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Abstract: Diabetic detection and diagnosis is crucial in the medical field for efficient treatment and management. Conventional 

approaches frequently rely on time-consuming and error-prone manual analysis of medical records and symptoms. In order to overcome 

these obstacles, this paper proposes a Type 2 Fuzzy Differential Evolution based Semantic Ontology (T2FDESO) method for diabetes 

detection and diagnosis. The T2FDESO method improves diagnosis precision and speed by combining the strengths of fuzzy logic, 

differential evolution, and semantic ontology. The method utilizes Type 2 fuzzy logic to account for the gaps and inaccuracies in medical 

data, thereby facilitating more sound decision-making. Optimization of the diabetes detection model parameters using the differential 

evolution algorithm is used to boost its effectiveness. Semantic ontology is used in the T2FDESO method to create a standardized way to 

represent medical knowledge and the connections between various medical concepts. The system is able to effectively reason and infer 

diabetes-related information from the provided symptoms and patient data. The diagnostic process is improved thanks to the semantic 

ontology ability to facilitate the incorporation of domain-specific knowledge. In addition to the improved precision and speed of diabetes 

diagnosis, the T2FDESO method offers several other advantages. The utilization of semantic ontology allows for easy integration of 

expert knowledge from different fields, ensuring that the diagnostic system remains up-to-date with the latest advancements and insights 

in diabetes research and clinical practice. Furthermore, the T2FDESO approach enables the efficient integration of disparate data sources, 

including clinical records and laboratory test results, leading to a more comprehensive analysis of patient information. By capturing and 

hierarchically organizing domain-specific information, the system can make more informed decisions, leading to better patient outcomes. 

The experimental results with a real-world dataset demonstrate the superiority of the T2FDESO method over existing techniques, 

establishing its potential to revolutionize diabetes detection and diagnosis in the medical field. Its ability to enhance decision-making and 

timely treatment management can significantly impact healthcare providers' ability to provide personalized and effective care to 

individuals with diabetes. 
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1. Introduction 

Uncontrolled diabetes, a metabolic disorder 

characterized by persistently high blood glucose levels, 

is associated with serious health risks if not managed [1]. 

The key to successful treatment and management of 

diabetes is early and correct diagnosis. Manual analysis 

of medical records and symptoms forms the backbone of 

conventional diagnostic procedures, but this approach 

can be laborious, biased, and error-prone [2]. This 

highlights the expanding need for cutting-edge 

computational methods that can automate and improve 

diagnostic precision. 

When it comes to diagnosing diseases, artificial 

intelligence (AI) has shown a lot of promise in the 

medical field. Disease detection systems have benefited 

from the application of several artificial intelligence (AI) 

methods, including fuzzy logic, evolutionary algorithms, 

and semantic ontologies [3, 4]. While evolutionary 

algorithms fine-tune the diagnostic model parameters, 

fuzzy logic handles the inherent uncertainties and 

imprecisions in medical data [5, 6]. Using semantic 

ontologies, medical knowledge can be represented 

systematically, which improves the efficiency of 

reasoning and inference [6]. However, the majority of 

current methods rely solely on Type 1 fuzzy logic and do 

not incorporate semantic ontologies [7]. 

Several obstacles must be overcome in the context of 

diabetes diagnosis and detection. First of all, it is 

difficult to reliably categorize patients as diabetic or non-

diabetic due to uncertainties, imprecisions, and 

vagueness in medical data [8]. Second, optimizing the 

diagnostic model parameters is essential for achieving 

high accuracy; however, doing so requires an efficient 

optimization algorithm that can deal with the complex 

search space [9]. Third, reliable results and efficient 

decision support [10] depend on incorporating domain-

specific medical knowledge into the diagnostic process. 
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In order to better detect and diagnose diabetes, the 

authors of this work combine Type 2 fuzzy logic, 

differential evolution, and semantic ontology into a 

cutting-edge computational approach. The goal is to 

provide doctors with a solid decision-making aid that 

improves diagnostic precision and efficiency. The 

proposed method incorporates Type 2 fuzzy logic, which 

is able to handle uncertainties and imprecisions, with 

differential evolution, an efficient optimization 

algorithm, in order to overcome the limitations of 

existing methods. With the addition of a semantic 

ontology, the system will be able to draw conclusions 

about diabetes from the symptoms and patient data that 

are fed into it [11]. 

A Type 2 Fuzzy Differential Evolution based Semantic 

Ontology (T2FDESO) method for diabetes detection and 

diagnosis is the primary result of this study. The novel 

aspect is the incorporation of Type 2 fuzzy logic, 

differential evolution, and semantic ontology, all of 

which improve the diagnostic system precision, 

effectiveness, and dependability. By combining cutting-

edge computational techniques to deal with uncertainties 

in medical data, optimize the diagnostic model, and 

factor in domain-specific medical knowledge, the 

proposed approach closes a gap in the existing literature 

[12]. 

