision and recall. It's a good metric to

use when there is an imbalance between the classes in the

data.

Fig.7. performance analysis graph

7.3. Precision The proportion of true positive instances

(correctly predicted positive instances) out of all positive

predictions. A precision of 0.72 for the CNN model means

that out of all instances predicted as positive by the model,

72% were positive.

7.4. Sensitivity (Recall)

The amount of actual instances that were positive that the

model properly recognized. A sensitivity of 0.77 for the

CNN model means that out of all actual positive instances,

the model correctly identified 77%. Based on these metrics,

the hybrid system seems to perform the best overall, with

the highest scores in Accuracy, F1 Score, Precision, and

Sensitivity.

8. Conclusion

Based on the above result analysis, we can conclude that the

hybrid model combining an auto encoder with a GAN can

offer advantages in terms of data generation, representation

learning, unsupervised learning, and transfer learning

compared to traditional CNN and DNN architectures,

especially in tasks were generating realistic data samples

and learning informative representations are crucial. The

synergistic interaction between the two components

facilitates a more informative latent representation and

prevents mode collapse, leading to better performance and

generalization across various domains and tasks.

Additionally, the hybrid model benefits from regularization

effects, reducing overfitting and improving model

versatility, making it a powerful framework for a wide range

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2875–2884 | 2884

of generative modeling applications.

References

[1] Pekta¸s, A.; Acarman, T. A deep learning method to

detect network intrusion through flow-based features.

Int. J. Netw. Manag. 2019, 29, e2050.

[2] Sindian, S.; Samer, S. An enhanced deep auto encoder-

based approach for DDoS attack detection. Wseas

Trans. Syst. Control 2020, 15, 716–725

[3] Kushwah and Ali, Survey of intrusion detection

systems: Techniques, datasets, and challenges.

Cybersecurity 2019, 2, 20

[4] Elsayed et al,.; De Roure, D.; Page, K.; Van Kleek, M.;

Santos, O.; Maddox, L.T.; Burnap, P.; Anthi, E.;

Maple, C. Design of a dynamic and self-adapting

system, supported with artificial intelligence, machine

learning and real-time intelligence for predictive cyber

risk analytics in extreme environments–cyber risk in

the colonization of Mars. Saf. Extrem. Environ. 2020,

2, 219–230.

[5] Raikar, M.M.; Meena, S.; Mulla, M.M.; Shetti, N.S.;

Karanandi, M. Data traffic classification in software-

defined networks (SDN) using supervised-learning.

Proc. Comput. Sci. 2020, 171, 2750–2759.

[6] Perez-Diaz, J.A.; Valdovinos, I.A.; Choo, K.-K.R.;

Zhu, D. A flexible SDN-based architecture for

identifying and mitigating low-rate DDoS attacks

using machine learning. IEEE Access 2020, 8,

155859–155872

[7] Raikar, M.M.; Meena, S.; Mulla, M.M.; Shetti, N.S.;

Karanandi, M. Data traffic classification in software-

defined networks (SDN) using supervised-learning.

Proc. Comput. Sci. 2020, 171, 2750–2759

[8] Kraiem et al and Qinghui Liu, “A comprehensive

review study of cyber-attacks and cyber security;

Emerging trends and recent developments”, Elsevier

Energy Report (ISSN: 8176–8186), 2021

[9] Beny Nugraha and Rathan Narasimha Murthy, “Deep

Learning-based Slow DDoS Attack Detection in SDN-

based Networks”, IEEE Conference on Network

Function Virtualization and Software Defined

Networks (NFV-SDN), 2020.

[10] Amitha Mathew, P. Amudha, and S. Sivakumari,

“Deep Learning Techniques: An Overview”,

International Conference on Advanced Machine

Learning Technologies and Applications, © Springer

Nature Singapore Pte Ltd. 2021. https:// doi.org/

10.1007/978-981-15-3383-9_54

[11] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A.A.

Ghorbani, “Developing Realistic Distributed Denial of

Service (DDoS) Attack Dataset and Taxonomy”, IEEE

53rd International Carnahan Conference on Security

Technology, Chennai, India, 2019.

