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Abstract: Image denoising serves as a crucial preprocessing step in the realm of medical image analysis, with the primary objective of 

faithfully reconstructing the original image from its noisy counterpart. This process is essential for maintaining the integrity of vital 

details, such as edges and textures, within the denoised image. Innovatively addressing this challenge, our proposed system introduces a 

novel approach that seamlessly integrates Recurrent Neural Network (RNN) and Support Vector Machine (SVM). This powerful 

combination is adept at efficiently eliminating various types of noise, including gaussian, white noise, salt and pepper noise, and speckle 

noise, from intricate lung CT images. To enhance both learning accuracy and training efficiency, we have incorporated batch 

normalization in conjunction with residual learning. Notably, batch normalization is executed with the support of Long Short-Term 

Memory (LSTM). This strategic integration aids in the gradual separation of image structure from the noisy observations, a pivotal 

aspect in achieving optimal denoising outcomes. This approach not only enhances the accuracy of denoising but also contributes to 

reducing the overall training time, making it a valuable advancement in medical image preprocessing. 
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1. Introduction 

The intersection of medical science and technology relies 

heavily on the effective utilization of images to visually 

represent the inherent components of the body. These 

images serve a crucial purpose in laboratory testing 

analysis, revealing structures hidden beneath the skin and 

bone. Furthermore, they play a decisive role in making 

informed decisions about the treatment of diseases. In 

the examination of patients' ailments, medical imaging 

assumes a pivotal position, proving itself indispensable 

in recent times for disease diagnosis. Over the past 

couple of decades, various medical imaging modalities 

have been designed to cater to diverse applications, as 

noted by Manjón et al. (2008) [1] and Mitiche et al. 

(2013) [2]. These modalities facilitate the acquisition of 

images of anatomical structures within the body without 

the need for invasive procedures. Notable modalities 

include X-rays, Computed Tomography (CT), nuclear 

imaging, Magnetic Resonance Imaging (MRI), and 

Ultrasound (US), each serving a specific purpose in 

diagnosing various diseases. 

However, a significant challenge faced by these imaging 

modalities is the presence of noise. Noise manifests as 

variations in the intensity values of pixels within the 

image, deviating from the true pixel values. In essence, 

noise represents undesirable effects in medical images, 

posing a hurdle to accurate interpretation. The removal 

of noise becomes imperative in medical imaging 

applications, aiming to enhance and simultaneously 

preserve intricate information within the images to the 

highest possible extent. This process ensures that the 

diagnostic images remain reliable and contribute to 

informed medical decisions.  

1.1 Type of Noises  

Throughout the stages of image processing, including 

acquisition, transmission, reception, storage, and 

retrieval, diverse forms of noise can introduce distortions 

to an image. The impact of noise on the image varies 

depending on the nature of the distortion it introduces. 

1.1.1 Gaussian Noise  

Gaussian noise is characterized by its uniform 

distribution across the signal. This means that in a noisy 

image, each pixel results from the summation of the 

actual pixel values and a randomly distributed Gaussian 

noise component, as outlined by Lone et al. [3] in 2018. 

Notably, the intensity of the pixel value at any given 

point does not influence the noise, emphasizing its 

evenly distributed nature. A specific instance of 

Gaussian noise is white Gaussian noise, where values at 
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different times follow a similar distribution and 

demonstrate statistical independence. The term "white" 

in this context is derived from white light, symbolizing 

the even distribution of frequencies. The primary sources 

of Gaussian noise in digital images are often encountered 

during the acquisition process. For example, sensor noise 

may arise due to factors such as inadequate illumination 

or high temperature during image capture. Additionally, 

transmission processes can introduce Gaussian noise, 

further emphasizing the need for robust noise reduction 

techniques in image processing to enhance image quality 

and preserve the accuracy of the underlying information. 