Decision support for diabetes detection and diagnosis is 

strengthened by the T2FDESO method, which employs 

Type 2 fuzzy logic, differential evolution, and semantic 

ontology. The proposed method has the potential to aid 

medical professionals in making decisions and providing 

timely treatment to patients with diabetes, as evidenced 

by the experimental evaluation on a real-world dataset 

demonstrating its superiority over traditional methods. 

Together, these findings advance artificial intelligence-

based medical diagnosis systems and suggest ways to 

enhance diabetes care. 

The proposed T2FDESO approach for diabetes detection 

and diagnosis exhibits several novel features: 

Integration of Type 2 Fuzzy Logic, Differential 

Evolution, and Semantic Ontology: The T2FDESO 

method uniquely combines the strengths of Type 2 fuzzy 

logic, differential evolution optimization, and semantic 

ontology. This integration allows for a more robust and 

accurate diabetes diagnostic system by leveraging the 

advantages of each technique. 

Utilization of Semantic Ontology: The incorporation of a 

semantic ontology tailored to diabetes diagnosis sets the 

T2FDESO approach apart. This organized model 

captures domain-specific information and expert 

knowledge, making the diagnostic system more reliable 

and adaptable to the latest research and clinical findings. 

Integration of Expert Knowledge: By capturing and 

formalizing expert knowledge within the semantic 

ontology, the T2FDESO approach ensures that the 

diagnostic system is up-to-date with the collective 

wisdom of medical professionals and academics. This 

integration leads to improved diagnostic results and 

decision-making. 

Efficient Integration of Disparate Data Sources: The 

semantic ontology enables the efficient integration of 

various patient data, including clinical records, 

laboratory test results, and patient histories. This 

integration enhances the diagnostic accuracy and 

improves the detection and diagnosis of diabetes. 

Differential Evolution Optimization: The T2FDESO 

method incorporates the differential evolution algorithm 

to optimize the diabetes diagnostic model parameters. 

This optimization process enhances the precision of the 

diagnosis by identifying the best parameter settings that 

minimize classification errors. 

Overall, the T2FDESO approach presents a 

comprehensive and novel framework that effectively 

combines advanced techniques from different domains to 

improve diabetes detection and diagnosis. Its integration 

of semantic ontology, expert knowledge, differential 

evolution, and Type 2 fuzzy logic sets it apart from 

existing methods and showcases its potential for 

advancing diabetes diagnostic systems. 

2. Related Works 

A Diabetes Decision Support System Based on Fuzzy 

Ontology was proposed in Chen, Y.; Ling, Y.; Wang, H. 

(2019) [13]. They built a knowledge base for diagnosing 

diabetes using fuzzy logic and ontology. Fuzzy rules 

were used to deal with ambiguity and imprecision in 

medical data, and the ontology provided a well-

organized way to store information about diabetes. 

In order to aid in the diagnosis of diabetes, Singh, A. K., 

and Gupta, V. (2020) [14] created a Type-2 Fuzzy 

Ontology. They built an ontology-based system around 

the idea of using Type-2 fuzzy sets to represent 

uncertainty in diabetes diagnosis. The proposed method 

was created to deal with the imprecision and fuzziness of 

medical data used to diagnose diabetes. 

A Type-2 Fuzzy Ontology-Based System for Diabetes 

Diagnosis was presented by Shaik, A. R., Patra, M. R., 

and Rao, G. P. (2020) [15]. They modeled ideas and 

connections associated with diabetes using fuzzy 

ontology, which allowed for finer-grained inferences to 

be made. For correct diagnosis, the system used fuzzy 

logic to deal with ambiguous and imprecise medical 

data. 
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Diabetic diagnosis could benefit from a hybrid decision 

support system, as proposed by Cahin and Küçük [16]. 

The researchers took a novel approach to diabetes 

diagnosis by combining fuzzy ontology and support 

vector machines. While support vector machines were 

used for classification, domain-specific knowledge was 

captured by the fuzzy ontology. 

In order to better diagnose diabetes, Arunmozhi and 

Thirunavukarasu (2020) [17] created a smart fuzzy 

ontology system. A decision support system that could 

deal with uncertainty and imprecision in medical data 

was developed using fuzzy logic and ontology. The 

diagnostic process was improved by incorporating 

human knowledge into the system. 

According to Abiodun, Olugbara, and Ng (W. K. 

Differential evolution algorithms were used to categorize 

diabetes diagnoses in 2016 [18]. In order to enhance the 

precision of diabetes diagnosis, they used differential 

evolution to fine-tune the parameters of a classification 

model. 

Classification of diabetes was proposed using a 

differential evolution optimized support vector machine 

Vafaei, Mohammad S., and Hamid Fakhrzadeh (2017) 

[19]. They used differential evolution to fine-tune the 

SVM parameters, leading to higher precision in diabetes 

classification. 

Hossain, M. A., M. F. Akhtar, & E. Serpedin. (2020) 

[20] created a medical decision support system using 

differential evolution and feature selection for 

diagnosing diabetes. They used differential evolution to 

pick useful features and fine-tune the classification 

model parameters, leading to a rise in the diagnostic 

precision for diabetes. 

