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Abstract: The automated systems like embedded systems will work autonomously, take decisions and actions independently. And they 

will use small resources like compressed memory unit and processing. But if we want intelligent system then we should integrate Machine 

Learning (ML) then the agent will take decisions and actions its own be fully autonomous. But Theses embedded systems used in scientific 

community required high computational speed Despite this when we are working with images, the low capacity of embedded systems 

greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great 

advantage. So this paper implements a Customized intelligent system to take image and compress the size of it, and send it to embedded 

system to take intelligent decisions. The proposed system is competitive if compared to other commercial systems with optimal results. 
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1. Introduction 

The integration of digital technologies, such as the 

Internet of Things (IoT), Big Data, and artificial 

intelligence (AI), has significantly transformed 

manufacturing industries and automation processes in 

recent years. This evolution has led to a more 

interconnected and optimized value chain, allowing for 

real-time adjustments and improvements. Key concepts 

like IoT enable the deployment of sensors throughout 

manufacturing plants, providing a constant stream of data 

that can be leveraged for critical actions. 

However, the challenge arises in automating decision-

making processes to ensure timely and accurate responses 

to the information gathered. While experts in the field 

possess the knowledge to define the necessary conditions 

for optimal actions, relying solely on human decision-

making can introduce delays. This necessitates the 

implementation of intelligent agents equipped with AI 

capabilities to make decisions based on real-time data 

autonomously. 

One specific application of AI in manufacturing involves 

image compression. Traditional hand-crafted algorithms 

for image compression have limitations, as they need a 

deeper understanding of the content they compress. This 

limitation has led to the exploration of deep neural 

networks, which have shown promise in achieving higher 

compression rates due to their ability to learn and 

comprehend the content of images. 

Previous research efforts, such as those utilizing Gaussian 

models and pattern recognition methods, have focused on 

image compression but struggled to prevent loss. On the 

other hand, recent studies, including works by researchers 

mentioned [3], [9], [10], [13], [22], have implemented 

deep learning models with various filters and layers, 

achieving improved results. However, these systems still 

face challenges in achieving content-based compression. 

A notable advancement in this area is the implementation 

of vision transformer models with attention layers, as 

demonstrated in the research cited [11]. These models 

offer a more optimal approach to image compression by 

leveraging attention mechanisms to focus on relevant 

content, addressing the limitations of previous methods. 

As manufacturing industries continue to embrace 

digitalization, the intersection of AI and image 

compression technologies is poised to play a crucial role 

in enhancing efficiency and decision-making processes 

across the value chain.  

Researchers have explored various strategies to improve 

compression efficiency and overcome the limitations of 

lossy compression. From autoregressive context models 

to checkerboard context models, generative compressed 

approaches, and convolution neural networks (CNNs), the 

focus has been on achieving compression without 

sacrificing prediction accuracy and perceptual quality. 

Integrating attention mechanisms, recurrent neural 

networks, and transformer-based models like Vision 

Transformer and Swin Transformer has brought about 

novel solutions, demonstrating advancements in capturing 

spatial dependencies and global-related feature learning. 
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Proposed optimized GAN model with stabilized loss to 

add and compress the images. 

Our model can use vary less number of parameters and it 

provides loss less compression. 

Our model is robust we tested the model with various data 

sets and consistently performing. 

Related Work 

The quest for efficient image compression techniques has 

spurred diverse approaches from various researchers, each 

aiming to strike a balance between reducing image size 

and resolution while minimizing information loss. 

Traditional methods often relied on machine learning 

(ML) algorithms such as principal component analysis, 

clustering, and supervised dimensionality reduction 

models. However, many of these approaches resulted in 

compressed images with noticeable loss. 

Some researchers explored ANN in pursuing non-lossy 

compression. For instance, in [1], an ANN was employed, 

utilizing signal-to-noise ratio as a metric for compression. 

However, the authors highlighted limitations related to 

feature extraction and other considerations. 

Another innovative approach, as described in [2], 

involved a generative compressed approach with a 

decoder designed to capture both positive and negative 

relationships in image compression. This method allowed 

for the effective reconstruction of images. 

With advancements in deep learning, the researchers used 

CNN and RNN models for image compression. Ballé, J., 

Laparra, V., in [3], proposed a CNN model to compress 

samples end-to-end, introducing a generalized loss 

function based on the likelihood of a generative model. 

