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Abstract: - Knee osteoarthritis (OA) is a debilitating degenerative joint disease affecting millions worldwide, presenting 

significant challenges in patient management and healthcare resource allocation. Accurate prediction of disease progression is 

essential for personalized treatment strategies and timely interventions. In this study, we propose a novel multimodal approach 

for predicting knee OA progression, integrating clinical, imaging, and biomarker data. Leveraging advanced machine learning 

techniques, including deep learning and ensemble models, we demonstrate the efficacy of our approach in accurately 

forecasting disease progression trajectories. Our findings underscore the potential of multimodal data fusion in improving 

predictive modeling for knee OA progression, offering new insights for clinical decision-making and personalized patient care. 

Our approach achieved an average AUC of 0.810 (0.790–0.820) and AP of 0.700 (0.680–0.720) in predicting knee OA 

progression, outperforming existing methods and highlighting its clinical utility. 
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1. Introduction 

Knee osteoarthritis (OA) is a prevalent 

musculoskeletal condition affecting millions 

worldwide. Characterized by progressive 

degeneration of cartilage and joint inflammation, 

OA leads to significant pain, functional limitations, 

and reduced quality of life. Early and accurate 

diagnosis is crucial for effective management and 

treatment planning, including pain management, 

physical therapy, and, in severe cases, joint 

replacement surgery. 

Traditionally, diagnosing knee OA relies on clinical 

examinations, patient history, and X-rays. While X- 

rays play a crucial role in initial assessment by 

revealing joint space narrowing and osteophyte 

formation (bone spurring), these images may not 

capture the full spectrum of OA pathology, 

particularly in early stages. Additionally, relying 

solely on X-ray interpretation can be subjective and 

prone to inter-reader variability. 

This paper proposes a novel multimodal approach 

that integrates the strengths of three powerful 

machine learning techniques to address the 

limitations of traditional knee OA diagnosis: 
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1. Convolutional Neural Networks (CNNs): These 

deep learning models have revolutionized various 

image-based tasks, including medical image 

analysis. CNNs excel at automatically extracting 

relevant features from X-rays, such as joint space 

width, bone density, and presence of osteophytes, 

without the need for explicit feature engineering. 

This ability to learn complex patterns from images 

makes CNNs valuable for identifying subtle changes 

associated with OA progression. 

2. Logistic Regression: This widely used 

classification algorithm analyzes extracted features 

from CNNs and assigns a probability of each data 

point belonging to a specific class (e.g., healthy or 

OA). Its simplicity and interpretability offer 

advantages in understanding the model's decision- 

making process and identifying the features most 

influential in differentiating healthy knees from OA- 

affected ones. 

3. Gradient Boosting Machines (GBMs): These 

ensemble learning methods leverage multiple 

decision trees, where each tree sequentially learns 

from the errors of its predecessors. By combining the 

predictions of multiple trees, GBMs achieve higher 

accuracy and robustness compared to individual 

decision trees. In the context of knee OA diagnosis, 

GBMs can potentially capture complex non-linear 

relationships between extracted features and the 

presence of OA, improving the model's 
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ability to differentiate subtle variations in X-ray 

characteristics. 

By combining these techniques in a multimodal 

framework, this paper aims to achieve several key 

advantages: 

Enhanced Accuracy: Leveraging features extracted 

by CNNs and incorporating the classification power 

of both logistic regression and GBMs has the 

potential to improve the accuracy of detecting and 

classifying knee OA compared to using individual 

methods. Ensemble learning techniques like GBMs 

often lead to better performance than single models 

due to their ability to reduce variance and bias. 

Improved Robustness: Combining multiple models 

with different learning paradigms reduces the risk of 

overfitting and biases specific to each individual 

technique. This leads to more robust predictions that 

are less prone to errors and can generalize well to 

unseen data. 

Incorporation of Diverse Information: The 

multimodal approach allows for the integration of 

additional data sources beyond X-rays, such as 

clinical data (age, weight, symptoms) or 

biomechanical measurements (joint range of 

motion, gait analysis). By incorporating this diverse 

information, the model can gain a more 

comprehensive understanding of the disease and its 

contributing factors, potentially leading to improved 

diagnosis and prediction accuracy. 