A hybrid fuzzy logic and differential evolution method 

for diabetes prediction was presented in Chen, Y.; Ling, 

Y.; Wang, H. [21]. Fuzzy logic was used to deal with 

uncertainty, and differential evolution was used to fine-

tune the prediction model. Accuracy in predicting 

diabetes was enhanced by the hybrid method. 

A hybrid type-2 fuzzy ontology system was proposed for 

diabetes diagnosis in Ahmad, A., Javaid, N., Shafique, 

F., and Butt, S. A. (2020) [22]. To deal with the 

ambiguity and imprecision of medical data, they 

combined type-2 fuzzy logic and ontology. Diabetic 

diagnosis was strengthened by the hybrid system 

increased precision and reliability. 

A diabetes diagnosis decision support system based on 

fuzzy ontology was developed in Liu, Z.; Guo, Y.; and 

Li, Y. (2021) [23]. Their method involved the use of 

fuzzy ontology to model information and reasoning 

related to diabetes. The system provided trustworthy and 

accurate assistance in making a diagnosis of diabetes. Qu 

and Zhang (2021) [24] They used differential evolution 

to fine-tune the classifier and raise the bar for diagnosing 

diabetes. 

3. Proposed Method 

The proposed method, called the T2FDESO approach, 

uses the strengths of Type 2 fuzzy logic, differential 

evolution, and semantic ontology to enhance diabetes 

detection and diagnosis. Among these factors, the 

incorporation of a semantic ontology plays a crucial role 

in improving the diagnostic system precision, 

effectiveness, and dependability. 

Medical knowledge and the connections between various 

medical concepts can be represented systematically using 

a semantic ontology. The ontology captures and 

hierarchically organizes domain-specific information 

relevant to diabetes diagnosis, such as symptoms, risk 

factors, and diagnostic criteria. This organized model 

allows the system to efficiently reason and infer 

diabetes-related information from the provided patient 

data and symptom inputs. Incorporating the semantic 

ontology allows the diagnostic system to take advantage 

of the wealth of information contained within the 

ontology, leading to more precise detection and 

diagnosis of diabetes. 

The semantic ontology also makes it easier to factor in 

expert knowledge from different fields during diagnosis. 

Capturing and formalizing the expertise and knowledge 

of medical professionals within the ontology ensures that 

the system is always up-to-date with the most recent 

findings from research and clinical practice. By tapping 

into the collective wisdom of healthcare professionals 

and academics, diagnostic results are improved through 

this incorporation of expert knowledge. 

Integrating disparate data sets is made possible by the 

semantic ontology. Clinical records, laboratory test 

results, and patient histories can all be integrated and 

reasoned over by the system with the help of ontology 

alignment. Better detection and diagnosis of diabetes can 

be achieved through the integration of multiple sources 

of patient data. 
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Figure 1: Proposed Model 

3.1. Architecture of the T2FDESO System 

The architecture of the T2FDESO system typically 

consists of the following key components: 

 Data Input: This section takes in data from the 

user about the patient symptoms, medical 

history, and other factors. Structured data, free-

form text, and even medical records are all 

acceptable types of information. 

 Preprocessing and Feature Extraction: The 

input data is preprocessed and relevant features 

that are important for diabetes diagnosis are 

extracted in the preprocessing and feature 

extraction step. Data cleaning, normalization, 

feature selection, and dimensionality reduction 

are all examples of preprocessing tasks. 

 Semantic Ontology Construction: In this 

section, we build a semantic ontology tailored 

to the process of diagnosing diabetes. The 

ontology represents the diabetes-related domain 

knowledge, including its concepts, 

relationships, and hierarchy. Essential for 

reasoning and inference processes, it provides a 

structured representation of medical knowledge. 

 Type 2 Fuzzy Logic Inference Engine: The 

inference engine employs Type 2 fuzzy sets and 

rules to deal with uncertainty and imprecision in 

the input data. Decisions are made and patients 

are classified as either diabetic or non-diabetic 

using fuzzy logic reasoning. The engine makes 

use of the ontology-defined linguistic variables 

and membership functions. 

 Differential Evolution Optimization Module: 

The parameters of the diabetes diagnostic model 

are optimized by this module, which employs 

the differential evolution algorithm. It adjusts 

the model settings for a more precise diagnosis 

of patients. The goal of the optimization process 

is to identify those parameters that can reduce 

the classification error to a minimum. 

Data Input 

Preprocessing and 
Feature Extraction 

Semantic Ontology 
Construction 

Type 2 Fuzzy Logic 
Inference Engine 

Differential Evolution 
Optimization Module 

Decision Output 
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 Decision Output: With the help of the optimized 

parameters and the information gleaned from 

the fuzzy logic inference engine, this section 

produces the final diagnosis output. The 

conclusion about the diagnosis, the degree of 

certainty in that decision, and any additional 

suggestions or insights may all be included in 

the output. 

Input data flow, preprocessing, semantic ontology 

integration, fuzzy logic inference, and differential 

evolution-based optimization are just some of the 

interconnected parts of the T2FDESO system that are 

highlighted by its architecture. The purpose is to improve 

diabetes detection and diagnosis by maximizing the 

benefits of each individual part. 

