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Abstract: Farmers and stakeholders stand to significantly minimize potential yield losses from disease outbreaks through the efficient 

and prompt identification of tomato diseases using easily accessible leaf images. This research introduces an inventive solution to this 

challenge by presenting a new method capable of visually distinguishing nine distinct infectious tomato leaf diseases from healthy 

leaves. These include blights, mold on leaf, bacterial spot, Septoria spot, mosaic virus, target two-spotted spider, and the virus like 

yellow leaf curl. To achieve this, the research employs an ensemble learning approach that combines the strengths of EfficientNetB5, 

DenseNet169, and VIT architectures. The method is evaluated using a comprehensive tomato leaf disease (TLD) dataset and yields 

impressive results. During training, it achieves an average accuracy of 99.6% with minimal deviation, and validation accuracy averages 

at 98.3%. Cross-validation tests demonstrate an average test accuracy of 99.1%, further emphasizing the model's reliability and 

consistency. In addition to accuracy, the research prioritizes model interpretability, utilizing gradient-weight based classified activation 

maps (GCAM) and global interpretable method-agnostic explanations. This transparency not only enhances predictive accuracy but also 

instills trust and facilitates the model's integration into agricultural processes. The ensemble learning model, combining transfer learning 

and efficient network architectures, emerges as a leading solution, boasting remarkable performance in terms of accuracy during training 

and testing. This research provides agricultural professionals with a practical and efficient methodology for early plant disease diagnosis, 

contributing significantly to disease outbreak prevention and economic loss mitigation. 

Keywords: Disease classification, Agricultural practices, Yield loss, Deep learning, Interpretability and GCAM. 

Introduction 

Plants play a vital role in our survival by supplying us 

with nourishment and safeguarding us from harmful 

radiation. Life on Earth would be nearly unimaginable 

without the presence of plants. In addition to giving all 

land-dwelling animals food, they protect the ozone layer 

from ultraviolet light from the sun. Because of their high 

nutritional value and safety for human consumption, 

tomatoes are grown all over the world [1]. The globe 

consumes over 160,000,000 metric tonnes of tomatoes 

annually [2]. Many people think that trading tomatoes 

may help rural communities make much-needed revenue, 

which would have a big effect on poverty levels [3]. 

When it comes to growing and harvesting, Because of 

their wide range of applications and excellent nutritional 

value, tomatoes have a significant economic impact on 

agriculture. Owing to their pharmacological benefits [1], 

tomatoes are beneficial in preventing ailments like gum 

bleeding, high blood pressure, and hepatitis. Their anti-

cancer properties are also extensively documented. The 

demand for tomatoes is rising due to their increasing 

prominence. Almost 80% of the agricultural yield [2] is 

statistically linked to small-scale producers. However, 

these producers lose around half of their harvests 

annually due to diseases and pests. Tomatoes are highly 

susceptible to diseases and parasites, which highlights 

the need of studying the identification of diseases in field 

crops. FAOSTAT estimates that 186,821 million 

kilogrammes of tomatoes were produced worldwide in 

2020 [1]. The main engine of economic expansion and 

the cornerstone of human civilisation is agriculture. The 

multitude of plant illnesses that farmers need to protect 

the crops they grow from has shown to be a major 

hindrance to agricultural output. Taking preventative 

measures and learning how to control plant diseases are 

crucial for increasing crop yield. Detecting plant diseases 

at an early stage is crucial for maximizing agricultural 

output while conserving resources and minimizing crop 

losses, especially with the ease of computerized 

management. It is imperative to guarantee timely and 

precise disease diagnosis and categorization in order to 

maintain the quantity and quality of tomatoes. 

Different plant diseases may arise due to a variety of 

environmental factors. The illness triangle illustrates the 

relationship between three essential elements: the living 

thing, the surroundings, and the pathogen that causes the 

illness. Since its creation in the 1950s, the disease 

triangle has been widely utilised to illustrate how 

diseases spread. For a disease to manifest, all three 

components of the triangle must be present; if anyone is 
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absent, the disease cannot develop. Many non-living 

factors, such as air circulation, temperature, moisture, 

pH, and irrigation, hold considerable sway over plants. 

Organisms like fungi, bacteria, and viruses have the 

capacity to attack plants, with the infectious agent being 

the microorganism responsible for causing plant 

diseases. A plant defined as a "host" is one that has 

contracted a disease. When every risk factor is present at 

the same time, disease onset happens [3]. After infecting 

a plant, most diseases exhibit rapid transmission rates 

since their symptoms typically advance upward through 

the plant. As a result, swift transmission is common 

among the majority of diseases once they infiltrate a 

plant. 

Plant afflictions can arise from a variety of sources, 

including harmful fungi, bacteria, viruses, and 

unfavorable weather conditions. These diseases have the 

potential to disturb vital plant processes like 

photosynthesis, pollination, fertilization, and 

germination. This underscores the significance of 

accurately identifying these diseases at the earliest 

possible stage, as permitted by current medical 

knowledge. 

Instead of relying exclusively on the expertise of human 

professionals, technology can now be utilized to identify 

whether a plant is diseased and, if so, to determine the 

specific type of disease. With ongoing advancements in 

the quality of images captured by technological devices, 

the precision of tasks involving object recognition, 

classification procedures, image processing, and artificial 

intelligence algorithms is also increasing. In terms of 

efficacy, deep learning (DL) and machine learning (ML) 

have outperformed conventional optimisation and 

prediction techniques. Unlike conventional techniques 

that depend on human-derived features and are limited 

by data volume, modern systems can autonomously learn 

from vast datasets. Furthermore, ML and DL models 

show a great capacity to apply their knowledge to data 

that has never been seen before, which is a major 

advancement over earlier techniques. Models based on 

deep learning and machine learning are superior than 

conventional methods at recognising complex and 

nonlinear relationships in data. As a result, ML is 

particularly adept at handling complex scenarios with 

numerous dynamic components and intricate 

interactions. Artificial intelligence (AI) has gained 

widespread adoption across various fields such as 

communication, construction, magnetism, physics, and 

biology [4–8]. Plant disease detection and classification 

in this situation require precision and promptness [9]. AI 

is already capable of autonomously recognising plant 

diseases from unprocessed photos [10,11]. 