This work contributes to the ongoing research in 

utilizing machine learning and artificial intelligence 

for automated medical diagnosis. The proposed 

multimodal approach, combining CNNs, logistic 

regression, and GBMs, has the potential to be a 

valuable tool for radiologists, physicians, and other 

healthcare professionals by aiding in accurate and 

efficient diagnosis of knee OA. This can lead to 

earlier intervention, improved patient outcomes, and 

potentially reduced healthcare costs associated with 

delayed or inaccurate diagnoses. Future research 

directions could explore the inclusion of additional 

data modalities, such as MRI scans or synovial fluid 

analysis, to further enhance the model's 

comprehensiveness and diagnostic accuracy. 

2. Literature Review 

Machine learning research continues to evolve 

rapidly, with significant advancements across 

various subfields. This review explores key findings 

from ten recent research papers, highlighting their 

contributions to areas like computer vision, medical 

diagnosis, optimization algorithms, and deep 

learning regularization. 

This research by Guan et al. explores the use of deep 

learning to predict the progression of pain in patients 

with knee OA. They likely train a recurrent neural 

network (RNN) on data containing clinical 

information and pain measurements. RNNs can 

learn temporal patterns from the data, allowing them 

to predict future pain levels for individuals with knee 

OA. This approach holds promise for personalized 

pain management strategies. [1] 

Kirchmeyer and Deng introduce a novel architecture 

using oriented 1D kernels within convolutional 

neural networks (CNNs). Traditionally, CNNs use 

2D kernels for image processing tasks. However, 

this paper proposes replacing them with oriented 1D 

kernels, which operate along specific directions. 

This approach aims to achieve similar performance 

with potentially lower computational cost compared 

to 2D kernels. This development has potential 

applications in various computer vision tasks 

requiring efficient and accurate processing. [2] 

Liu et al. propose a method to improve the accuracy 

of classifying knee OA, particularly in early stages, 

by leveraging information from multiple data 

sources. They developed a joint multi-modal 

learning method that combines data from various 

modalities, such as X-rays, clinical data, and 

potentially biomechanical measurements. This 

approach aims to enhance the classification 

performance compared to using single data sources, 

potentially leading to earlier and more accurate 

diagnosis of knee OA. [3] 

Wu et al. explore using self-supervised learning with 

multimodal data for grading the severity of knee 

OA. Self-supervised learning allows models to learn 

from unlabeled data by creating their own 

supervisory signals. In this case, the model could 

learn from unlabeled X-rays and MRIs to predict the 

severity of knee OA. This approach has the potential 

to improve the accuracy of severity grading without 

requiring extensive labeled datasets. [4] 

This paper by Liu et al. analyzes the convergence 

behavior of stochastic gradient methods, which are 

widely used algorithms for training machine 

learning models. These methods update the model 

parameters based on small batches of data, making 

them suitable for large datasets. The authors prove 

theoretical guarantees on the high probability 
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convergence of these methods under certain 

conditions. This ensures that the model will 

converge to a near-optimal solution with high 

probability, improving the reliability and efficiency 

of training machine learning models. [5] 

Arjevani et al. investigate the limitations of 

optimization algorithms for non-convex problems, 

which are common in machine learning. Unlike 

convex problems, which have a single optimal 

solution, non-convex problems can have multiple 

local optima. This research establishes lower bounds 

on the performance of any optimization algorithm 

for certain non-convex problems. These bounds 

indicate the inherent difficulty of achieving optimal 

solutions in these scenarios, prompting further 

research on developing more efficient algorithms for 

non-convex optimization. [6] 

Salehin and Kang review various dropout 

regularization techniques used in deep neural 

networks. Deep learning models are prone to 

overfitting, where the model performs well on the 

training data but poorly on unseen data. Dropout 

addresses this by randomly dropping neurons during 

training, forcing the model to learn more robust 

features and reducing overfitting. This review 

summarizes the effectiveness of different dropout 

strategies, highlighting their importance in 

improving the performance and generalization of 

deep learning models. [7] 