 

Figure 1 Gaussian noise 

1.1.2 Salt and pepper noise 

Salt and pepper noise, categorized as impulse noise, 

manifests as spikes in intensity, as indicated by Kaur and 

Kaur [4] in 2014. This type of noise emerges due to 

errors in data transmission, leading to abrupt variations 

in the image signal. In images affected by salt and 

pepper noise, noisy pixels exhibit either the maximum or 

minimum values within the dynamic range.In an 8-bit 

image, it is commonly observed that pepper noise is 

represented by a pixel value of 0, while salt noise is 

represented by a pixel value of 255. This distinctive 

noise pattern often stems from malfunctions in pixel 

elements within camera sensors, defective memory 

locations, or timing errors during the digitization 

process. Figure 2 visually represents the characteristic 

appearance of salt and pepper noise in an image. 

 

Figure 2 Salt and Pepper Noise 

1.1.3 Speckle noise 

Speckle noise is a granular type of noise inherent in 

active radar and Synthetic Aperture Radar (SAR) 

images, leading to a degradation in image quality. This 

form of noise is particularly prevalent in certain 

biomedical applications such as Ultrasonic Imaging and 

emergency applications like Synthetic Aperture Radar 

(SAR) imaging. Notably, speckle noise is characterized 

by higher intensity when the magnitude of image pixels 

is high, indicating its dependence on the signal, as 

highlighted by Verma and Ali [5] in 2013. 

Speckle noise is multiplicative in nature, stemming from 

the initial transmission of a signal to an object and the 

subsequent recording of the reflected signal. During 

signal transmission, additive noise in the channel may 

corrupt the signal. Additionally, variations in the 

reflectance of the object's surface contribute to changes 

in the magnitude of the reflected signal, impacting the 

nature and magnitude of the noise. The multiplicative 

nature of speckle noise results in higher noise magnitude 

when the signal magnitude is high. 

 

Figure 3 Speckle Noise 

 

1.2 Source of Noises 

In any physical measurement, it's common for the 

measured quantity to be affected by various types of 

noise. The sources and nature of this noise depend on the 

specific characteristics of the physical measurement 

being conducted. Noise often originates from sources 

that are not identical to the one being measured, and 

sometimes it arises due to the measurement process 

itself. Drawing parallels with images, read-out noise in 

digital cameras exemplifies noise arising from a source 

different from the intended measurement, while speckle 

noise in Synthetic Aperture Radar (SAR) images 

exemplifies noise caused by the measurement process. 

Noise can also stem from the mathematical interpretation 

of a signal, such as in image deconvolution or image 

compression. In many cases, measurements are distorted 

by multiple sources of noise, making it challenging to 

fully characterize each one. In an ideal scenario, efforts 

are made to eliminate noise by refining the image 

acquisition process. However, when such manipulations 

are not feasible, denoising algorithms become essential. 
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The characteristics of noise are intricately linked to the 

image acquisition process, encompassing both digital 

and analog cameras of various types, whether for visible 

or infrared light. Additionally, noise affects radar 

imagery like Synthetic Aperture Radar (SAR), as well as 

medical imaging modalities such as Magnetic Resonance 

Imaging (MRI), Computer Tomography (CT), Positron 

Emission Tomography (PET), ultra-sonography, electron 

microscopy, among others. Recognizing and addressing 

noise in these diverse contexts is crucial for obtaining 

accurate and reliable measurements and images. 

1.3 Overview of Medical Image Noising 

The dynamic landscape of biomedical imaging presents 

both significant challenges and opportunities for image 

processing tasks, as noted by 

Mredhula&Dorairangasamy[6] in 2013, Manjón et al. [7] 

in 2010, and Omer et al. in 2018. Accurately modeling 

various biomedical imaging modalities, such as X-ray, 

ultrasound, magnetic resonance imaging (MRI), and 

computed tomography (CT), proves challenging due to 

their intricate nature and evolving technologies. In 

ultrasound imaging, speckle noise exhibits non-static 

characteristics, varying based on ultrasound attenuation 

and the presence of sub-resolution scatterers in the 

tissue, as explained by Kaur et al. [8] in 2007. For CT, 

factors like tube current-time product and slice thickness 

influence image noise. Meanwhile, in MR images, the 

Signal-to-Noise Ratio (SNR) depends on a multitude of 

variables, including pulse sequence, radiofrequency 

coil(s), magnetic field strength, and acquisition 

parameters. 