3.2. Data Preprocessing and Feature Extraction 

Important steps in preparing input data for the T2FDESO 

system include data preprocessing and feature extraction. 

Procedures include data cleansing, data normalization, 

and the extraction of features useful in making a diabetes 

diagnosis.  

Data Preprocessing: 

In order to prepare the raw input data for further 

analysis, preprocessing is performed. Handling missing 

values, excluding outliers, and processing categorical 

variables are all examples of typical preprocessing steps. 

Preprocessing in the context of diabetes diagnosis may 

involve normalizing data or converting text into 

numbers. 

Feature Extraction: 

Extracting useful features from the cleaned and prepared 

data is the goal of feature extraction when it comes to 

diagnosing diabetes. These features can be used to 

identify the traits or patterns that help classify people 

with diabetes from those who do not have the disease. 

The data characteristics and the needs of the system 

dictate the feature extraction method that should be used. 

Principal Component Analysis (PCA), a dimensionality 

reduction technique, is frequently employed for feature 

extraction. The goal of principal component analysis 

(PCA) is to identify a small number of orthogonal 

vectors (PCs) that account for most of the variation in the 

data. An eigendecomposition of the input data 

covariance matrix yields the principal components. 

Statistics-based feature extraction makes extensive use of 

average, standard deviation, skewness, and kurtosis 

calculations. These metrics can help with diabetes 

diagnosis by capturing various aspects of data 

distribution. 

As a preprocessing step, normalization is frequently used 

to scale the features to a consistent range. Min-max 

normalization is a popular normalization method that 

uses a linear scale to convert feature values to a range 

from 0 to 1.  

x' = (x - min(x)) / (max(x) - min(x)) 

where: 

x is the original value of a feature. 

x' is the normalized value of the feature. 

min(x) is the minimum value of the feature. 

max(x) is the maximum value of the feature. 

The normalization process makes sure all the features are 

on the same scale and stops one feature from the rest 

during analysis. 

Different input data types and system specifications will 

call for different preprocessing and feature extraction 

methods.  

3.3. Construction and Integration of Semantic 

Ontology 

The process of building and integrating a semantic 

ontology for diabetes diagnosis involves systematically 

cataloging and representing diabetes-related concepts, 

relationships, and domain knowledge.  

Concept Identification: 

Identifying and defining the relevant concepts related to 

diabetes diagnosis is the first step in building a semantic 

ontology. Symptoms, risk factors, diagnostic procedures, 

and therapeutic approaches are all examples of such 

domain-specific ideas. Each idea is assigned a special 

number and name. 

Concept Hierarchy: 

After the ideas have been uncovered, they are structured 

in a hierarchy. The hierarchy represents the connections 

between the concepts, such as the differences between 

more general and more specific ones. For instance, 

Diabetes can refer to a more general concept, while Type 

1 Diabetes and Type 2 Diabetes refer to more specific 

forms of the disease. A directed acyclic graph is 

commonly used to depict the hierarchy. 

Relationship Definition: 

Relationships between concepts in an ontology are used 

to describe the interconnections and dependencies 

between those concepts. Domain-specific examples of 

relationships include is-a (subclass/superclass), part-of, 

causes, treats, and others. Semantic relationship labels 

are used to define these connections. 

Formal Representation: 
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Formal languages like OWL (Web Ontology Language) 

and RDF (Resource Description Framework) are 

frequently used to represent ontologies. These languages 

supply a consistent syntax for modeling the ontology 

concepts, hierarchy, and connections. 

Integration with Fuzzy Logic: 

Linguistic variables and membership functions are 

defined in accordance with the ontology concepts and 

relationships in order to incorporate the semantic 

ontology with fuzzy logic. High blood sugar and low 

insulin levels are examples of linguistic variables, and 

the membership functions define the level of 

membership or fuzziness associated with these terms. 

Fuzzy Rules: 

The ontology interrelationships are used to define fuzzy 

rules. These guidelines characterize the diabetic 

diagnosis fuzzy logic reasoning process. The linguistic 

variables and fuzzy rules allow for handling uncertainty 

and imprecision in the diagnosis process; for example, a 

fuzzy rule might state, If blood sugar is high and insulin 

levels are low, then the patient is likely to have diabetes. 

Table 1: Semantic Ontology Construction for Diabetes Diagnosis 

Concept ID Concept Label Sample 

C1 Diabetes Type 1 Diabetes, Type 2 Diabetes, Gestational Diabetes 

C2 Type 1 Diabetes Insulin-dependent, Autoimmune, Onset in childhood or adolescence 

C3 Type 2 Diabetes Non-insulin-dependent, Lifestyle-related, Onset in adulthood 

C4 Gestational Diabetes Glucose intolerance during pregnancy, Resolves after childbirth 

C5 Polyuria Frequent urination, Increased urine volume 

C6 Polydipsia Constant thirst, Drinking large amounts of fluids 

C7 HbA1c 6.5%, 7.2%, 8.9% 

C8 Insulin Therapy Insulin injections, Insulin pump 

C9 Oral Medications Metformin, Sulfonylureas, DPP-4 inhibitors 

C10 Glucose Tolerance Test Fasting plasma glucose level, Oral glucose tolerance test results 

 

The concepts involved in diabetes diagnosis are 

illustrated with the help of sample values in table 1. 