This method provided a systematic way of compressing 

images while maintaining their quality. In [5], an ANN 

model comprising a hyperpriority was proposed. This 

model effectively captured spatial dependencies in the 

latent representation of images, utilizing the popular MS-

SSIM index for evaluation. The results illustrated superior 

rate-distortion performance compared to other ANN-

based methods, showcasing the potential of this approach 

in achieving high-quality compression. 

A different avenue was explored in [4], where a generative 

adversarial network (GAN) and a multi-scale 

discriminator were implemented to learn compression 

parameters. This approach identified important and 

unimportant regions in an image, enabling compression in 

the unimportant regions. The content-based approach 

reduced storage costs and demonstrated a nuanced 

understanding of image content. 

He, D., Zheng, Y., et al in [7], introduced an 

autoregressive context model and a checkerboard context 

model that reorganizes decoder order, reducing decoding 

time and fitting into devices without sacrificing prediction 

accuracy. In [8], the authors suggested that the 

performance of such models could be enhanced by 

leveraging spatial-channel dependencies in latent space 

and optimizing context adaptivity. 

The works in [9, 10] focused on visually pleasing 

reconstructions that are perceptually similar to input 

images across a range of bitrates. These approaches bridge 

the gap between rate-distortion-perception theory and 

practice, evaluating their methods quantitatively with 

various perceptual metrics. Rippel and Bourdev [11] 

implemented systematic transformers based on Vision 

Transformer (ViT) and Swin Transformer, emphasizing 

attention layers to meet expectations in image 

compression. 

Toderici et al. [13] explored recurrent neural networks 

(RNNs) and long short-term memory (LSTM) models 

with additive reconstruction architectures, introducing a 

scaled-additive framework that demonstrated significant 

improvements. Some studies, like [12] and [15], 

concentrated on simple intelligent models prioritizing 

image size over content-based compression. On the other 

hand, Gaussian distribution methods [16] and Gaussian 

mixture models [18] were implemented for compression 

but did not provide lossless results. 

Low bit-rate-based deep learning models were proposed 

in [19, 21], with a CNN model for semantic-based image 

compression presented in [20]. Medical image 

compression, focusing on lossless compression, was 

addressed by Nagoor in [22] using a CNN model. In [23], 

pattern recognition models were employed for lossless 

image compression. 

The transition from old machine learning models to 

advanced vision transformer models reflects the evolution 

in image compression research. Many researchers have 

worked on addressing the challenge of content-based 

image compression without sacrificing image content. 

The field continues to evolve, emphasizing novel 

techniques prioritizing compression efficiency and 

preserving essential image information. 

These diverse approaches highlight the dynamic 

landscape of image compression research, showcasing a 

shift towards deep learning techniques and a quest for 

methods that go beyond traditional lossy compression, 

aiming to preserve as much information as possible while 

efficiently reducing image size. 

Methodology 

We have implemented an optimized GAN [6] model for 

image compression. The model takes images as input and 

outputs compressed versions while ensuring the 

preservation of data through the addition of noise from the 

generator to the discriminator. Figure 1 serves as an 
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illustrative representation of the proposed model 

architecture. 

This innovative approach uses the GAN framework to 

achieve image compression without data loss. The 

generator introduces controlled noise during the 

compression process, and the discriminator plays a crucial 

role in evaluating the compressed images. This dynamic 

interplay between the generator and discriminator, as 

showcased in our proposed model, highlights the potential 

for novel and effective solutions in image compression. 

 

Figure 1 Propose G-D model 

Data analysis and preprocessing 

The dataset originates from Kaggle and comprises over 

200 bird images. As part of the preprocessing steps, these 

images were resized to dimensions of 64x64, as illustrated 

in Figure 2. Resizing is a common practice in deep 

learning to standardize input dimensions and reduce 

computational complexity. However, it is essential to note 

that resizing may result in some loss of information, and 

the dataset's diversity and quality may influence the 

model's effectiveness. 