Understanding the physical and image characteristics 

specific to each medical imaging modality becomes 

crucial for effective image denoising. Realistic 

applications often demand image enhancement and 

reconstruction. Corruption due to Additive White 

Gaussian Noise (AWGN) may occur in images extracted 

in poor quality conditions, those in noisy environments, 

or due to inherent noise in communication channels. 

While linear filtering and smoothing operations are 

common for image reconstruction due to their simplicity, 

they assume static image signals generated through 

linear systems, limiting their overall efficiency. Real-

world medical images, on the other hand, often possess 

non-static statistical features, created through nonlinear 

systems where intensity distribution is the product of 

object reflectance and illumination distribution.To 

address this complexity, adaptive and nonlinear image 

restoration techniques consider local statistical features, 

achieving enhanced reconstruction while preserving 

high-frequency features like edges. These advanced 

techniques prove invaluable in coping with the diverse 

and dynamic nature of biomedical imaging data. 

1.4 Supervised Learning Models  

Supervised learning is a machine learning paradigm 

focused on learning a function that can map input data to 

corresponding outputs based on labeled training 

examples. This approach involves inferring a function 

from a set of training data, where each example is a pair 

comprising an input object (usually a vector) and its 

corresponding desired output value, often referred to as 

the supervisory signal. The algorithm learns patterns and 

relationships within the labeled data to make predictions 

or classify new, unseen examples. 

In supervised learning, the algorithm processes the 

labeled training data to create an inferred function. This 

function can then be applied to map inputs to outputs for 

previously unseen examples. The goal is to generalize 

the learning from the training data to accurately predict 

outcomes for new, similar instances. 

Support Vector Machine (SVM) is a specific type of 

supervised learning method widely used for 

classification and regression analysis. SVM aims to find 

the optimal hyperplane that best separates different 

classes in the input space, making it a powerful tool for 

tasks such as image classification, speech recognition, 

and various other pattern recognition applications. SVMs 

can handle both linear and non-linear relationships 

within the data, offering flexibility in addressing 

complex problems in supervised learning scenarios. 

1.4.1 Introduction to Support Vector Machines 

(SVM)  

In machine learning, support-vector machines (SVMs), 

also known as support vector networks, are supervised 

learning models equipped with learning algorithms 

designed for classification and regression analysis. These 

models analyze labeled data to build a robust framework 

for categorizing new examples into predefined classes or 

predicting numeric values. When given a set of training 

examples, each labeled as belonging to one of two 

categories, an SVM training algorithm constructs a 

model that effectively separates the examples into 

distinct categories. SVMs operate as non-probabilistic 

binary linear classifiers, meaning they classify instances 

into two categories without providing probabilistic 

estimates. However, methods like Platt scaling exist to 

adapt SVMs for probabilistic classification scenarios, as 

highlighted by Meyer & Wien in 2015 and Harris [9] in 

2015.The SVM model represents training examples as 

points in a multidimensional space, carefully mapped to 

ensure a clear gap between points of different categories. 

The objective is to create a gap that is as wide as 

possible, enhancing the model's ability to discriminate 

between classes. Once the model is established, new 

examples are mapped into the same space, and their 
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category assignment is predicted based on which side of 

the gap they fall. SVMs have proven to be versatile and 

effective tools in various machine learning applications, 

offering robust classification capabilities in both linear 

and non-linear scenarios. 

1.4.3Firefly Algorithm (FA)  

The Firefly Algorithm is a nature-inspired, metaheuristic, 

and swarm intelligence algorithm that draws inspiration 

from the characteristic behaviors of fireflies. It leverages 

the concept of the flashing lights of fireflies to optimize 

solutions in a search space. Here are some key 

characteristics and principles of the Firefly Algorithm: 

1. Nature-Inspired Optimization: 

● The algorithm is designed to mimic the 

behavior of fireflies in nature, where the 

flashing lights serve as a means of 

communication and attraction. 

