
International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2596-2605 | 2596

A Framework for Emotion based Adaptive Game State Selection

Method using Multivariate Normal Distribution

1Sreenarayanan N. M., 2Dr. Partheeban N.

Submitted: 04/02/2024 Revised: 13/03/2024 Accepted: 21/03/2024

Abstract: An adaptive game design is an attractive area for the researchers to participate and contribute more by including various

emotional factors, which not only includes emotional factors for a player. The player emotions are directly affect game success factors

and the emotions can be measured directly through various facial, speech, and text expressions. This can be indirectly calculated through

efficiency of a player by calculating success factor and time to complete each state of a game. In this paper, we have proposed an

adaptive game state selection method based on multivariate normal distribution. The proposed method uses two important factor for

deciding next state selection from the current level of a game, time to complete one single state and complexity of states within the

particular level. The proposed method is a kind of slow-learning technique using multivariate normal distribution method. The

experiment evaluation is done by using three different game strategy with 150, 280, and 324 iterations. We have used two other

distribution functions for taking accuracy and average error ratio for the proposed method. The performance evaluation shows that the

proposed method achieves 79.3 % accuracy and 20.7 % average error ratio. The exponential and poison distribution achieves accuracy of

73.7 % and 72.3 % respectively.

Keyword: Adaptive Game Design, Emotional identification, Complex game environment, Normal distribution, Poison distribution,

Exponential distribution, Multivariate Dataset

1. Introduction

Artificial Intelligence provides an excellent solution for

real-time problems with optimal solution and this field

has been achieved incredibly over the past two decades.

Emotion based game tree design is emerging research

area and AI based optimization techniques are providing

an efficient solution for generating well suited game

scenario. The primary characteristic of a video game is to

attracts and motivate the players to participate actively in

the game. Any successful video game has the following

standard features as common elements, excellent goals,

active states, and interactive graphical user interface. The

game designer has to consider these basic elements

during the game design.

The major area of game design has changed tremendous

way and they have consider each and every movement of

player participation. Nowadays, games are designed

from the player point of view and more weightages are

given for player emotional values. The technologies

involved in the game design continuously evolved and

these games are adaptively changes their states based on

the ability of player 2] 3]. Maintaining static level

complicity for designing a game tree is no longer suitable

for current scenario. The modern game world satisfies

the player expectations and adaptabilities quickly by

recognizing user needs and emotions through various

probabilistic models.

Research Gaps

The traditional game design has the following unsolved

issue,

1. The traditional game design does not support for

adaptive state selection

2. The existing game design uses static model for

planning a game tree and these techniques are not

supporting for dynamic state selection based on user

emotions

3. Most of the game tree designs are not taking user

emotions as primary factor for selecting the next state

in the running mode of game

4. The traditional methods are constructing the game

trees based on static layouts and these techniques

does not provide achieves user satisfaction

2. Related Work

Difficulty adjustment by dynamically is used to change

the mode of game either easy or hard. The dynamic

adjustment achieves mode changing is an effective way.

Xue et al. [4] presented a DDA framework based on

global optimization to create more participation into the

entire game and they have modelled a players

progression as a probabilistic graph. Segundo et al. [5]

proposed a parameter manipulation technique for

1Research Scholar, 2Professor
1,2School of Computing Science and Engineering
1,2Galgotias University, Greater Noida, Uttar Pradesh, India
1sree.narayanan1@gmail.com, 2n.partheeban@galgotiasuniversity.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2596-2605| 2597

creating difficulty level dynamically and aims to make

an improvement in the gaming experience. It is necessary

to emphasize that the proposed approach uses

probabilistic calculations that will be used in the

challenge function. A questionnaire was applied to a

sample of students in order to determine whether there

were statistically significant differences in the perception

of game play, difficulty of the game and desire to play

several times with and without the use of the technique.

Bunian et al. [7] modelled an approach using data

collected from players view point like role-playing game

(RPG). They developed an approach with hidden

Markov model for the behavor of a player with

individual differences and generate behavioural feature

extraction for classifying player characteristics [6].

Khajah et al. [8] designed a gamming method using

Bayesian optimization techniques and this increase the

player participation in the game. Engagement in a game

for several minutes is measured by players inside the

game mode, projections of how long other players will

be in game, and to conduct a post-game survey.