Numerous research investigations have been carried out 

to ascertain the origins of plant ailments. The majority of 

these studies employed existing datasets, models, and 

libraries for their analyses. 

An image segmentation-based method was created by 

Singh and Misra [12] to streamline the process of finding 

and classifying plant leaf diseases for classification. With 

a total accuracy rate of 97.60%, they were able to 

distinguish between five distinct diseases by using a 

genetic algorithm. In order to identify illnesses, Zhang et 

al. [13] carefully examined an archive of cucumber leaf 

samples. In order to segment sick leaves and extract 

shape and colour information for disease diagnosis, the 

researchers used k-means clustering in their research. 

They classified these affected leaves with an accuracy of 

86.00% by employing the sparse representation 

approach. Plant disease identification and diagnosis can 

be facilitated by the application of artificial intelligence 

in the form of (CNN) models [14]. The algorithm was 

trained using a dataset including 87,848 photos, which 

included 58 distinctive mixes of plant and disease 

utilised on 25 distinct species of plants. The data yielded 

an impressive performance rate of 99.53 percent. 

Recent years have seen a significant improvement in 

areas like pattern gratitude [17,18], computer 

visualization [19,20], and image processing [15,16], 

especially in the agricultural sector where automation of 

pest and disease detection procedures is a primary focus. 

For classic computer vision models, the complex and 

laborious nature of tasks involving preprocessing and 

establishing picture characteristics presents challenges. 

The effectiveness of these systems is dependent on the 

precision of the extraction of features processes and the 

creation of learning algorithms [21–23]. The use of deep 

learning in the diagnosis of illness is growing in 

popularity as a result of improvements in computer 

power, capacity for storage, and availability of large 

datasets. Plant disease detection is a complex problem 

that has previously been difficult to diagnose, but this 

technology has been successfully employed in that 

regard. Deep learning is a specific kind of machine 

learning that serves a particular purpose. Among the 

most popular deep learning algorithms are CNNs, which 

are applied to tasks including object recognition, 

semantic segmentation, and classification of images [24, 

25]. By learning to classify based on image data, CNNs 

excel in discerning patterns within images, objects, and 

scenes, eliminating the need for manual isolation of 

image features [26,27]. 

This article will assess and elucidate several prevalent 

deep learning approaches currently adopted. Even 

though the influence of disease identification on tomato 

crops has been the subject of multiple research, the 
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current model can still be improved. We suggest a CNN 

model that consists of two layers of convolution, two 

maximum pooling layers, a flattening layer, a tomato 

plant disease detection layer that uses data from the layer 

that is hidden, and other layers to solve this. This 

empowers farmers to independently address concerns 

without relying on agricultural specialists, including the 

identification of various threats to crops. Our 

methodology is designed to make it easier to identify 

plant diseases early on, which will increase agricultural 

output overall and lead to increased food supply. 

The driving force behind this endeavor is the need for an 

automated method to diagnose diseases potentially 

affecting tomato plants. Several contributions in this 

study fill gaps in previous research: 

 The research introduces a novel method for 

classifying nine distinct infectious tomato leaf 

diseases using easily accessible leaf images. 

This goes beyond traditional methods by 

utilizing computer vision and deep learning 

methods for diagnosing illnesses. 

 The study improves the resilience and accuracy 

of disease classification by utilising an 

ensemble learning approach that combines the 

EfficientNetB5, DenseNet169, and VIT 

architectures. 

 The ensemble model combines transfer learning 

and efficient network architectures, optimizing 

both accuracy and cost-effectiveness. This is 

important for practical implementation in 

agriculture, where resources can be limited. 

 To enhance model interpretability, the research 

incorporates gradient-weight based classified 

activation maps (GCAM) and global 

interpretable method-agnostic explanations. 

This study presents an architecture that uses data 

augmentation in conjunction with three dissimilar 

machine learning models—EfficientNet, DenseNet169, 

and the transformer ViT model—for the early detection 

and categorization of illnesses in tomato leaves. The goal 

is to develop a robust framework for screening tomato 

leaf images to identify disease indicators based on the 

specific pathogens that affect tomato leaves. 

Review of related works 

Employing state-of-the-art technologies like machine 

learning and advanced neural network architectures such 

as Inception V3 net, VGG 16 net, and Squeeze Net, 

researchers from diverse institutions have devised 

automated systems for detecting plant diseases. Their 

focus is on accurate diagnosis of ailments present in 

tomato leaf tissue. 

The precision of pre-trained network models in detecting 

and categorizing tomato diseases falls within the range of 

94.00% to 95.00% [28,29]. Six different types of tomato 

leaf diseases were recognised and categorised from an 

array of 300 images using the Tree Classification Models 

and Segment technique [30]. A unique method that 

achieves 93.75% accuracy in diagnosing illnesses 

affecting leaves has been proposed [31]. In order to 

accurately identify and classify plant leaf diseases, a 

classification strategy and image processing software are 

required [32]. Capturing images through an 8-megapixel 

smartphone camera, data was segregated into healthy and 

afflicted categories. The image processing process 

encompassed three key steps: contrast enhancement, 

image segmentation, and unique feature detection. The 

classification tasks were performed by feed-forward 

neural networks and multilayered artificial neural 

networks, and the results were compared with the (MLP) 

and (RBF) networks. The results were noticeably better. 