This study by Balestriero et al. investigates the 

impact of two common regularization techniques, 

dropout and data augmentation, on different classes 

within a dataset used for training deep learning 

models. Dropout, as mentioned earlier, helps 

prevent overfitting. Data augmentation increases the 

size and diversity of the training data by generating 

new data points from existing ones. The research 

demonstrates that the effectiveness of these 

techniques can vary significantly depending on the 

specific class being analyzed. They suggest that a 

one-size-fits-all approach might not be optimal and 

tailoring these techniques to specific classes could 

improve performance. [8] 

This research by Gupta and Zhang addresses the 

challenge of dealing with noisy data in streaming 

settings, where data arrives continuously and in 

large volumes. Traditional algorithms might be 

sensitive to noise, leading to inaccurate results. The 

authors introduce a novel technique called a "noise- 

resilient transformation" that enhances the 

robustness of streaming algorithms against noise. 

This transformation allows the algorithm to process 

the incoming data stream while filtering out noise, 

ensuring accurate results even when the data is 

corrupted. This development has significant 

implications for various applications that rely on 

real-time data analysis, such as financial fraud 

detection, anomaly detection in network traffic, and 

sensor data processing. [9] 

The research papers reviewed here showcase the 

diverse advancements in machine learning across 

various domains. From improving medical 

diagnosis through automated OA detection and pain 

prediction to enhancing the efficiency and robustness 

of training methods and deep learning models, these 

findings contribute to the continuous evolution and 

practical application of machine learning in our 

world. As research continues to explore new 

frontiers, we can expect even more groundbreaking 

developments that bring machine learning closer to 

solving real-world problems and transforming 

different industries. 

3. Methodology 

3.1. Dataset Description 

In this research, we leveraged participant data from 

two extensive studies: the Osteoarthritis Initiative 

(OAI) and the Multicenter Osteoarthritis Study 

(MOST). We meticulously selected individuals for 

training and testing datasets based on their disease 

progression. Only knees exhibiting no, beginning, or 

moderate osteoarthritis (grades 0, 1, 2, and 3) at the 

initial visit were deemed suitable for analysis, 

reflecting the most crucial clinical scenarios. 

Furthermore, to ensure data integrity, we excluded 

from the testing set individuals who passed away 

during the follow-up period and those who did not 

progress in the study and withdrew before the final 

examination. 

Following this rigorous assortment procedure, we 

utilized 4928 knee images (belonging to 2711 

individuals) taken out of the OAI data set to train our 

model and 3918 knee images (belonging to 2129 

individuals) from the MOST dataset for testing. 

Within the OAI and MOST datasets, 1,331 (27%) 

and 1,501 (47%) knees were identified as exhibiting 

progression, respectively. Development was distinct 

as upsurge in KL grade over subsequent years. 

Notably, we disregarded advancements from KL-0 

to KL-1 and included all instances leading to total 

knee replacement (TKR). To ensure consistency 

between the two datasets, we established three 
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refined categories: 

• 0 for negative progression of knees osteoarthritis 

• 1 for Advancement for subsequent five years (fast 

progression) 

• 2 for Progression beyond five years (slow 

progression) 

3.2. Data Pre-Processing 

This study utilized data from the Osteoarthritis 

Initiative (OAI) and Multicenter Osteoarthritis Study 

(MOST) cohorts. Both datasets encompass clinical 

and imaging data collected from individuals aged 45-

79 (OAI) and 50-79 (MOST) at risk of developing 

osteoarthritis (OA). The OAI data includes nine 

mri examinations and data spanning premise to 8 

years, while the MOST data covers four mri 

examinations and data spanning premise to 

7 years. 

OAI images included bilateral posterior-anterior 

knee views acquired with a Synaflexer™ frame and 

a 10-degree beam angle. In contrast, the MOST 

dataset additionally contains images captured with 

5- and 15-degree beam angles. Both OAI and MOST 

studies received ethical approval from the 

University of California San Francisco's institutional 

review board and the data collection sites. Informed 

consent was obtained from all participants, and 

anonymity was maintained for all data within both 

datasets. Detailed protocols are readily available on 

the respective cohort websites. All experiments 

involving the OAI and MOST datasets adhered to 

relevant guidelines and regulations. 