Pedersen et al. [10] examines the relationship with

design level parameters as platform games, individual

playing characteristics and experience of a player. These

investigation parameters are closely related to measuring

the individual players attitude, which includes, various

emotional feelings. Yannakakis et al. [11] has taken an

attempt to construct metric models for designing “Bug

Suasher” game in a Playware environment. They have

used a set of numerical features collected through

interaction process with children’s. Sequential forward

selection technique and artificial neural network bas n-

best feature selection algorithms are used to build

function and feature sets for creating fun for this game.

Shaker et al. [12] design a model based on predicted

player experience by using features of level design and

style of game playing. These game models are

constructed by using preference learning.

Cowley et al. [13] presented a novel approach to design

an expert domain knowledge by using theoretical

framework based on behavior and game design patterns.

They have developed a model known as “Behavkets” by

using player behavior with respect to psychological

theory. They have presented a theoretical supporting of

psychology, player modeling, temperament theory, and

game composition.

Pedersen et al. [14] uses computational intelligence

methods to develop a quantitative approach of player

experience for a platform game. Dynamically construct

the levels for a 2D games with continues suitable

challenges by using level generation and machine

learning [15]. Carvalho et al. [16] proposed an approach

for automatic game level design using computational

model based on player environment and generative

system. This generative system signifies with the

combination of constraint satisfaction and genetic

algorithms technique. They have constructed a fitness

function for creating a fun levels for different games.

Spronck et al. [17] presented a novel approach known as

“dynamic scripting” to meet the player requirements. In

this method, an adaptive rule-base is used for creating an

intelligent opponents on the fly.

Ultima online is one of the popular online role-playing

game and this provides an interaction between all the

involved players [18]. Togelius et al. [19] discussed

about the issues related to automatically constructing

tracks tailor made to enhance the enjoyment of

individual player. This method uses evolutionary

technique for constructing the tracks in the racing game.

A method has been proposed to evaluate effects of video

game playing on motor learning method and their

potential to increase patient involvement with therapy

related treatments [20]. Recently many research papers

reviews and analyze the adaptive game designing for

collaborative and educational system [21][22]. In the

concept of educational applications, different studies are

linked game objects to motivate student as a player and

learner types [23][24][25][26]. The main idea of adaptive

game design is use to make an literature analysis in the

field of education to enhance the learners level of

understanding, to identify a suitable adaptation method.

This technique creates an impact on continuous

improvement through performance to motivation in the

learning environment

Contributions

This paper proposes following contributions in the

adaptive game state selection methods,

1. This method uses multivariate normal

distribution function for selecting suitable or sustainable

state selection from the given or available states in a

particular level

2. We have Time complexity and state complexity

as two parameters for the selection process. These two

parameters are evenly distributed over all the stage in the

game to select an appropriate state

3. The experiment evaluation conducted for the

proposed method by using poison distribution and

exponential distribution

4. We have created a gaming dataset with seven

attributes for conducting the experiment evaluation

The reaming section paper is organized as follows,

section 2 discussed about the related paper published in

adaptive game designing. Section 3 discussed about the

proposed adaptive game design model using multivariate

normal distribution function. The performance

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2596-2605| 2598

evaluation for the proposed method given in the section 4

and section 5 conclude evaluation and future directions

for the proposed method.

3. Proposed Adaptive Game Design Model

Definition of Game Tree Model

The game tree design consists of seven fundamental

components and these components are the basic elements

to construct the game structure. This section discussed

about the elements in game tree construction.