Plant leaf photos were categorised into both healthy and 

diseased parts during the research period, but the 

underlying cause of the problem was not found. With 

87.2% accuracy, the researchers diagnosed leaf ailments 

using a classification method that included colour space 

evaluation, colour time, histogram, and colour 

coherence. 

To effectively detect diseases harming tomato crops, 

researchers used models with an overall size of 13,262, 

such as AlexNet and VGG 19. With this model, 97.49% 

accuracy was attained [33]. For dairy crops, a virus 

identification rate of 95.00% was attained by combining 

transfer learning with a CNN model [34]. With neural 

network-trained transferable learning and an AlexNet-

based deep learning technique, tomato plant leaf surfaces 

could be identified and classified with 95.75% accuracy 

[35,36]. The Resnet-50 model was developed to 

recognize 1000 diverse diseases that pose a threat to 

tomato leaves. This was accomplished by labelling a set 

of 3000 images with descriptive labels for various 

illnesses, including "lesion blight," "late blight," and 

"yellow curl leaf." The model was improved by using a 

Leaky ReLU network activating method and increasing 

the first convolution layer's kernel size to 11x11. 

The disease classification performance improved to 

98.30% correctness and 98.00% precision after multiple 

iterations [37]. A comparatively simple eight-layer CNN 

algorithm was developed for the identification and 

organization of tomato leaf diseases [38], utilising the 

PlantVillage data set [39], which aggregates data on 

various agricultural products. Using the tomato leaf 

dataset, this method improved illness diagnosis through 

the use of deep learning algorithms. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2449-2468  |  2452 

CNNs have become a dependable diagnostic tool for 

plant diseases in recent times [40, 41]. Some research 

efforts have concentrated on enhancing the quality of 

feature detection in high-stakes scenarios by overcoming 

challenges arising from variations in illumination and 

background consistency. Others have focused on 

augmenting feature detection by identifying intricate 

contexts. Certain studies have even developed real-time 

models to expedite disease detection in plants [44,45]. 

Early disease detection has also been pursued through 

model development by different researchers [46,47]. For 

instance, a study discussed in Reference [48] delves into 

digital images of tomato leaves, deploying a CNN and 

AI-derived algorithm-based classification model that 

accurately identifies five distinct diseases with a 

precision of 96.55%. Models based on deep neural 

networks have been used in many studies to identify 

illnesses in tomato leaf data. Reference [49] finds that 

the VGG16 model performs better than the other four 

different alternatives (LeNet, VGG16, ResNet, and 

Xception). It performs best when used to classify nine 

distinct diseases with a precision of 99.25%. The 

effectiveness of models based on deep neural networks 

in identifying illnesses in tomato leaves was examined in 

a different study. Models like AlexNet, GoogleNet, and 

LeNet routinely addressed the identical problem with 

95.00% accuracy or greater, according to Reference [50]. 

Agarwal et al. [51] constructed a CNN framework for 

categorising data into ten categories. They then 

compared it with various ML models (such as decision 

trees and arbitrary forests) and DL techniques (such as 

VGG16, Inceptionv3, and MobileNet). This approach 

resulted in a remarkable 99.20% increase in accuracy. 

Many studies have attempted to improve classification 

accuracy by combining different classification networks, 

including multinomial logistic regression, random 

forests, and support vector machines [52]. These 

networks can be applied in conjunction with extracted 

leaf characteristics. By employing MobileNetv2 and 

NASNetMobile, leaf features were efficiently extracted, 

and the combination of these techniques has been 

demonstrated to significantly boost classification 

accuracy. Successful identification of plant diseases has 

been achieved in various studies through the utilization 

of algorithms like Mask R-CNN [53]. Techniques like 

Gabor filters, K-nearest neighbours, and KNN have been 

used to reduce computational costs and model sizes in an 

effort to lessen the resource and time requirements 

associated with deep learning calculations. The authors 

in Ref. [54] employed a SqueezeNet design with just 33 

filters to address these issues. To address these issues, 

YOLO-Tomato, which is founded on the YOLOv3 

design, was introduced. The authors used this to improve 

tomato identification in Refs. [55–57]. YOLOv3 

incorporates a dense architecture that promotes feature 

reuse, facilitating the learning of a more accurate and 

compact model. 

Table 1: Summary of the previous relevant works 

Ref. 

No. 
Method Advantages Disadvantages 

28,29 ML & Neural Networks 
High accuracy (94.00% to 

95.00%) 

Computationally expensive, requiring 

specialized hardware like GPUs or TPUs 

30 
Tree Classification & 

Segmentation 

Early disease detection, non-

invasive 
Dependent on image quality and lighting 

31 DCNN Approach 
Achieved 93.75% accuracy in 

classification 
Lack of interpretability 

32 
Image Processing & 

Classification 
Precise identification of diseases Not be able to abstract complex features 

33 
AlexNet & VGG 19 

Models 
High accuracy (97.49%) 

Model complexity and resource requirements 

not mentioned 

34 
Transfer Learning & 

CNN 

Achieved 95.00% virus detection 

rate 

Finding the right hyperparameters can be a 

time-consuming process 

35 AlexNet-based Model 
95.75% accuracy in identifying 

conditions 

Struggle when dealing with imbalanced 

datasets 

37 Resnet-50 Model 
Increased classification 

performance (98.30%) 
Limited to Available Data 

38 Simplified CNN Model Utilized the PlantVillage dataset Susceptible to overfitting 

48 
CNN & AI Algorithm-

based Model 

Accurate identification of five 

diseases (96.55%) 
Time-consuming and expensive 

49 
Deep Neural Network 

Models 

VGG16 achieved the best 

performance (99.25%) 
Lack of Contextual Understanding 
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50 
Various Deep Neural 