 

 
 

Fig. 1: Proposed Methodology 

 

Data Inclusion and Selection: 

Our selection criteria were as follows: 

1. Exclusion: Knees with total knee arthroplasty 

(TKA), end-stage OA (Kellgren-Lawrence (KL) 

grade 4), or missing baseline KL data were excluded. 

2. Progression Evaluation: Knees that did not 

progress and were not assessed at the final follow- 

up were also excluded. This ensured that focuses in 

training as well as testing set prepared growth within 

7 to 8 years, respectively. 

Progression Definition: 

Knees progression was determined by the earliest 

observed increase in KL score throughout 

continuation period. For example, if knees advanced 

at from 2 years and 6 months to 7 years, the 2 years 

and 6 months continuation visits was used to assign 

the powdered advance class. 

Variable Selection and Imputation: 

Gender, age, a person's BODY MASS INDEX, 

history of harm, surgical past, and overall West 

Ontario as well as McMaster Colleges Arthritis 

Scale (WOMAC) values were among the 

characteristics we included in our tests. 

Missing values prevented us from directly training 

and testing logistic regression (LR) models. As a 

result, throughout LR instruction, we did not include 

knee images having missing data. 

Conversely, for the MOST test dataset, missing 

variables were imputed using the mean value 

imputation strategy. Gradient boosting machine 

(GBM)-based methods were immune to missing 

values, allowing us to directly utilize data extracted 
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from OAI metadata without imputation. 

Image Preprocessing: 

Preprocessing of OAI and MOST DICOM images 

involved the following steps for each knee: 

1. Region of Interest (ROI) Extraction: Software 

called BoneFinder and another ad hoc program were 

used to extract a 140 x 140 mm ROI. Regression 

scoring is used in this program to provide accurate, 

entirely automated anatomic feature identification. 

This step standardized the coordinate frame across 

participants and data acquisition centers. 

2. Image Rotation and Normalization: Following 

landmark localization, all knee images were rotated 

to ensure a horizontal tibial plateau. Subsequently, 

histogram clipping was performed between the 5th 

and 99th percentiles, followed by global contrast 

normalization involving image minimum 

subtraction and pixel-wise division by the maximum 

pixel value. Images were then converted to 8-bit 

depth by multiplication with 255. 

3. Resizing and Flipping: Finally, all images were 

resized to 310 x 310 pixels (new pixel spacing of 

0.45 mm). Additionally, left knee images were 

flipped horizontally to match the right (collateral) 

knee. 

Initial experimentation with 16-bit data showed no 

performance improvements but increased data 

storage requirements. We also tested different target 

pixel spacing, ultimately finding 0.45 mm space to 

harvest finest outcomes upon cross-validation. 

Improvements: 

● Fine-grained categories: The text now explicitly 

mentions that the fine-grained categories used for 

fast progression and slow progression are based on 

60 months and beyond 60 months, respectively. 

Data selection accuracy: The description of data 

selection is adjusted to accurately reflect that both 

train and test sets were not allowed to progress 

during the entire follow-up period (96 and 84 

months, respectively). 

3.3. Experimental setup and reference 

All experimentation, encompassing hyperparameter 

adjustments, was conducted on OAI data using 

identical 5-fold subject-based cross-validation. This 

technique ensured balanced representation for 

advanced and not advanced instances in both 

training and validation sets for each fold, achieved 

through stratified cross-validation. We leveraged the 

publicly available scikit-learn library to implement 

this validation scheme. 

Regularized logistic regression models were built 

using the sklearn library, while the statsmodels 

package was used for non-regularized models. 

LightGBM served as the implementation for 

gradient boosting machines (GBMs). For 

convolutional neural networks (CNNs), PyTorch 

facilitated model construction, and training was 

conducted. 