a. Internal States (IS) This describe about each

state of a game and this will be an finite set of states. If 𝐺

is a game then it has set of internal states defined as 𝑋 ←

(𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑀), here 𝑀 is defined as maximum number

of internal states in a game tree

b. Start State The initial starting state of a game

tree denoted as 𝑥0 ∈ 𝑋

c. Terminate State This will be a collection of

states from 𝑥𝑗 ∈ 𝑋, 1 ≤ 𝑗 ≤ 𝑀𝑒𝑛𝑑 and 𝑀𝑒𝑛𝑑 < 𝑀. The

ending state might consist of either any one of the

following state Win, Loss, or Tie. The non-empty

terminate states are the sub-set from internal states, 𝑇 ⊆

𝑋

d. Status Describe about the current state

information of a game 𝑇, which may be either ongoing or

terminate status

e. State Transaction A transaction function

represents a transition between current sate to next state

by applying specific set of inputs, this can be defined as

follows,

a. The function of a single state transition defined

as 𝑓: 𝑋 → 2𝑋

b. 𝑓(𝑥) consist of set of successor states𝑥𝑖 ∈ 𝑋

buddy medium

f. Complexity level of a Current State This will

provide a label associate with a current state and

complexity level from

{𝑈𝑙𝑡𝑟𝑎𝐻𝑎𝑟𝑑, 𝐻𝑎𝑟𝑑, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐸𝑎𝑠𝑦, 𝐵𝑢𝑑𝑑𝑦}. The

internal state 𝑥𝑖 ∈ 𝑋 labeled with,

𝐶𝑖 ← {𝑈𝑙𝑡𝑟𝑎𝐻𝑎𝑟𝑑, 𝐻𝑎𝑟𝑑, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐸𝑎𝑠𝑦, 𝐵𝑢𝑑𝑑𝑦}

g. State Value Each internal state assigned with a

real-value 𝑉𝑖to each 𝑥𝑖 ∈ 𝑋 within the interval of

[−1𝑡 𝑡𝑜 1].

Each internal state 𝑥𝑖 ∈ 𝑋 is defined with four tuples

{𝑥𝑖 , 𝐶𝑖, 𝑉𝑖 , 𝐴𝑣𝑔𝑇𝑖}. The 𝐴𝑣𝑔𝑇𝑥𝑖
denotes the average time

to complete an internal state 𝑥𝑖 (equation 10). The figure

1 shows the general structure of a game tree with based

nodes.

Figure 1: General Game Tree Construction

In game deign, game tree construction taking an

important role and real time game trees are denoted as

behavior tree. The following section discussed about the

fundamental concept of behavior tree.

Fundamental Concepts of Game Trees

A Behavior Tree has been designed as a directed graph

with standard nodes of root, child, parent,

and leaf nodes. All the leaf and non-leaf nodes are

represented as running nodes and condition flow nodes.

The Behavior Trees are associated with an AI entity and

this will be executed based on timely manner with

respect to the input.

The execution starts from the root node in BT and this

generates Ticks signals based on a given incidence. The

Ticks signal activates the node through execution and

this will be move forward to one or more children as a

ticked node.

Child nodes are executed if it receives Ticks signal. The

child node has the responsibility to answers to the parent

node by using a return signal statement “Running”, if the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2596-2605| 2599

goal attained then it will returns “Success”, otherwise it

will return “Failure”.

If the child node could not completed the required task

then it needs more AI steps to complete the task, then it

will returns “Running” [17].

The “Error” statement is use to indicate the an error

occurred in a processing node. These errors may be a

programming error [15].

The traditional formulation of Behavior Tree has three

main categories of control flow nodes with two

categories of executions nodes. The following section

explain in detail about the control flow nodes

a. Sequence Flow Control

The sequence is a set of actions are completed and few

more conditions checks needs to performed in a

sequence order, and the success of one action has

manipulates the action next node. The sequence nodes

are guided by the “Ticks” to other children nodes from

left to right until reach to find the child node which

returns either “Failure” or “Success”. The following

algorithm 1is explains about the role of sequence flow

control to access a child node from the N children. If all

its children nodes return signal of “Success” then the

child node will returns a signal of “Success”. If any child

node returns “Running” status then the control will be

transfer to next movement in the game, whereas in the

case of “Failure” status, the action of a player will be

completely changed or completed cancel. The sequence

node in a Behavior Tree is indicated with “→”.