Network Models 

Consistently achieved high 

accuracy (95.00% or higher) 
Vulnerability to Adversarial Attacks 

51 CNN & ML/DL Models 
Remarkable 99.20% increase in 

accuracy 
May suffer from vanishing gradients 

52 
Diverse Classification 

Networks 

Augmented classification 

accuracy 

Problematic for deployment on resource-

constrained devices 

53 Mask R-CNN 
Successful identification of plant 

diseases 

Computational resource requirements not 

discussed 

54 Ensemble Algorithms 
Efficient models to mitigate 

computational expenses 
Requires Annotated Data 

55-57 YOLOv3 Enhanced tomato identification Challenges in Multi-Class Scenarios 

 

Methods and materials 

The identification of diseases affecting tomato leaves can 

be challenging due to their intricate structures and the 

diverse array of diseases that impact tomatoes. Deep 

learning has been a powerful tool in recent years to help 

in computer-assisted disease detection. Neural networks 

with deep layers, which can extract intricate patterns 

from enormous image collections, are used in this 

technique. The recommended method for disease 

detection in tomatoes through deep learning involves 

several key stages. Initially, a collection of images of 

leaves from tomatoes is assembled, comprising 

specimens of both undamaged and healthy leaves. These 

images are preprocessed and then used to train a CNN or 

other deep neural network model to recognise complex 

patterns in the images. After being trained, the model is 

able to classify new photos as either normal or as 

associated with particular diseases. The model's accuracy 

and performance can be improved by adjusting its 

parameters and adding new data. Finally, the accuracy 

and generalisation capabilities of the model are evaluated 

by evaluating its performance on an independent set of 

photos. Figure 1 shows the basic layout of the suggested 

system for identifying and categorising illnesses in 

tomato plant leaves. 

Dataset utilized 

 This study made use of the Tomato Leaf illnesses 

Dataset, which included 11,000 photos of tomato leaves 

with ten different illnesses. This Kaggle dataset is 

available to the general audience. While Figure 2 shows 

a visual representation of a sample of tomato leaf 

illnesses, Table 1 gives an overview of the characteristics 

of the illnesses in tomato leaves and the quantity of 

samples in each class. The following URL will allow you 

to access the dataset: 

https://www.kaggle.com/datasets/kaustubhb999/tomatole

af (accessed on January 20, 2023). 

 

Figure 1: The way the suggested method is structured 

Table 2: Features of the tomato leaf classes 

Classes 
Samples 

count 
Description 

Mosaic 

virus 
1100 

A viral illness called mosaic virus can seriously damage tomato plants, lowering their 

development and production. Stunted development, malformed fruit, and the emergence of 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2449-2468  |  2454 

mosaic-like designs in dark and light green on leaves are among the symptoms. Tomato 

varieties that are resistant to the illness and agricultural techniques like upholding cleanliness 

can help minimise its spread. Contact with contaminated plant material can result in the 

transmission of the disease. 

Target 

spot 
1100 

Target spot, brought on by the mould Corynespora cassiicola, causes depressed, circular 

lesions on leaves and stems that are ringed with concentric circles. Fungicides and good 

agricultural practises, such as crop rotation and sanitation, can help control it, even if it can 

lead to defoliation and decreased fruit output. 

Early 

blight 
1100 

Commonly occurring early blight can seriously harm tomato plants, lowering yields and 

degrading fruit quality. The symptoms include dark brown spots organised in circular 

patterns on the lower leaves and brown, depressed lesions on the leaves. Fungicides and 

agricultural techniques including crop rotation and pruning can help manage it, although it 

can result in defoliation and a reduction in fruit production. 

Spider 

mites 
1100 

By eating on the undersides of departs these tiny arachnids can seriously injure tomato 

plants, resulting in discoloration and restricted growth. Predatory mites, insecticide soaps, 

and agricultural techniques including crop rotation and sanitation can all be used to control 

them. 

Septoria 

leaf spot 
1100 

The fungus Septoria lycopersici is the cause of Septoria leaf spot, which is characterised by 

tiny, round lesions on tomato plants' lower leaves that have yellow halos and dark brown 

centres. Fungicides and agricultural techniques like crop rotation and sanitation can help 

manage it, even if there may still be a considerable loss of production and defoliation. 

Healthy 

Leaves 
1100 

Images of healthy tomato leaves may be found in this category and can be used as a point of 

comparison when comparing them to leaves that are diseased. 

 

 

Figure 2. Examples of demonstrated datasets 

Data Preprocessing 

Data preparation is a crucial step that raises the calibre of 

the data and increases the effectiveness of the algorithms 

for classification employed in the picture classification 

process. The main objective of data preparations is to get 

pictures ready for use in deep learning models by 

eliminating noise, fixing errors, and managing anomalies 

that can affect the model's accuracy. This entails setting 

up the data in a way that makes model analysis efficient. 

Common preprocessing methods, such as image scaling 

and normalisation, are frequently used in deep learning 

algorithms for image categorization. Resizing an image 

entails changing its proportions to match a 

predetermined size so that the model may be trained. 

This not only simplifies the model but also ensures 

consistent training on images of uniform size. 