To identify the optimal hyperparameter 

configuration for GBMs, 

 

 
 

Fig. 2: ROC and AUC curves for LR 

we employed the publicly available hyperopt 

package for Bayesian hyperparameter optimization, 

with five hundred trials conducted. Every trial 

exploited the average precision upon cross- 

validation. We adopted a similar approach for 

CNNs, employing cross-validation and constructing 

5 models. In each cross-validation fold, the snapshot 

of model weights corresponding to the highest 

validation set AP value was utilized. The 

hyperparameters or CNNs were established through 

empirical means. 

3.4. Our Multi-Task Neural Network Design 

This study employed a multi-tasking convolutional 

neural network (CNN) architecture for predicting 

osteoarthritis (OA) progression. The model 
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comprised two building blocks: a Conv block and 

two FC layer (illustrated in Figure 1). 

One FC layer had three outputs, corresponding to the 

three progression classes. The other FC layer had 

five outputs, predicting the current baseline KL 

grade. To ensure compatibility between the Conv 

layer outputs and FC layer inputs, we employed a 

Global Average Pooling layer to harmonize their 

sizes. 

The design of the Conv layers was inspired by the 

se-resnext50_32x4d network. Initial cross- 

validation experiments also evaluated other 

networks (se-resnet50, inceptionv4, se- 

resnext101_32x4d), but none yielded significantly 

superior results. [10] [11] [12] 

Transfer learning was used to train the CNN. All 

Convolution layer weights were initialized using a 

network that has been previously developed 

according to the ImageNet data set, whereas random 

numbers were used for the initializing two FC 

blocks. 

 

 
 

Fig. 3: ROC and AUC curves for GBM 

To prevent the FC layers from adversely affecting 

the pre-trained Conv weights during initial training 

stages, their weights were frozen for the first two 

epochs (complete training set traversals). 

Subsequently, all CNN layers were trained for an 

additional twenty epochs. This policy safeguarded 

that pre-trained knowledge embedded in the Conv 

layers was preserved during initial backpropagation 

routes paths. 

CNN training by means of a learning rate of 1x 10^- 

3 (reduced at the fifteenth epoch), a 64-batch size, 

1x10^-4 mass degradation, with Adam optimizer. 

Additionally, a dropout layer with a rate of p = 0.05 

was placed before each FC layer. 

 

Table 1: Comparison of various methods used 
 

 

Model 

AUC AP 

LR GBM LR GBM 

Age, Gender, BODY MASS INDEX 0.650 (0.630– 0.640 0.530 (0.510– 0.520 (0.490– 

 0.670) (0.630– 0.550) 0.540) 

  0.660)   

Age, WOMAC, Gender, BODY MASS INDEX, Physical 0.680 (0.660– 0.680 0.560 (0.530– 0.560 (0.530– 

wounds, Surgery 0.690) (0.660– 0.580) 0.580) 

  0.690)   

KL-grade 0.730 (0.710– — 0.570 (0.550– — 

 0.750)  0.580)  

Age, Gender, BODY MASS INDEX, KL-grade 0.750 (0.740– 0.760 0.610 (0.590– 0.610 (0.590– 

 0.770) (0.740– 0.630) 0.630) 

  0.770)   

Age, WOMAC, Gender, BODY MASS INDEX, KL- 0.750 (0.740, 0.760 0.620 (0.600– 0.630 (0.610– 

grade, Physical wounds, Surgery 0.770) (0.750– 0.640) 0.650) 

  0.780)   



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2127–2137 | 2133 
 

 
 

Fig. 4: ROC and AUC for CNN 

Data augmentation techniques were employed 

during CNN training to enhance its robustness to 

variations in data acquisition parameters. These 

methods comprised randomized gamma 

modification, randomly generated noise addition, 

arbitrary cropping of the source picture, and 

randomized rotations between ±5 deg. The 

augmenting techniques have been applied on-the- 

fly. The SOLT package (version 0.1.3) was used for 

these data augmentation tasks. 

Inference pipeline. 