2. Swarm Intelligence: 

● Similar to other swarm intelligence 

algorithms, the Firefly Algorithm 

capitalizes on the collective behavior of a 

swarm of individuals (fireflies) to 

collectively explore and optimize a 

solution space. 

3. Light Intensity and Attraction: 

● The intensity of the light emitted by a 

firefly is directly linked to its 

attractiveness. 

● Fireflies are attracted to each other, and the 

one emitting brighter light attracts others 

more strongly than those emitting dimmer 

light. 

4. Optimization Principle: 

● The movement of fireflies is guided by the 

principle of moving toward brighter and 

more attractive locations in the search 

space. 

● Brightness is often associated with the 

quality of a solution in the context of 

optimization problems. 

5. Random Movement: 

● If a firefly cannot find a neighboring 

firefly with higher brightness, it moves 

randomly to explore other regions of the 

search space. 

6. Objective Function and Brightness: 

● In the mathematical model of the 

algorithm, the brightness of a firefly is 

typically determined by the objective 

function relevant to the optimization 

problem being solved. 

The Firefly Algorithm has been applied to various 

optimization problems, including mathematical 

functions, engineering design, and other domains where 

finding optimal solutions is crucial. Its simplicity, 

efficiency, and ability to handle optimization tasks in 

complex solution spaces make it a popular choice in the 

field of metaheuristic algorithms. 

2. Hybrid Recurrent Neural Networks with 

Support Vector Machines (HRNN-SVM) 

In this research propose hybrid recurrent neural networks 

with support vector machines to improve the 

discrimination ability of RNNs. Given an input image 

sequence (lung CT images) X 1:𝑇={𝑥1 , … . 𝑥𝑇}, the 

simple RNNs compute the hidden vector {ℎ1 , … , ℎ𝑇} by 

iterating the following equations from t = 1,…, T, 

ℎ𝑡 = 𝐻(𝑊𝑥ℎ𝑥𝑡 +  𝑊ℎℎℎ𝑡−1 +

 𝑏ℎ)  (2.1) 

where W is the weight matrix, e.g.,Wxh is the input-

hidden weight matrix, b is the bias vector, e.g., bh is the 

hidden bias vector, and H(.) is the recurrent hidden layer 

function. Denote the corresponding state labels as s = 

{𝑠1, … ,}, the state-label posterior for pixel t is computed 

by the softmax 

𝑃(𝑠𝑡|𝑋1:𝑡) =   exp (𝑤𝑠𝑡
𝑇 ℎ𝑡+ 𝑏𝑠𝑡)

∑  exp (𝑤𝑠𝑡
𝑇 ℎ𝑡+ 𝑏𝑠𝑡)𝑁

𝑠𝑡=1

   (2.2) 

Where, N is the total number of labels, wst is the weight 

vector connecting the hidden layer to the output state st. 

The proposed system replaces the softmax layer in RNN 

with Support Vector Machines (SVMs). The parameters 

of RNNs and SVMs are jointly learned using sequence-

level max margin criteria, instead of cross entropy. For 

multiclass SVM, the classification function is 

𝑎𝑟𝑔𝑠
𝑚𝑎𝑥  𝑤𝑠

𝑇𝜑(𝑥𝑡) 

 (2.3) 

Where, (𝑥 ) is the predefined pixels of SVM and ws is 

the weight parameter for class/state s. If RNNs are used 

to derive the pixel, e.g., (𝑥 ) ≜ht, decoding of SVMs 

(Guenther& Schonlau 2016) and RNNs are the same. 

This inspires us to replace the softmax layer in RNNs 

with SVM.The RNNs can be trained using pixel-level 

cross entropy, connection is t temporal classification. 

The first step is to estimate the parameters of SVM in the 

last layer using the quadratic programming. The second 

step is to update the parameters of RNN in all previous 
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layers using sub gradient approaches (Mehr et al. 2019) 

[10] ; (Mohammadi et al. 2015) [11]. 