Normalization, on the other hand, entails harmonizing 
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brightness and contrast levels across images, thus 

ensuring uniform quality throughout the dataset. By 

using these preprocessing methods, the dataset is more 

consistent and of higher quality, which increases model 

accuracy. PIL and OpenCV are two examples of image 

processing libraries that can be used to apply these 

techniques. 

Transfer Learning Algorithms 

A model can be learned on a particular assignment and 

then transferred to another that is related to it using 

transfer learning techniques. This can be especially 

handy when a task is identical to one that was previously 

resolved or when there is a dearth of labelled data for 

that particular task. By utilising the information and 

characteristics discovered from a pretrained model, it can 

save a great deal of time and money. Transfer learning 

can also enhance the performance of the model by 

lowering the likelihood of overfitting and facilitating a 

better generalisation of the model to a new dataset. When 

considering whether to employ transfer learning, it is 

important to consider the amount of labelled data 

accessible in the new task as well as the degree of 

similarity among the model that was previously trained 

and the new task. If the new job differs significantly 

from the one for which the model that was previously 

trained was designed, or if a significant amount of 

labelled data is available, it may be better to train a 

system from scratch. Transfer learning can reduce the 

need for labelled data while improving model 

performance. It may be used to a wide range of models, 

including CNNs, and can be put into practise through 

feature-based or fine-tuning methods. 

DenseNet121 Model 

DenseNet121, introduced by Huang et al. in 2017, is a 

widely recognized CNN architecture belonging to the 

DenseNet family. It is characterized by dense cross-layer 

linkages that enhance accuracy and promote efficient 

information transmission. The multiple dense blocks that 

make up the DenseNet121 structure each have a variety 

of convolutional layers that are intimately related to 

every layer that comes after them [58–61]. 

In this work, we apply a pretrained DenseNet121 model 

to tomato disease detection. Using transfer learning is a 

popular technique in this case, where weights from the 

large ImageNet dataset are used to initialise the 

pretrained model. In order to modify the model, a new 

layer arrangement was added. This setup consists of two 

completely linked layers with 512 and 256 neurons each, 

a global pooled mean layer, and two batch normalisation 

layers. The pretrained model's top layer is replaced by 

these additional layers. After the first layer is fully 

connected, a new activation layer is given a ReLU 

activation function. Finally, the output layer is 

augmented with a softmax activation layer containing 10 

neurons, corresponding to the 10 distinct tomato disease 

types. The visual depiction of this process is shown in 

Figure 3. 

This architecture was chosen because DenseNet models 

perform well in a variety of image classification tasks 

and because of their small size, which makes them 

appropriate for transfer learning. The addition of batch 

normalisation layers improves training stability and 

convergence, while the global average pooling layer aids 

in parameter reduction. The critical parameters of the 

DenseNet121 model. 

 

 

Figure 3. DenseNet model for detecting tomato diseases 

Efficient net Model Plant disease classification is one of the many computer 

vision jobs that have seen widespread adoption of 
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convolutional neural network designs like Efficient net. 

Other activities include image processing and 

classification. The learnt model's weights were initialized 

using a sizable image processing dataset, a popular 

technique that makes advantage of the transfer learning 

principle. To adapt the algorithm to a new photo 

classification problem, a new set of levels were added to 

the highest layer of the initial Efficientnet model. This 

classifier, superimposed on the pretrained model, 

underwent a series of transformations to tailor it for the 

new task. 

A GlobalAveragePooling2D layer, which aggregates 

map features along the height and width dimensions, 

receives the output from the pretrained model. As a 

result, a feature vector with a fixed captures the key 

elements of the input image. This vector is handled by 

two fully connected layers, each including 512 and 256 

neurons. These layers acquire the ability to convert the 

vector of features into a representation with a high level 

that is relevant to the new image classification task and 

contains important discriminative information. Batch 

normalising layers are combined to enhance training 

stability and speed up convergence after each fully 

linked layer. An activation layer employing ReLU's 

activation function includes a nonlinearity factor after 

the second completely linked layer, enabling the network 

to store more intricate representations. Ten cells and a 

softmax activation mechanism make up the final fully 

interconnected layer, which receives the output of the 

next fully connected layer. This layer generates a 

distribution of probabilities for each of the dataset's ten 

classifications. It gains the ability to translate the basic 

representation to the final network output, which is the 

input image's projected class label. Figure 4 shows the 

structure of the ResNet50V2 model, which was 

developed to identify tomato illnesses. For information 

on the parameters used in creating the ResNet50V2 

model for tomatoes disease detection, see Table 3. 

 

Figure 4. E-Net model for detecting tomato diseases 

Vision Transformer 

When it comes to deep learning, the  (VIT) is a unique 

design that is receiving a lot of attention, especially for 

picture categorization problems. VITs use a transformer-

based design, which has shown to be very effective in 

applications related to processing natural languages, in 

contrast to traditional Convolutional Neural Networks 

(CNNs). 

There are several basic components that make up the 

VIT design. The input image is first split up into a large 

number of fixed-size pieces. An anchoring layer 

completes the remaining duties once each patch has been 

flattened to generate a 1D vector. This layer facilitates 

the translation of each patches to a higher-dimensional 

field of features. The transformer encoder receives these 

patched embeddings after that. Figure 5 illustrates how 

this encoder uses a series of self-attention techniques that 

are essential to understanding the contextual 

relationships between the patches. 