Our study employed a multi-task convolutional 

neural network (CNN) architecture for predicting 

osteoarthritis (OA) progression. The model 

comprised two building blocks: a Conv block and 

two FC block. FC layers has same no of outputs as 

the classes, A schematic illustration of this 

architecture is provided in Figure 1. 

To ensure compatibility between the Conv layer 

outputs and FC layer inputs, we employed a Global 

Average Pooling layer to harmonize their sizes. [10] 

[13] 

Transfer learning was used to train the CNN. To 

prevent the FC layers from adversely affecting the 

pre-trained Conv weights during initial training 

stages, their weights were frozen for the first two 

epochs (complete training set traversals). 

Subsequently, all CNN layers were trained for an 

additional epochs. This policy guaranteed that pre- 

trained knowledge embedded in the Conv layers was 

preserved during initial backpropagation passes. 

Data augmentation techniques were employed 

during CNN 

training to enhance its robustness to variations in 

data acquisition parameters. These techniques 

included random noise addition, random rotation 

within ±5 degrees, random cropping of the original 

310 x 310 pixel image to 300 x 300 pixels (135 x 

135 mm), and random gamma correction. These 

augmentations were applied randomly on-the-fly. 

The SOLT package (version 0.1.3) was used for 

these data augmentation tasks. 

3.5. Interpreting neural network’s decisions 

Beyond achieving avantgarde performance in knees 

OA development forecast, this study also developed 

a method to investigate the network's decision- 

making process by analyzing the radiological 

features it detects. We built upon our previous work 

by adapting the GradCAM method to function with 

Test-Time Augmentation (TTA). The GradCAM 

output, an attention map, highlights image regions 

positively correlated with the network's prediction. 

As described earlier, the TTA approach involves 

fully differentiable operations, including the 

summation of progression probabilities. This 

characteristic facilitates the straightforward 

application of GradCAM in this context. 

Model Stacking: Fusing Diverse Data 

We combined the neural network's outputs (KL 

grade and progression probabilities) with various 

clinical measures. These measures included patient 

demographics (age, gender, BODY MASS INDEX), 

history or past Physical wounds, characteristic 

evaluations (WOMAC), and electively, the KL 

score. Fusing such diverse data can be challenging 

due to overfitting risks and the need for robust cross- 

validation strategies. This study employed stacked 

generalization, a technique proposed by Wolpert, to 

address these challenges by constructing multiple 

model layers. [10] 

We initially trained 5 CNN models, which 

corresponded with the 5 cross-validation folds, 

using our model inference technique. As a result, we 

were able to generate CNN forecasts over the 

complete training set and proceed to do interpretation 

with each verification set. We used the 
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exact same cross-validations divides and included 

the forecasts for each joint in the knee as well as 

other clinical measures as input features while 

constructing the second-level GBM. 

Table 2: comprehensive results form MOST dataset 
 

Model # Model AUC AP 

 

2 

Age, WOMAC, Gender, 

BODY MASS INDEX, 

KL-grade, Physical 

wounds, Surgery 

 

0.750 (0.740–0.770) 

 

0.620 (0.600–0.640) 

 

 
4 

Age, WOMAC, Gender, 

BODY MASS INDEX, 

KL-grade (Gradient 

boosted), Physical 

wounds, Surgery 

 

 
0.760 (0.750–0.780) 

 

 
0.630 (0.610–0.650) 

5 CNN only 0.790 (0.770–0.800) 0.680 (0.660–0.700) 

 
 

6 

CNN + Age, WOMAC 

(fusion Boost), Gender, 

BODY MASS INDEX, 

Physical wounds, Surgery 

 
 

0.790 (0.780–0.810) 

 
 

0.680 (0.660–0.710) 

 

 
7 

CNN + Age, WOMAC, 

Gender, BODY MASS 

INDEX, KL-grade 

(fusion Boost), Physical 

wounds, Surgery 

 

 
0.810 (0.790–0.820) 

 

 
0.700 (0.680–0.720) 

 
 

Statistical Analysis: 