 

Figure 2 samples used for compression after resizing to 64*64 

I

mplementation 

We developed a deep learning model, delineated in Table 

1 that has been meticulously crafted to address the task of 

compressing images without compromising their inherent 

content. The initial preprocessing steps involve 

converting images to the RGB format and resizing them 

to dimensions of 64x64x3. The generator's architectural 

framework is noteworthy, featuring six convolutional 

layers accompanied by max pooling and batch 

normalization, succeeded by four densely connected 

layers. The intermediate CONV-2D layers employ the 

rectified linear unit (ReLU) activation function, while the 

final layer deploys the softmax activation function, 

yielding an output dimension of 3x1. Simultaneously, the 

discriminator, equipped with six CONV-2D layers, 

processes the output from the generator, ultimately 

producing images of a standardized 64x64 size. The 

convolutional operation f(x,y) (1) involves multiplying 

filter elements with their corresponding counterparts in 

the input image, followed by a summation process that 

yields scalar values at each spatial coordinate (x, y). Using 

softmax activation in the generator hints at a categorical 

output, potentially associated with specific image classes 

or channels. To optimize model efficacy, crucial 

considerations include implementing judicious loss 
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functions, a well-balanced training strategy, explicit 

evaluation metrics, hyperparameter refinement, and 

potential integration of data augmentation techniques. The 

model's ultimate success hinges on its capacity to 

generalize to unseen data, underscoring the significance 

of robust training and meticulous evaluation practices in 

achieving optimal performance. 

𝑓(𝑥, 𝑦) = ∑(𝐼 ∗ 𝑊)(𝑥, 𝑦)              (1) 

The pooling layers reduced the spatial dimensions of the 

feature maps through down sampling techniques like max 

pooling (equation 2). The pooling operation (Pool) 

occurred at spatial coordinates (x, y) to generate the 

resulting pooled feature maps. With equation (3) and (4) 

calculates the predicted values and finds the loss. 

𝑝(𝑥, 𝑦) = 𝑀𝑎𝑥_𝑃𝑜𝑜𝑙(𝑓)(𝑥, 𝑦)              (2) 

𝑦 = 𝑓(𝑤𝑥 + 𝑏)                     (3) 

𝑙𝑜𝑠𝑠(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑)

=
1

𝑚

−∑

𝐶

𝑐=1

(𝑦𝑐𝑙𝑜𝑔⁡(𝑝𝑐))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

Table 1 layer wise parameters of generator and discriminator models 

Generator Model Discriminator Model 

Input image 64*64*3 Input 1*8192 

Conv 2D 32*32*32 Conv 2D 4*4*512 

Batch Normalization Conv 2D 8*8*512 

Conv 2D 16*16*64 Batch Normalization 

Batch Normalization Conv 2D 16*16*256 

Conv 2D 16*16*64 Batch Normalization 

Conv 2D 8*8*128 Conv 2D 32*32*128 

Conv 2D 8*8*256 Conv 2D 32*32*128 

Batch Normalization Conv 2D 64*64*64 

Conv 2D 4*4*512 Conv 2D 64*64*64 

Flatten(1*8192) Batch Normalization 

Dense 1 Output 64*64*1 

 

In GAN Loss of Discriminator is 𝐿𝐷 = 𝐸𝑟𝑟𝑜𝑟(𝐷𝑥 , 1) +

𝐸𝑟𝑟𝑜𝑟(𝐷(𝐺𝑥 , 0)) and loss function for Generator is 𝐿𝐺 =

𝐸𝑟𝑟𝑜𝑟(𝐷(𝐷𝑥), 1) from this with cross entropy loss 

function we optimized the both the losses with respect 

to𝑁𝑠𝑝.  

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝐷𝑥
= 𝑁𝑠𝑝 +

𝑝𝑔(𝑥)

1−𝐷𝑥
  (1) 

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝐷𝑥
=

𝑁𝑠𝑝−𝑁𝑠𝑝⁡𝐷(𝑥)+𝑝𝑔(𝑥)

1−𝐷𝑥
             (2) 

𝐷𝑥 =
(1−𝐷𝑥)𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑁𝑠𝑝−𝑁𝑠𝑝𝐷𝑥+𝑝𝑔(𝑥)
               (3) 

𝑉(𝐺,𝐷) = 𝐸𝑥−𝑝𝑑𝑎𝑡𝑎[𝑙𝑜𝑔⁡𝐷𝑥] + 𝐸𝑥−𝑝𝑔[𝑙𝑜𝑔⁡(1 − 𝐷𝑥]          