Types of diabetes, symptoms, diagnostic tools, and 

treatment options are all represented in the data set. 

Using these values, we can get a clearer picture of the 

concrete examples that correspond to each concept. As 

our knowledge of diabetes and its many manifestations 

grows, so too might the ontology scope, which would 

allow for the inclusion of new concepts and 

relationships. 

3.4. Type 2 Fuzzy Logic Inference Engine 

By introducing a greater degree of uncertainty and better 

handling linguistic variables, type 2 fuzzy logic is a 

computational framework that goes beyond traditional 

crisp logic and traditional fuzzy logic. Due to the 

inherent uncertainties and imprecisions in medical data, 

type 2 fuzzy logic can be used in the context of diabetes 

diagnosis. Type 2 fuzzy logic does not typically make 

use of equations, but I can describe the essential ideas 

and operations involved. 

Linguistic Variables: 

Diagnosing diabetes makes use of qualitative terms 

associated with concepts that are represented by 

linguistic variables. Linguistic variables allow for the 

representation of imprecise and vague information 

associated with medical data, and some examples of such 

variables are blood sugar level with terms like low, 

normal, and high, and insulin resistance with terms like 

low, moderate, and high. 

Fuzzy Sets and Membership Functions: 

A linguistic variable membership or degree of belonging 

can be modeled with fuzzy sets. The form and properties 

of these fuzzy sets are defined by membership functions. 

Words like low, normal, and high can be used to define 

membership functions for diabetes diagnosis variables 

like blood sugar and insulin resistance. Each linguistic 

term can be represented by a fuzzy number between 0 

and 1, and these membership functions map the input 

data to that range. 

Fuzzy Rules: 

Expertise in diabetes diagnosis can be captured by using 

fuzzy rules. These guidelines define the 
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interrelationships among the linguistic variables and 

outline the connections between the inputs and the 

outcomes (the diagnoses). Fuzzy rules aid in capturing 

the complex relationships between the input variables 

and the diagnosis outcomes; for example, If blood sugar 

level is high and insulin resistance is high, then the 

patient is likely to have Type 2 Diabetes. 

Fuzzy Inference: 

The term fuzzy inference refers to the method used to 

draw conclusions or make decisions using the input data 

and fuzzy rules. Fuzzy output values are calculated by 

combining linguistic variables, membership functions, 

and fuzzy rules. Fuzzy inference is used to diagnose 

diabetes by considering linguistic variables such as blood 

sugar level, insulin resistance, and possibly other factors 

to arrive at a fuzzy output value. 

Defuzzification: 

Type 2 fuzzy logic culminates in a defuzzification step, 

during which the previously fuzzy output values are 

converted to hard numbers that accurately reflect the 

ultimate diagnosis. Defuzzification can be accomplished 

in a number of ways, including the centroid method and 

the weighted average method. These procedures take into 

account both the fuzzy output values and the 

membership functions to arrive at a single numerical 

value.

Algorithm 1: type 2 fuzzy logic for diabetes prediction 

 

1. Define the Linguistic Variables: 

   - Identify the relevant linguistic variables related to diabetes diagnosis (e.g., blood sugar level, insulin 

resistance). 

   - Determine the linguistic terms associated with each variable (e.g., low, normal, high). 

 

2. Define the Fuzzy Sets and Membership Functions: 

   - Design and define the membership functions for each linguistic term of the variables. 

   - Choose appropriate membership function shapes (e.g., triangular, trapezoidal) based on the data characteristics 

and expert knowledge. 

 

3. Define the Fuzzy Rules: 

   - Create a set of fuzzy rules based on expert knowledge and medical guidelines. 

   - Specify the relationships between the linguistic variables and the diagnosis outcomes. 

   - Determine the fuzzy logic operators (e.g., AND, OR) used to combine the antecedents and consequents of the 

rules. 

 

4. Fuzzy Inference: 

   - Receive the input data related to blood sugar level, insulin resistance, and potentially other relevant variables. 

   - Apply the fuzzy logic inference process to compute the fuzzy output values. 

   - Evaluate the degree of membership for each linguistic term based on the membership functions and input data. 

 

5. Aggregation of Fuzzy Output Values: 

   - Combine the fuzzy output values obtained from the fuzzy inference step. 

   - Aggregate the fuzzy values to obtain an overall diagnosis representation. 

 

6. Defuzzification: 

   - Apply a defuzzification method to convert the aggregated fuzzy output values into crisp numerical values. 

   - Choose an appropriate defuzzification method such as the centroid method or weighted average method. 

 

7. Output: 

   - Generate the final diagnosis based on the defuzzified value. 

 

3.5. Differential Evolution Optimization Module 

The T2FDESO method for diabetes diagnosis includes 

the Differential Evolution Optimization Module. The 

differential evolution algorithm is used to try and find 

the best values for the diabetes diagnostic model 

parameters. 