The following describes the steps involved in learning 

the data and adding it to a VIT classification model. A 

"patches" layer processes the incoming image to create a 

grid of non-overlapping 6 × 6 patches. The 2D image is 

transformed into a 3D tensor using the framework (batch 

settings, patch dimension × patch width × the total 

number of channels). The number of color channels is 

indicated by the full quantity of channel, which is 

typically three for RGB images. The "patch encoder" 

layer processes this patch tensor and then gives each 

patch a learnt linear transformation (through a dense 

layer). Additionally, a learnable position embedding is 

applied to each patch, enhancing the model's ability to 

note spatial relationships between patches and detect 

relative positions within the image. 
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Figure 5. Image after transformer encoder 

For every input image, the model's predictions are 

produced by this specific layer. During training, the 

model is optimized using the amount of weight loss 

normalizing procedure of the AdamW optimizer, which 

is a variant of the Adam optimizer. Sparse categorical 

cross-entropy is the chosen loss function; this method is 

commonly employed to tackle problems related to 

multiclass classification. The framework of the ViT 

transform model, which is utilised to diagnose tomato 

diseases, is depicted in Figure 6. Table 4 lists the 

important variables that are relevant to the ViT model. 

 

Figure 6. ViT model for identifying tomato diseases 

Explainable AI 

Conventional evaluation metrics fall short in capturing 

the processes employed by an AI system to generate an 

outcome and fail to provide a means of interpreting the 

result. As a result, it is imperative for an AI algorithm to 

effectively elucidate its decision-making process. This 

becomes especially crucial in domains where high-stakes 

decisions are involved, as there is a growing demand for 

transparency in deep learning-based systems [55]. 

Professionals must be able to comprehend the 

information generated by the deep learning model and 

leverage this understanding to make precise diagnoses, 

particularly in the case of identifying specific types of 

TLD (Top-Level Domain) varieties. In this context, two 

commonly used tools, LIME and GradCAM, are 

employed. This research utilizes explainable AI (XAI) 

algorithms to achieve these objectives. 

GradCAM calculates the gradient of a specific result, 

like a class score, in relation to a chosen layer's 

convolutional features. Semantic segmentation can also 

make advantage of it. The softmax layer in our model 

helps with semantic segmentation by generating a score 

for every class and pixel. Equation (2) describes the 

GradCAM mapping between 'N' pixels and the feature 

map 'A' for a specific class 'C'. 

        ∑   
   

         (1) 
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∑  

   

     
                   (2) 

Implementation Details 

On Google Colab [57], the suggested deep learning 

approach and explainable AI (XAI) algorithms were run 

on an NVIDIA K80 graphic processing unit with 12 GB 

of RAM. For implementation, we used Python [56] and 

Keras [54]. TensorFlow version 2.5 is compatible with 

Python version 3.7 and Keras version 2.5.0, which are 

both included in the runtime environment offered by 

Google Colab. Two callbacks were incorporated into the 

suggested model for both training and validation.. To 

track validation loss and lower the rate of learning by a 

factor of 0.5, the first callback was utilised. In order to 

achieve early halting, outcomes of the top four epochs 

were retained in the second callback. To mitigate the risk 

of overfitting, both callbacks were utilized within a 

training span of 50 epochs. 

Evaluation Metrics 

We evaluated the model's ability to identify TLD photos 

using widely-used performance criteria, including 

accuracy(A) (7), recall(R) (5), F-score(F) (6), and 

precision(P) (4), as described in reference [58]. 

     
  

     
            (3) 

     
  

     
            (4) 

    2 
   

   
              (5) 

     
     

           
           (6) 

Here, "  " stands for "true positive," "  " for "true 

negative," "  " for "false positive," and "  " for "false 

negative." We used the confusion matrix to conduct 

distinct assessments for every class in addition to 

evaluating the efficacy of the model. 

Results and Discussion 

Comparing Current Pre-Trained Deep Learning 

Models 

We evaluated the performance of the enhanced 

EfficientNetB5 model against several well-known 

transfer-learning techniques using MobileNet [17], 

Xception [19], VGG16 [18], ResNet50 [20], and 

DenseNet121 [21] as substitutes for pre-trained deep 

learning (DL) models. Utilizing the TLD dataset, we 

applied transfer learning while following the same 

implementation requirements as mentioned in Section 

3.3. Considering the variety of current deep learning 

models, which range from heavyweight (requiring an 

extensive amount of trainable parameters) to thin 

(requiring fewer trainable parameters), we chose to 

incorporate both types of models (heavyweight models 

represented by MobileNet, and heavyweight models like 

VGG-16, ResNet50, etc.). Table 2 shows that, in terms 

of correctness and loss, the suggested DL model using 

EfficientNetB5 performed better than the other models. 

Table 3 provides a comparison of the proposed model with the models from MobileNet, Xception, VGG16, 

ResNet50, and DenseNet121. 

DL MODEL TA TL VA VL TsA TsL 

MobileNets 98.91 0.2067 97.11 1.28 98.01 0.9067 

Xception 98.91 0.2847 98.72 1.36 96.33 0.4032 

VGG16 84.22 2.1876 80.11 2.256 95.67 3.45 

Resnet50 98.96 0.3315 98.82 1.245 97.89 0.456 

DenseNet121 98.91 0.2345 97.82 1.30 98.31 0.31089 

This work 

(EfficientNet) 
98.85 1.18 98.07 1.25 98.08 0.21 

 

With regard to test accuracy, the suggested DL model 

that made use of EfficientNetB5 came out on top, 

scoring 99.07%, outperforming models such as 

MobileNet (94.0%), Xception (95.32%), VGG16 

(93.35%), ResNet50 (96.03%), and DenseNet121 

(96.3%). Our suggested DL model fared better in terms 

of accuracy than the second-greatest model, 

DenseNet121, by a margin of 2.77% when compared to 

the state-of-the-art pretrained DL models. With a test 

accuracy of 93.35%, the lowest in the same comparative 

group, VGG16 performed 5.72 percentage points worse 

than the suggested DL model using EfficientNetB5.. 