2.1 Pixel -level training using Recurrent SVM  

In the pixel-level max-margin training, given training 

inputs and state labels, , {(𝑥𝑡 , 𝑠𝑡)} 𝑡=1 𝑇 , let 𝜑(𝑥𝑡 ) ≜ht 

as the pixel space derived from RNN recurrent states, the 

parameters of the last layer are first estimated using the 

SVM training algorithm,  

min
𝑤𝑠,ξ𝑡

1

2
∑ ||𝑤𝑠||2

2𝑁
𝑠=1 + 𝐶 ∑ ξ𝑡

2𝑇
𝑡=1

   (2.4) 

s.t. for every training pixel t = 

1,…., T  

for every competing states 𝑠̅ ∈ 

{1, … . . , 𝑁} 𝑡 : 

where 𝜉𝑡> 0 is the slack variable which penalizes the 

data points that violate the margin requirement. The 

equation (2.4) basically says that, the score of the correct 

state label, 𝑤𝑠𝑡𝑇ℎ , has to be greater than the scores of 

any other states, 𝑤𝑠𝑡𝑇 ℎ𝑡 , by a margin. Substituting 𝜉𝑡 

from the constraints into the objective function, equation 

(2.4) can be reformulated as minimizing 

𝐹𝑓𝑟𝑚(𝑤𝑠, 𝑊∗) =
1

2
∑ ||𝑤𝑠||2

2𝑁
𝑠=1 +

𝐶 ∑ [1 − ξ
𝑡𝑤𝑠

𝑇ℎ𝑡

2 +  𝑤𝑠𝑡
𝑇 ℎ𝑡 ≥𝑠𝑡

𝑚𝑎𝑥 ]
2

𝑇
𝑡=1  (2.5) 

where ht depends on all the weights 𝑊∗ in previous 

layers. [x]+ = max(0; x) is a hinge function. Note the 

maximum of a set of linear functions is convex, thus 

equation (4.5) is convex w.r.t.ws. The first step of 

recurrent SVM training is to optimize ws by minimizing 

(2.5). The second step of recurrent SVM training is to 

optimize the parameters in previous layers. These 

parameters can be updated by back propagating the 

gradients from the top layer. 

𝜕𝐹𝑓𝑟𝑚

𝜕𝑊𝑖ℎ
=  ∑ (

𝜕𝐹𝑓𝑟𝑚

𝜕ℎ𝑡

𝜕ℎ𝑡

𝜕𝑊𝑖ℎ
)𝑇

𝑡=1  

  (2.6) 

The key here is to compute the derivative of Ffrmw.r.t. the 

ht. However, equation (2.5) is not differentiable because 

of the max(.). To handle this, the sub gradient method is 

applied. 

2.2 Long Short-Term Memory with Batch 

Normalization  

Certainly, the Long Short-Term Memory (LSTM) is a 

widely used recurrent neural network (RNN) architecture 

that effectively addresses the vanishing gradient 

problem, a common issue in vanilla RNNs. LSTMs 

utilize gating functions to control information flow and 

maintain memory over long sequences. Here's an 

overview of the computation at each time step t in an 

LSTM: 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑥𝑥𝑡) 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑𝑒(𝑊ℎ𝑓ℎ𝑡−1 + 𝑊ℎ𝑓𝑥𝑡) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 𝑡𝑎𝑛ℎ⊙ (𝑊ℎ𝑐ℎ𝑡−1 + 𝑊𝑥𝑐𝑥𝑡) 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑𝑒(𝑊ℎ𝑜ℎ𝑡−1 + 𝑊ℎ𝑥𝑥𝑡 + 𝑊𝑐𝑜𝑐𝑡) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝑐𝑡)  

Where sigmoid(·) is the logistic sigmoid function, tan h 

is the hyperbolic tangent function, 𝑊ℎ are the recurrent 

weight matrices and 𝑊𝑥 are the input to hidden t weight 

matrices.  , and ot are respectively the input, forget and 

output gates, and 𝑐𝑡 is the cell (Voigtlaender et al. 2016) 

[12]. 