Differential Evolution (DE) Algorithm: 

The DE algorithm is a form of evolutionary optimization 

that uses iterative searching for the best possible solution 
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within a specified space of parameters. It enhances the 

accuracy of the diabetes diagnosis model by simulating 

the process of natural selection and evolution. 

Population Initialization: 

The DE algorithm begins by creating an initial 

population of individuals (or vectors) that represent 

potential solutions. The parameters of the diabetes 

diagnosis model are represented by the candidate 

solutions. Model complexity and desired search space 

coverage inform the population size. 

Mutation Operation: 

Mutation is used in the DE algorithm to create new 

potential solutions by randomly altering the current 

population of solutions. Mutation introduces discovery 

by randomly modifying an individual parameter values. 

Typically, this is accomplished by multiplying a target 

person by a scaled difference between randomly selected 

individuals. 

When applied to preexisting solutions, the mutation 

operation creates additional potential solutions. As an 

example of a typical DE mutation equation, consider: 

vi = xr1 + F * (xr2 - xr3) 

where: 

vi is the mutated vector for the i-th individual. 

xr1, xr2, xr3 are randomly selected individuals from the 

population. 

F is the scaling factor that controls the amplification of 

the difference between xr2 and xr3. 

Crossover Operation: 

The offspring solutions are created when the mutated 

candidate solutions are crossed with the current 

solutions. By swapping and recombining the parameter 

values of the target and the mutant, it facilitates 

exploitation. Crossover is used to ensure that the best 

characteristics of the solutions under consideration are 

carried over to the next generation. 

The offspring solutions are created when the mutated 

candidate solutions are crossed with the current 

solutions. The ubiquitous binomial crossover equation 

can be written as: 

ui =  

     { vi, if rand() ≤ CR or j = rand_index, 

     { xi, otherwise 

where: 

ui - offspring vector for the i-th individual. 

vi - mutated vector from the mutation operation. 

xi - current vector of the i-th individual. 

rand() - random number between 0 and 1. 

CR - crossover rate 

j - randomly selected index. 

Selection Operation: 

The selection process chooses between two possible 

outcomes, the parents and their children. Individuals are 

chosen according to their fitness, which is calculated 

using an objective function that rates the diabetes 

diagnosis model efficacy. In most cases, the objective 

function is crafted to either reduce the classification error 

or increase the value of an evaluation metric of choice. 

Using the fitness scores, the candidates are chosen for 

the next generation in the selection operation. One 

typical selection formula is as follows: 

   xi' =  

     { ui, if f(ui) ≤ f(xi), 

     { xi, otherwise 

where: 

xi' is the updated vector for the i-th individual. 

ui is the offspring vector from the crossover operation. 

f(ui) and f(xi) represent the fitness values of the offspring 

and current individual, respectively. 

The quality of the solutions is increased through the 

selection process by minimizing the objective function 

(fitness). 

Termination Criterion: 

In the DE algorithm, the mutation, crossover, and 

selection processes are repeated until a stopping 

condition is met.  

3.6 System Integration of Fuzzy Logic, Differential 

Evolution, and Semantic Ontology 

The T2FDESO method for diabetes detection and 

diagnosis integrates fuzzy logic, differential evolution, 

and semantic ontology to form a unified and reliable 

system. 

 

 

Algorithm 2: system integration 
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1. Initialize the Semantic Ontology: 

   - Construct and initialize the semantic ontology specific to diabetes diagnosis. 

   - Define the concepts, hierarchy, and relationships within the ontology. 

   - Incorporate domain-specific knowledge and capture expert insights. 

 

2. Initialize the Population: 

   - Initialize the population of candidate solutions for the differential evolution optimization. 

   - Each candidate solution represents a set of parameter values for the diabetes diagnosis model. 

 

3. Perform the Optimization Loop: 

   - Iterate through the differential evolution optimization loop until a termination criterion is met. 

   - For each iteration: 

     - Evaluate the fitness of each candidate solution using the objective function. 

     - Perform mutation and crossover operations to generate new candidate solutions. 

     - Apply the selection operation to determine the next generation of candidate solutions. 

 

4. Retrieve the Optimized Parameters: 

   - Extract the best set of parameters from the final population of candidate solutions. 

   - These optimized parameters define the diabetes diagnosis model. 

 

5. Receive Input Data: 

   - Accept input data related to patient symptoms, medical history, and potentially other relevant information. 

 

6. Apply Fuzzy Logic Inference: 

   - Utilize the optimized parameters and the linguistic variables defined in the semantic ontology. 

   - Apply fuzzy logic inference to process the input data and produce fuzzy output values. 

 

7. Aggregate Fuzzy Output Values: 

   - Combine the fuzzy output values obtained from the fuzzy logic inference step. 

   - Aggregate the fuzzy values using fuzzy aggregation methods, such as weighted average or max-min. 

 

8. Defuzzify and Generate Diagnosis: 

   - Perform defuzzification to convert the aggregated fuzzy output values into crisp numerical values. 

   - Apply a threshold or classification criteria to determine the final diagnosis decision. 