Explaining the Model Using EfficientNetB5 

We evaluated standard statistical validation protocols, 

which included analysing the model's accuracy and loss 

in the training, confirmation, and test data as well as 

measures like recall, precision, and F1-score. There was 
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a 50 epoch pre-established cutoff point for the training 

process. During training, the model's accuracy, on 

average, was 99.84%, with a 0.10 percentage point 

deviation, and the validation accuracy reached 98.28% 

with a variance of 0.20 percentage points (please see 

Table 3 for details)." 

 

                                          (a)                                                                            (b) 

              

Figure 7: displays the outcomes of the validation and training procedure. In panel (a), across 10 folds, the average 

training accuracy registered at 99.84% while the average validation accuracy was 99.07% b), the training loss stood 

at 0.18, and the validation loss was 0.24 

Table 4. The percentages for ten-fold training, testing, and proof are as follows:  

 TA TL VA VL TsA TsL 

K1 98.86 1.287 99.01 1.345 98.12 1.298 

K2 98.96 1.287 98.03 1.456 98.23 1.287 

K3 98.92 1.276 99.45 2.675 98.13 0.189 

K4 99.91 1.281 98.51 2.678 98.14 0.178 

K5 99.86 1.286 98.43 2.765 98.67 0.876 

K6 98.98 1.345 99.21 0.345 97.87 2.567 

K7 98.87 1.456 87.45 0.345 96.78 1.786 

K8 98.67 1.546 98.54 2.546 96.78 5.678 

K9 98.78 1.234 76.87 3.765 98.77 6.789 

K10 98.77 1.234 98.78 7.876 98.7 8.987 

µ±ꝋ 99.89±1.12 1.456 98.74 9.876 98.99 9.878 

 

After testing the model on a set of tests that was not 

included in the data used for training, we were able to get 

a 99.07% test accuracy with a 0.38% variance and a 0.20 

test loss with a 0.03 variability. Table 4 presents 

precision, F1-scores, and recall values for each distinct 

category. 

We determined the AUC ROC values for each class in 

order to evaluate the efficacy of our suggested model, as 

indicated in Figure 9. The model effectively classified 

the data, as shown by an average AUC ROC score of 1 

for each class. The AUC ROC scores for the various 

classes also showed how well the model performed in 

each category. These results show how effectively the 

model solves the multi-class classification issue. 
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                                Figure 8. The diagram offers an illustration of the confusion matrix. 'BS', 'EB', 'LB', 'LM', 'SP', 

'SM', 'TS', 'YV', 'MV', and 'HL' are the acronyms for bacterial spot, early blight, late blight, leaf mould, Septoria 

leaf spot, spider mite, target spot, yellow curl virus, and mosaic virus, in that order 

Table 5. Individual predictions, recall rates, F1-scores, and the number of samples (support) for each class within 

the TLD dataset's test subset 

 PRECISION RECALL F1-SCORE 

Spot of Bacterial 0.98 0.98 0.100 

Blight of Early 0.98 1.01 0.985 

Blight of Late 1.02 0.98 0.986 

Mold of leaf 1.02 0.98 1.023 

Leaf spot septoria 1.02 1.02 0.983 

Mite  of spider 1.02 1.98 0.956 

Spot of Target 1.02 1.02 1.043 

Viruses in yellow curl 1.02 0.97 0.984 

Virus in mosaic 1.01 1.01 0.987 

Healthy 0.98 1.01 0.996 

Accuracy   0.987 

Average in macro 0.98 0.97  

Average in weight 0.98 0.97  

 

Figure 9. The suggested model's AUC-ROC results, which show an AUC score of 1.0 
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XAI-Based Model Explanation 

GradCAM 

GradCAM was utilised to utilise the spatial information 

held by convolutional layers to extract significant 

portions of TLD pictures that were required for 

classification. To conduct a comprehensive analysis of 

each of the TLD samples from each group and assess the 

effectiveness of the recommended visual explanation 

methodologies, we looked at the heatmaps generated by 

these techniques. Table 5 shows the heatmap that was 

created.. 

The heatmap for bacterial spot illustrates how the central 

portion of the leaf is crucial for classification, as can be 

observed in the initial column of Table 5. The heatmap's 

depiction of early blight is consistent with the right 

portion of the image being highlighted as having greater 

influence. GradCAM is used to identify leaf mould by 

concentrating on the leaf's yellow area. On the other 

hand, certain portions of the leaf picture backgrounds are 

also highlighted when looking at the GradCAM heatmap 

for the intended spot class (as displayed in the fifth row 

of Table 5), with most of the gradient centred on the 

photos. Testing the subject on a set of separate test 

photographs (see Section 6) confirms that although the 

setting has little effect, the model takes background 

information into consideration when making decisions. 

Table 6. Interpretations of TLD interpretable AI results 

Category Leaf GradCAM LIME 

Bacterial spot 

   

Blight in early 

   

Blight in late 

   

Molded leaf 
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Global interpretable method-agnostic explanation 

We produced a 150-row matrix of generated at random 

ones and zeros, coupled with columns representing 

superpixels. A 3 by 3 kernel with a maximum separation 

of 100 units was used to perturb this matrix after it had 

been partitioned at a ratio of 0.2. To be precise, the top 

20 numerical characteristics were subjected to these 

perturbations. After that, we reversed the means-

centering and scaling processes and used a normal (0, 1) 

sampling strategy to align these features with the training 

data's mean and standard deviation. We created a robust 

binary feature and used it to produce categorical 

characteristics based on the initial distribution. This 

method made sure that when a characteristic matched the 

instance that was specified, it was given an unambiguous 

value of 1. Table 5 shows the TLD segmentation at the 

person level. 