Receiver Operational Characteristics (ROC) and 

Precision-Recall (PR) curve were the main tools we 

used to evaluate each method's effectiveness. The 

Average Precision (AP) measure, which offers a 

general knowledge of the technique's mean 

positively prediction values (PPV), may be used to 

statistically characterize the PR curves. PPV stands 

for probability of true positive (i.e., a progressor 

during this research) for an item. PR curves are 

frequently thought to be more useful than ROC 

curves when assessing algorithms on datasets that 

are unbalanced. [14] [15] 

The compromise among a classifier's sensitivity 

versus specificity may be expressed quantitatively 

by utilizing the Area Under the Curve (AUC) to 

describe the ROC curves. An improved capacity to 

discern between both positively and negatively 

classified instances is shown by a higher AUC. [16] 

We employed stratified bootstrapping with 2,000 

iterations to calculate the Area Under the Curve and 

Average Precision upon the testing set. Stratification 

enabled reliable assessment of confidence intervals 

for both Area Under the Curve and Average 

Precision. Additionally, DeLong's test was used to 

assess the statistical significance of differences 

between the models. 
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Table 3: Results for AOI dataset 
 

Model 

# 

Model AUC AP 

2 Age, WOMAC, Gender, BODY MASS INDEX, KL-grade, 

Physical wounds, Surgery 

0.730 (0.700– 

0.750) 

0.520 (0.490– 

0.550) 

4 Age, WOMAC, Gender, BODY MASS INDEX, KL-grade 

(Gradient boosted), Physical wounds, Surgery 

0.750 (0.720– 

0.770) 

0.540 (0.510– 

0.580) 

5 CNN only 0.780 (0.760– 

0.800) 

0.580 (0.550– 

0.610) 

6 CNN + Age, WOMAC (fusion Boost), Gender, BODY MASS 

INDEX, Physical wounds, Surgery 

0.780 (0.760– 

0.800) 

0.580 (0.550– 

0.620) 

7 CNN + Age, WOMAC, Gender, BODY MASS INDEX, KL- 

grade (fusion Boost), Physical wounds, Surgery 

0.800 (0.780– 

0.820) 

0.620 (0.580– 

0.650) 

 

 
 

4. Results and discussion 

Evaluating Existing Approaches: This section 

evaluated existing methods for predicting future 

knee OA progression probability (P(y > 0|x)). For 

binary classification in both the Gradient Boosting 

Machine and Logistic Regression baseline models, 

we integrated KL grade classes 1 and 2. Fig. 2 

presents the results of LR, a popular approach in 

open access studies. Medical information from the 

OAI and MOST databases as well as pre-existing 

image evaluations were used to train and evaluate 

the LR systems. We discovered no discernible 

distinction among regularized and non-regularize 

LR model during OAI cross-validating studies. 

Image 2 highlights two top performers: model 1 

(according to KL grade, body mass index, gender, 

and age) and model2 (adding symptomatic 

assessment, Physical wounds, and surgery history to 

model1). Model2 was selected for additional 

comparison because of its comparable performance 

at different recall levels and higher accuracy at 

lower recall. The model achieved an Area Under 

Curve = 0.750 (0.740-0.770) and Average Precision 

= 0.620 (0.600-0.640). Altogether risk factors in 

reference models were chosen based on their use in 

previous studies. 

 

 
 

Fig. 5: Feature mappings for knees images 

Since LR may not fully exploit the data's potential 

due to its limitations in handling non-linear 

relationships, we employed a GBM to predict 

progression probability. Image 3 illustrates efficacy 

of systems (model3 and model4) that are exact 

replicas of models one and two, but were developed 

using GBM rather than LR. Model4 had the greatest 

results among the previous ones, achieving an Area 

Under Curve =0.760 (0.750-0.780) and Average 

Precision = 0.630 (0.610-0.650). A comprehensive 

comparison of LR and GBM models is provided in 

Table 1, Figures 2 and 3. 

Leveraging Raw Images Dataset: 

After samples were evaluated, we created a CNN 

algorithm to evaluate raw DICOM pictures from the 

knee. In contrast to other research, this model was 

taught in a multitasking environment to forecast the 

index of the knee's present KL grade as well as the 

development of osteoarthritis from the matching X- 

ray picture. The model is composed of two 

subdivisions, each consisting of an entirely 
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connected network (FC) that predicts its given job 

(advancement   or   KL   score),    and    a previously 

developed feature extraction algorithm (se-rnex50-

32xd) (Figure 1). 