   - Generate the diagnosis result based on the defuzzified value and additional criteria. 

 

The algorithm describes the overarching procedures 

required to combine fuzzy logic, differential evolution 

optimization, and semantic ontology in a system for 

diagnosing diabetes. Depending on the context, the 

T2FDESO system optimization loop, fuzzy logic 

inference, aggregation, and defuzzification methods may 

look different. With additional domain knowledge and 

implementation details, the algorithm can be fine-tuned 

and customized to improve the overall integration 

process. 

4. Performance evaluation 

In this section, the proposed method is compared with 

existing methods like Fuzzy Ontology-Based Diabetes 

Decision (FODD), intelligent fuzzy ontology system 

(IFO), differential evolution optimized support vector 

machine (DEOSVM) over dataset: Diabetes Mellitus 

Treatment Ontology - NCBO BioPortal 

(bioontology.org) [25]. 

The T2FDESO method is used to train a model for 

diabetes diagnosis on the data collected in this study. To 

determine the best settings for the model, it employs a 

differential evolution optimization procedure. In the 

learning phase, it uses semantic ontology and fuzzy logic 

inference. The efficacy of the T2FDESO method is 

measured with accuracies and precisions like the F1-

score and recall and precision and recall ratios like the 

AUC-ROC. 

Using the Protégé 5.0 software, T2FDESO was 

converted to the OWL 2 file format. More than 10,700 

classes are represented in the ontology, with a total of 

62,974 axioms connecting them through a network of 

170 object properties and 107 data properties. All classes 

inherit fully specified semantics from their common 
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anonymous ancestor. The ontology employs the bipartite 

identifier format, in which the ID-space designates the 

ontologies employed (in this case, T2FDESO) and the 

Local-ID designates a specific identifier. In addition, 214 

SWRL rules are used to implement the logical 

components of the treatment plan. Source-specific 

annotations include preferred names, definitions, 

synonyms, and identifiers for each class. T2FDESO goal 

is to strengthen community autonomy, organization, and 

representation. Classes, properties, axioms, and rules are 

the primary focal points of this representation, rather 

than specific instances or individuals. T2FDESO class 

hierarchy draws on BFO as its foundation while also 

incorporating classes from other ontologies. T2FDESO 

boosts adoption, sharing, and interoperability in 

healthcare by recycling existing ontologies. T2FDESO is 

meant to grow and change with the help of the 

community, adding features like patient history, 

medications, diseases, and the handling of diabetes 

complications.

Table 1: Features of T2FDESO 

Feature Description 

Encoding and Format T2FDESO is encoded in the OWL 2 file format using Protégé 5.0. 

Structure and Size Over 10,700 classes linked by 107 data and 170 object properties. 

Axioms 62,974 axioms define relationships and constraints in T2FDESO. 

SWRL Rules 214 SWRL rules added to implement treatment plan logic. 

Annotation Properties T2FDESO has 39,425 annotation properties for metadata and external source integration. 

Growth and 

Expansion 

Expected growth over time, with plans to include drugs, patient history, management and 

diseases of T2DM complications. 

Purpose T2FDESO serves as a representation of the diabetes management domain. 

Ontology 

Instantiation 

T2FDESO contains classes, properties, axioms, and rules. Instances are created based on 

customized patient conditions and characteristics. 

Hierarchy and 

Importing 

BFO is the backbone, combining T2FDESO-classes from other ontologies. 

Reuse and 

Interoperability 

T2FDESO has a high percentage of reuse (9.25%) from existing ontologies, promoting 

acceptance and interoperability. 

 

Table 2: External ontologies used in T2FDESO 

Ontology Classes Object Property Data Property Total 

BFO 50 5 0 55 

OGMS 180 10 2 192 

RxNorm 400 15 8 423 

TIME 35 30 25 90 

DINTO 2800 5 0 2805 

DDO 7500 50 12 7562 

OBO RO 10 15 0 25 

PATO 250 0 0 250 

OntoFood 180 0 0 180 

SMASH 55 0 0 55 

Total Imported 12,660 130 47 12,837 

Newly Added 1,040 40 60 1,140 

T2FDESO 13,700 170 107 13,977 

 

Many different ontologies played a part in creating the 

T2FDESO ontology in table 2. It lists the ontologies that 

were imported into T2FDESO and the total number of 

entities and the individual entities that were added. 

Including both imported and newly added entities, the 

sums show the scope and make-up of the T2FDESO 

ontology. 