(4) 

𝑉(𝐺,𝐷) = 𝐸𝑥−𝑝𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔 (
(1−𝐷𝑥𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑁𝑠𝑝−𝑁𝑠𝑝𝐷𝑥+𝑝𝑔(𝑥)
)] +

𝐸𝑥−𝑝𝑔 [𝑙𝑜𝑔 (1 −
1−𝐷𝑥𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑁𝑠𝑝−𝑁𝑠𝑝𝐷𝑥+𝑝𝑔(𝑥)
)]     (5) 

𝑁𝑠𝑝 Represents the noised data in the provided 

framework, constrained within the range 0 < 𝑁𝑠𝑝 ≤ 1. 

Equation (5) is the derived GAN optimizer. In this 

context, x denotes the real data, 𝐺𝑥 represents synthetic 

data generated by the model, 𝐷𝑥 signifies the 

discriminator evaluation for real data, and D(𝐺𝑥) reflects 

the generator's evaluation for synthetic data. The 

schematic depiction in Figure 1 elucidates the functioning 

of the GAN in the context of image compression. 

The generated and discriminated losses were initially set 

at 0.0004 and 0.004, respectively. After iteratively 

experimenting with various values, adjustments were 

made to optimize these parameters. The noise level, 

denoted as 50, 60, 80, and 100, was also systematically 

tuned. Notably, when the noise level was set to 100, the 

model could provide accurate values within a relatively 

short duration. 

Different batch sizes of 8, 16, and 32 were employed 

during training. It was observed that for batch sizes of 16 

and 32, the model tended to become overfitted. 

Conversely, with a batch size of 8, the model 

demonstrated its best performance. This suggests that 
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careful consideration and fine-tuning of hyperparameters, 

such as noise level and batch size, are crucial for achieving 

optimal results in GAN-based image compression. 

Result analysis 

This model has undergone comprehensive training with a 

diverse set of hyperparameters. The initial learning rates 

for the generator and discriminator were set at 0.004. The 

noise levels were systematically adjusted, including 

values 50, 60, and 100. Additionally, various batch sizes 

were employed during training, and meticulous selection 

was made to identify the hyperparameter configurations 

that yielded optimal performance. 

Figure 3 and 4 Observations reveal that higher noise 

levels, specifically at 100 and above, result in less clear 

generator samples. The generator and discriminator losses 

are recorded at 0.5879 and 1.059, respectively. However, 

as the noise is gradually reduced, a notable improvement 

in sample clarity is observed, with the generator and 

discriminator losses overlapping. 

Further insights from Figures 5 and 6 underscore the 

importance of precisely adjusting noise levels and batch 

sizes to achieve the best fit. It is evident that when these 

parameters are appropriately tuned, the model exhibits 

optimal performance. Conversely, improper adjustments 

lead to overfitting, highlighting the sensitivity of the 

model's performance to the chosen hyperparameters. This 

iterative exploration and fine-tuning process underscore 

the importance of a systematic approach to 

hyperparameter optimization in GAN-based models for 

image compression.

 

 

Figure 3 samples with high noise given by discriminator, when discriminator loss is 0.58790 and generator loss is 1.059 

 

Figure 4 samples with low noise given by discriminator, when discriminator loss is 0.517 and generator loss is 1.361 

 

Figure 5 generator and discriminator losses epoch by epoch where batch size is 16 
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Figure 5 generator and discriminator losses epoch by epoch where batch size is 8 

Conclusion 

Implementing an optimized GAN for image compression 

using the Kaggle bird image dataset significantly 

advances preserving image content during compression. 

This approach involves training a generator and 

discriminator to reconstruct images from scratch, 

employing a competitive setup where one component 

minimizes the likelihood of images after compression, and 

the other minimizes the likelihood after compression. The 

Kaggle bird image dataset provides a diverse and practical 

testing ground, encompassing variations in bird species, 

backgrounds, and lighting conditions. 

The essential observation is that the implemented model 

successfully reduces image size without perceptible loss 

of content. This achievement validates the efficacy of the 

GAN-based approach in content-preserving compression, 

a crucial consideration in image compression applications 

where maintaining visual fidelity is paramount. The work 

contributes to the evolving landscape of image 

compression techniques, showcasing the potential of 

optimized GANs beyond traditional applications. 
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