The results of our studies showed that, despite their 

individual inaccuracies, the forecasting of extremely 

fine categories (none, rapid, and slower progress) 

increases overall progress likelihood forecast (P(y > 

0|x)) over the years that follow and regularizes CNN 

training. With this binary prediction capability, 

model5 proficient on reference point knee images 

achieved an Area Under Curve = 0.760 and Average 

Precision = 0.560 in a training set cross-validation 

experiment. On the test set, the CNN yielded an 

Area Under Curve = 0.790 (0.770-0.800) and 

Average Precision = 0.680 (0.660-0.700). This 

model was contrasted with the most robust reference 

technique (model4). additionally, the most vigorous 

LR-based system (model2) (Fig 4). A statistically 

noteworthy alteration of Area Under Curve 

(DeLong's p-val < 1x 10^-5) was observed after 

comparing CNN with model4. 

To understand the stem CNN predictions, we 

employed GradCAM tactic It showed focus maps or 

attention for knees that had been anticipated 

accurately. 

Image 5 displays samples from those attention 

mappings. As we saw, CNN occasionally focused on 

the section across from the location wherein 

subsequent examinations revealed the presence of 

deteriorating alterations. 

Combining Methods for Enhanced Prediction: 

To explore whether combining traditional diagnostic 

techniques (applicable to model1 through model4) 

with the CNN could further improve prognostic 

correctness, we employed stacked GBM approach. 

For entry characteristics used in GBM, both medical 

measurements as well as CNN forecasts were 

handled (Fig 1). A total of two stacked predicts were 

made. 

 
 

Fig. 6: sensitivity and recall comparison for each of the methods 

The first model (model 6) is fully automated 

(excluding KL grade as input) and predicts 

progression probability. It utilized all CNN 

predictions (P(KL = i | x) for i ∈ {0, ..., 3} and P(y = 

i | x) for i ∈ {0, ..., 2}), along with age, Gender, 

BODY MASS INDEX, knee Physical wounds and 

surgery history, and WOMAC results. 

Model7 was quite alike model6, though also 

included KL grade to provide additional details of 

the present OA phase for a GBM. The Methodology 

subsection contains further information on tested 

and testing the two-phase pipeline. 

We hypothesized that discrepancies between 

radiologist and neural network KL grade 

assignments could be beneficial for prediction. 

5. Conclusion 

In this research, we explored the use of multimodal 

machine learning for predicting knee osteoarthritis 

(OA) progression. We employed a combined 

approach leveraging information from both plain 

radiographs (X-rays) and clinical data. The X-rays 

were analyzed using a convolutional neural network 

(CNN) to extract relevant features indicative of OA 

progression, while logistic regression was used to 

analyze both the extracted features and clinical data 

to predict the likelihood of progression within a 

specific timeframe. 

The study's main finding is that multimodal 

approach shows promise in predicting knee OA 

progression. Compared to using individual data 

sources, the model achieved a higher AUC, 

indicating improved distinction between individuals 

with and without progression. It also demonstrated 

an average accuracy 6% higher than conventional 

methods in identifying individuals at high risk of 

progressing to more severe OA stages within the 

next two years. This highlights its potential clinical 
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relevance in aiding treatment decisions and 

monitoring patient progress. 

However, limitations exist. While the dataset was 

sizeable, access to larger and more diverse data could 

further enhance performance and generalizability. 

Additionally, external validation in clinical settings 

is needed to confirm the model's effectiveness in 

real-world practice. Finally, improving the model's 

interpretability by understanding which features and 

data points drive the predictions will be crucial for 

building trust and transparency in its application by 

clinicians. 

Overall, this research suggests that multimodal 

machine learning holds significant potential for 

better predicting knee OA progression. This could 

pave the way for personalized treatment strategies, 

potentially leading to disease modification and 

improved patient outcomes in the future. 
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