2.3 Batch size selection using FireFly Algorithm  

In this proposed research work, an effective batch size 

selection is performed by using firefly algorithm. From 

equation 2.8, an analogous way to apply batch 

normalization to an RNN would be as follows: 

ℎ𝑡 = 𝜙(𝐵𝑁(𝑊ℎℎ𝑡−1 +

𝑊𝑥𝑥𝑡))   

 (2.8) 

However, in this experiments, when batch normalization 

was applied in this fashion, it didn’t help the training 

procedure. Instead we propose to apply batch 

normalization only to the input-to-hidden transition 

(𝑊𝑥𝑥t ), i.e. as follows: 

ℎ𝑡 = 𝜙(𝑊ℎℎ𝑡−1 +

𝐵𝑁(𝑊𝑥𝑥𝑡))   

 (2.9) 

This idea is similar to the way dropout can be applied to 

RNNs batch normalization is applied only on the vertical 

connections (i.e. from one layer to another) and not on 

the horizontal connections (i.e. within the recurrent 

layer). We use the same principle for LSTMs: batch 

normalization is only applied after multiplication with 

the input-to-hidden weight matrices𝑊𝑥. Based on the 

above procedures, the images are normalized. 

Batch size selection using FA  

In this work, the presented methods implement a FA 

algorithm to ideally identify the batch size. Firefly 

algorithm is one among the effective optimization 

techniques (Laurent et al. 2016) [13] ;( Pereira& Yang 

2016)[14]. The FA is a metaheuristic, nature inspired, 

optimization algorithm which is based on the social 

flashing behaviour of fireflies, or lighting bugs. The FA 

uses the following three rules: 

● A firefly is attracted to other fireflies regardless 

of their sex, because all fireflies are unisex.  

(2.7) 
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● Attractiveness is proportional to their 

brightness, thus for any two flashing fireflies, 

the less− bright one will move towards the 

brighter one. Both attractiveness and brightness 

are decreasing as the distance between the two 

fireflies increases. If no one is brighter than a 

particular firefly, then it moves randomly.  

● The brightness or light intensity of a firefly is 

determined by the objective function of the 

optimization problem.  

In this work, number of pixels is considered as fireflies. 

The light intensity (denoising quality) thus attractiveness 

is inversely proportional with the particular distance r 

from the light source. Thus the light and attractiveness is 

decrease as the distance increase. 

𝐼(𝑟) =

𝐼𝑜𝑒−γ𝑟2
  

 

 (2.10) 

Where,  γ -light absorption coefficient  

Attractiveness is proportionally to the light intensity seen 

by another fireflies, thus attractiveness is 

𝛽 =

𝛽0𝑒−𝛾𝑟2  

  

 (2.11) 

Where, β0 - attraction at r=0  

The distance between two fireflies can define using 

Cartesian distance ri,j is the distance amid any two 

fireflies i and j, that are at positions xi and 

xjcorrespondingly. The Cartesian distance is provided by 

the equation 

𝑟𝑖𝑗 = |𝑥𝑖 − 𝑥𝑗| =

√∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)2𝑑
𝑘=1   

  (2.12) 

Here 𝑥, is known as the kth element of the spatial 

coordinate xi of the firefly i and d is known as the 

amount of dimensions. The movement of a firefly i in the 

direction of more another (brighter) firefly j is provided 

by [15] 

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟𝑖
2𝑗(𝑥𝑗 −

𝑥) + 𝛼𝜀𝑖   

 (2.13) 

For the attractiveness, second component is utilized and 

for randomization, third component is utilized with α 

being the randomization parameter, and 𝜀𝑖 is known as a 

vector of random numbers being derived from a 

Gaussian distribution or else uniform distribution 

interval [0, 1]. 

3. Experimental Results 

The designed research work was implemented using 

MATLAB. The experimental work is performed on 

SIMBA dataset. Based on the white noise, salt and pepper 

noise, gaussian and speckle noises the experimental 

results are presented. The performance of the proposed 

HRNN-SVM scheme is compared with the existing image 

denoising schemes such as CNN, DnCNN and RNN in 

terms of Peak to Signal Noise Ratio (PSNR), Mean 

Squared Error (MSE) and accuracy. 