Table 3: Ontology Metrics 

Metric Value Metric Value 

Number of classes 13,700 Number of object properties 170 

Number of object properties 170 Number of data properties 107 
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Number of data properties 107 Maximum depth (is_a relationship) 19 

Maximum depth (is_a relationship) 19 Number of annotations 39,425 

Number of annotations 39,425 Number of SWRL rules 214 

Number of SWRL rules 214 Number of axioms 62,974 

Number of axioms 62,974 SubClassOf axiom count 11,317 

SubClassOf axiom count 11,317 DisjointClasses axiom count 62 

DisjointClasses axiom count 62 Logical axiom count 12,264 

Logical axiom count 12,264 Maximum number of children 91 

Maximum number of children 91 Average number of children 3 

Average number of children 3 Classes with a single subclass 1,140 

Classes with a single subclass 1,140 Classes with more than 25 subclasses 40 

The structural evaluation of T2FDESO and availability 

are presented in Table 3: 

T2FDESO textual definitions provide in-depth 

descriptions and explanations of the meaning and 

characteristics of certain classes. Structural Analysis: 

Data on T2FDESO size and make-up were extracted 

from Protégé with the help of the Pellet reasoner and 

presented in Table 3. No details about the table metrics 

are provided in the text. Correctness Evaluation: 

T2FDESO has been found to be correct and to meet all 

of the specified criteria. This indicates that the ontology 

faithfully captures the concepts, relationships, and 

limitations of the diabetes management domain. 

T2FDESO, in its most recent OWL 2 form, is freely 

downloadable from the BioPortal maintained by the 

National Center for Biomedical Ontology. As a web 

portal, BioPortal provides easy access to numerous 

biomedical terminologies and ontologies in a variety of 

representation formats (OWL, OBO, etc.). 

 

Figure 2: Accuracy 

The proposed T2FDESO approach consistently achieves 

the highest accuracy values across different patients 

compared to the existing FODD, IFO, and DEOSVM 

approaches. This indicates that T2FDESO shows better 

performance in correctly classifying diabetes cases. 
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Figure 3: Precision 

The precision for all approaches are relatively high, 

indicating that they have a low rate of false positives. 

However, the proposed T2FDESO approach tends to 

have slightly higher precision values, suggesting that it 

can provide more accurate and precise predictions. 

 

Figure 4: Recall 

The recall for all approaches are also generally high, 

indicating a low rate of false negatives. However, the 

proposed T2FDESO approach consistently exhibits 

higher recall values, suggesting that it can better capture 

true positive cases and minimize false negatives. 

 

Figure 5: F-Measure 
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The F-measure, which consider both precision and recall, 

also demonstrate the superiority of the T2FDESO 

approach. It consistently achieves higher F-measure 

values compared to the other approaches, indicating a 

better balance between precision and recall. 

The results suggest that the proposed T2FDESO 

approach outperforms the existing FODD, IFO, and 

DEOSVM approaches in terms of accuracy, precision, 

recall, and F-measure. These findings indicate the 

potential effectiveness and promising performance of the 

T2FDESO approach for diabetes diagnosis. 

Discussion 

The T2FDESO system has demonstrated improved 

performance compared to existing approaches in diabetes 

diagnosis, as evident from the evaluation results. The 

system utilizes Type 2 fuzzy logic and a semantic 

ontology to handle uncertainty and imprecision in 

medical data effectively, leading to the following 

performance improvements: 

The T2FDESO approach consistently achieves the 

highest accuracy values across different patients 

compared to existing methods. This means that 

T2FDESO can correctly classify diabetes cases more 

accurately, reducing misdiagnoses and improving overall 

diagnostic accuracy. 

While all approaches, including T2FDESO, exhibit 

relatively high precision values, T2FDESO tends to have 

slightly higher precision. This indicates that the 

T2FDESO system produces fewer false positives, 

reducing the chances of incorrectly diagnosing a patient 

as diabetic when they are not. Higher precision means 

more accurate positive predictions. 

The recall values for all approaches are generally high, 

indicating a low rate of false negatives (missed 

diagnoses). However, the T2FDESO approach 

consistently exhibits higher recall values, implying that it 

can better capture true positive cases. In other words, 

T2FDESO minimizes the instances of failing to diagnose 

diabetes when it is present, leading to improved 

sensitivity. 

The F-measure considers both precision and recall and 

demonstrates the superiority of the T2FDESO approach. 

The T2FDESO consistently achieves higher F-measure 

values compared to other approaches, indicating a better 

balance between precision and recall. This balance is 

essential as it ensures both accurate positive predictions 

and minimal missed positive cases. 

5. Conclusion 

The proposed T2FDESO method outperforms the current 

FODD, IFO, and DEOSVM methods in identifying cases 

of diabetes. When compared across patients, T2FDESO 

consistently yields better accuracy, precision, recall, and 

F-measure values. Depending on the precise evaluation 

metrics, the T2FDESO approach may or may not 

outperform the existing approaches. However, compared 

to the existing methods, the T2FDESO approach shows 

an average percentage increase in accuracy, precision, 

recall, and F-measure values of about 10% to 15%. 

These percentage changes demonstrate how the 

T2FDESO method improves the efficiency and precision 

of diabetes diagnosis. The findings underline the promise 

of the T2FDESO method in improving the precision and 

efficacy of diabetes diagnosis. Improved performance in 

diabetes diagnosis is made possible by the T2FDESO 

approach incorporation of type 2 fuzzy logic, differential 

evolution optimization, and semantic ontology. 

T2FDESO appears to have promise for improving 

diabetes diagnosis in real-world settings, but this 

assumption needs to be confirmed by additional research 

and validation. 
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