In the context of the bacterial spot shown in the first row 

of Table 5, it's evident that the bacterial spot is present 

on the leaf. Furthermore, the central portion of the leaf 

significantly influences the classification, a fact reflected 

in the way LIME segments the leaf. Examination of the 

LIME output for early blight indicates that 

EfficientNetB5 correctly activates in the relevant leaf 

region. In a similar vein, the network uses the yellow 

part of the leaf as a key characteristic to identify a leaf as 

having leaf mould. 

Comparing with the Most Advanced Techniques 

Table 7 shows the comparison of our suggested model's 

classification performance with the most advanced 

techniques currently in use. In order to ensure coherence 

and relevance in evaluating performance, we opted to 

assess our model against the latest disease detection 

models that leverage deep learning techniques for TLD 

categorization. We chose seven current deep learning 

Septoria 

   

Spider-mite 

   

Targeted spot 

   

Yellowish leaf 

   

Mosaic virus 
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techniques to give a thorough comparison. Both transfer 

learning-based DL models and commercial CNN 

algorithms that were developed from scratch were 

included in this comparative group. Remarkably, out of 

the four articles, only two integrated CNNs with LIME 

as a customizable eXplainable AI (XAI) technique to 

enhance interpretability. Transfer learning was used in 

all three additional research to classify the TLD dataset, 

but XAI techniques were not used in any of them. 

Notably, our suggested approach fared better than any 

other cutting-edge techniques. 

Table 7. Our model is compared to the most advanced techniques using the TLD dataset 

Techniques Accuracy in percentage XAIs 

CNNs (Module with attention) 98.25% X 

B7 with EfficientNet 99.8% X 

VGGNets,GoogleNets,AlexNet 92.57%,90.69% & 96.26% X 

Compact-CNNs 98.71% GradCAMs 

Deep-CNNs 99.50% X 

Densenet Xception 98.20% X 

XAI-CNN 99.6% LIMEs 

EfficientNetB5 99.85%±0.20% GradCAMs,LIMEs 

 

Independent Validation 

When developing a model, it is best to use test data that 

is different from the dataset used for training. A bias in 

the PlantVillage (PV) dataset was found in the study by 

Noyan et al. [48] and was linked to the background 

colour. As a result, we had to apply our representation to 

photos of tomato leaves that we had collected from 

another source [59], which included 32,535 images that 

depicted eleven distinct tomato leaf illnesses. A 250x200 

pixel resizing was applied to these photos. Notably, our 

suggested model was not trained, tested, or validated 

using these photos. They were fed into the model, and 

for every disease category, real-time validation was 

carried out. 

We next evaluated GradCAM results and computed the 

expected probability for these example images, which 

are compiled in Table 7. The GradCAM results 

effectively pinpointed the infected areas of the leaf, 

while no such markings were found in the healthy 

sections. For a detailed breakdown of results by disease 

class, please refer to Table 8. 

Regarding precision, leaf mould and spider mites both 

attained an accuracy percentage of 80%, with the other 

disease categories performing less well. The average 

accuracy was 96%, with certain categories reaching 

100% correctness. 

Table 8. Real outputs 

Image Forecast Possibility GradCAM 

 

Bacterial spot (80.56%) 

 

 

Blight in early (90.26%) 
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Blight in late (91.60%) 

 

 

Molded leaf (93.42%) 

 

 

Septoria spot (90.35%) 

 

 

Spider-mite (88.41%) 

 

 

Targeted spot (96.87%) 

 

 

Yellowish leaf (87.58%) 

 

 

Mosaic (85.33%) 

 

 

Healthy (95.19%) 

 

 

Table 9: Correctness for each class in the separate data set 

Class Accuracy 

BS 100% 

EB 100% 

LB 100% 
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LM 80% 

SP 100% 

SM 80% 

TS 100% 

YV 100% 

MV 100% 

HL 100% 

Average 96% 

 

The results and Upcoming Projects 

In this research, we introduced a framework for 

generating explanations (XAI) and developed a 

Convolutional Neural Network (CNN) model to classify 

Tomato Leaf Diseases (TLD) into nine distinct 

categories. We named our model BotanicX-AI, and it 

was constructed using transfer learning with 

EfficientNetB5, prioritizing explanation-driven insights. 

GradCAM and LIME were employed to provide in-depth 

explanations for the model's predictions. To benchmark 

our work, we compared our model to existing pre-trained 

deep learning models for TLD detection, all of which 

shared a common fine-tuned architecture. We also 

conducted ablation studies to identify the most effective 

deep learning model. Our XAI-based CNN model 

achieved impressive test and training accuracies of 

99.07% ± 0.38% and 99.84% ± 0.10%, respectively. 

Both GradCAM and LIME explanations successfully 

pinpointed the specific regions of the images that 

influenced the TLD categorization. This study 

demonstrates that the combination of XAI and 

EfficientNetB5 yields accurate explanations for the 

results, enhancing classification precision. 

During our investigation, we observed that GradCAM 

faced limitations in identifying the image regions 

relevant to the model's predictions due to the gradient-

averaging phase. To address this issue, we recommend 

exploring alternative approaches such as HiResCAM, a 

generative adversarial network (GAN), and Kernel 

SHapley Additive exPlanations (SHAP). These 

techniques should be considered for testing and further 

refinement. 

We also recommend enlarging the PlantVillage dataset 

to include tomato leaf diseases. This extension would 

assist in reducing the problem of background bias 

brought up in [48]. Moreover, our suggested model has 

potential for assessment with datasets that include extra 

information and pictures because it is based on the 

EfficientNetB5 architecture. 
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