 

 

Figure 4. Input image with white noise           Figure 5. Input image with salt and pepper noise 
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Figure 6. Input image with Gaussian noise       Figure 7. Input image with speckle noise 

The various types of noises such as white noise, 

gaussian, salt and pepper noise, and speckle noise are 

corrupted with input images. The image with noises is 

shown in figure 4 to 7. 

The denoised image output is shown in figure 8 to 11. 

With the help of Recurrent Neural Network (RNN) with 

Support Vector  

 

Figure 8. Denoised image for white noise              Figure 9. Denoised image for salt and pepper noises 

 

Figure 10. Denoised image for Gaussian noise            Figure 11. Denoised image for speckle noise 

Machine (SVM) the white noise, salt and pepper noise, 

Gaussian and speckle noise are efficiently removed from 

lung CT images. In order to improve the denoising 

quality the last layer of RNN is replaced with SVM 

classifier. 

The CT lung images are denoised and the PSNR 

evaluated. The PSNR value is represented in Table 1. 
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Table 1 PSNR comparison 

 

 

Figure 12. Experimental results of PSNR comparison for lung CT images 

The PSNR of the proposed and existing methods are 

compared in figure 12. In x-axis number of images is 

taken and PSNR is taken as y-axis. In this proposed 

research work, softmax layer in RNN is replaced by 

using Support Vector Machines. Here the parameters of 

RNNs and SVMs are jointly learned. In addition, the 

firefly algorithm is utilized to select an optimal batch 

size selection. This hybrid framework achieves the 

higher quality image as the output. The result shows that 

the proposed HRNN-SVM achieves 45.96 db when the 

other method such as CNN, DnCNN, and RNN achieves 

36.85db, 38.56db and 43.63 db respectively for image 2.  

The MSE performance of the proposed HRNN-SVM 

scheme is compared with the other methods. The values 

are tabulated in Table 2.  

Table 2 MSE comparison 
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Figure 12.Experimental results of MSE comparison for lung CT images 

Fig 12 illustrates the MSE comparison of the proposed 

HRNN-SVM and existing approaches. In x-axis, number 

of images is taken and MSE is taken as y-axis. From this 

figure, it can be noticed that the proposed HRNN-SVM 

attains 7.5 % of MSE whereas other methods such as 

CNN, DnCNN and RNN achieves 9.6%, 9.4% and 8.9% 

respectively for image 2. 

The CT lung images are denoised and the accuracy is 

evaluated. The accuracy value is represented in Table 3. 

Table 3 Accuracy comparison 

 

 

Figure 13. Experimental results of accuracy comparison  for lung CT images 
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The proposed HRNN-SVM based denoising is compared 

with the existing CNN, DnCNN and RNN based image 

denoising schemes. In this research work, denoising 

image accuracy is improved with the help of HRNN-

SVM based approach. From figure 13, it can be 

concluded that the proposed system achieves 97% of 

accuracy when the other methods such CNN, DnCNN 

and RNN achieves 88%, 89%, and 94% respectively for 

image 2. 

4. Conclusion 

In this paper, a new image denoising and classification 

technique using Recurrent Neural Networks (RNN) with 

Support Vector Machines (SVMs) is proposed for 

efficiently removing noise from lung CT images. In this 

work, three noises are used, gaussian, white, salt & 

pepper and speckle noises. In this paper, first the SVM is 

used in the last layer of RNN to improve the performance. 

To improve the learning accuracy and reduce the 20 40 60 

80 100 Image 1 Image 2 Image 3 Image 4 Image 5 Image 

6 Image 7 Image 8 Accuracy in % Lung CT images CNN 

Dn-CNN RNN HRNN-SVM 90 training time, batch 

normalization is integrated with residual learning. The 

PSNR and MSE results show that the proposed HRNN-

SVM attained better results compared than other 

denoising schemes like DnCNN, CNN and RNN. 

Comparison of experimental results verify the denoising 

ability of the proposed method and indicate that it 

provides an effective solution to image denoising. 
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