b. Fallbacks Flow Control

Fallbacks [2] are defined with alternative set of actions to

achieving a similar goal. The following algorithm 2

explains about the Fallback steps in detail. The Fallback

node directs the “Ticks” to the corresponding to left side

children till it find a child node that returns any one of

the signal like “Success” or a “Running”. If all the

children nodes are returning “Failure” then it will return

“Failure”. The Fallback algorithm will not send the

“Ticks” to next level if a child node returns “Running” or

“Success”. The “?” is used to indicate the Fallback node

in a Behavior Tree

c. Parallel Nodes

The Parallel node performs Tick process in

simultaneously. The following algorithm 3 shows that

form the M child nodes out of N children returns the

value of Success, then the node will be a parallel node. If

𝑁 − 𝑀 returns Failure thus translation success

unbearable, then it returns a signal of Failure

d. Reference Components

For referring another BT from an old BT we used a

reference component and this is use to connect simple

sub behaviors. The new BT can be constructed and

incorporate with the existing BT by using reference

component. The reference component status code are

produced by the existing BT to make link with other BT.

A double-boxed labelled nodes are used to represent a

reference component with an identifier as a name of

another BT

e. Action Component

The action component updates the entity state by using

an action, which agrees to execute the exact game code.

For example the action in the game is defined by

including movement in the simulated world, altering

internal state, sound playing or applying some special

logics. If the action accomplished successfully then it

will return “Success”. If the action could not be

completed means it will return “Failure”. In the case of

returning the Running status, the action to be continued

with new set of actions

A condition component is a Boolean function and this

function will return either true or false. These functions

can be tested with direct questions. If the Boolean

function returns Success then the status code is true,

otherwise it returns false. The condition component is

represented with question mark in a labelled box

The selector component control flow is used to take a

choice. The selector processes all the child nodes from

the direction of left side to right side and this will returns

a signal as Success mode if any one of the child node

returns a signal of achievement as Success. It executes a

signal as Running code if any one of its children node

returns signal as a Running code. If the child node

returns signal value as Failure, then same process will be

continued by the selector for the following component.

This selector node is indicated in a labelled with question

mark as circle.

Algorithm 1: Sequence

1. For Each child from BT do

2. 𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) ← 𝑇𝑖𝑐𝑘(𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖))

3. 𝑪𝒉𝒆𝒄𝒌 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 (𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = “𝑅𝑢𝑛𝑛𝑖𝑛𝑔”)

4. 𝑟𝑒𝑡𝑢𝑟𝑛 "Running"

5. 𝑬𝒍𝒔𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 (𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = “𝐹𝑎𝑖𝑙𝑢𝑟𝑒”)

6. 𝑟𝑒𝑡𝑢𝑟𝑛 "𝐹𝑎𝑖𝑙𝑢𝑟𝑒"

7. 𝑬𝒏𝒅 𝑭𝒐𝒓

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2596-2605| 2600

8. 𝑟𝑒𝑡𝑢𝑟𝑛 "𝑆𝑢𝑐𝑐𝑒𝑠𝑠"

Algorithm 2: Fallback

1. For Each child from BT do

2. 𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) ← 𝑇𝑖𝑐𝑘(𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖))

3. 𝑪𝒉𝒆𝒄𝒌 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 (𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = 𝑅𝑢𝑛𝑛𝑖𝑛𝑔) 𝑻𝒉𝒆𝒏

4. 𝑟𝑒𝑡𝑢𝑟𝑛 "Running"

5. 𝑬𝒍𝒔𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 (𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠)

6. 𝑟𝑒𝑡𝑢𝑟𝑛 "𝑆𝑢𝑐𝑐𝑒𝑠𝑠"

7. 𝑬𝒏𝒅 𝑭𝒐𝒓

8. 𝑟𝑒𝑡𝑢𝑟𝑛 "𝐹𝑎𝑖𝑙𝑢𝑟𝑒"

Algorithm 3: Parallel

1. N denoted total Nodes in Behavior Tree

2. M denoted subset of Nodes in Behavior Tree

3. For Each child from BT do

4. 𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) ← 𝑇𝑖𝑐𝑘(𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖))

5. 𝑰𝒇 (∀𝑀 𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠) 𝑻𝒉𝒆𝒏

6. 𝑟𝑒𝑡𝑢𝑟𝑛 "𝑆𝑢𝑐𝑐𝑒𝑠𝑠"

7. 𝑬𝒍𝒔𝒆 𝑰𝒇 (∀(𝑁 − 𝑀) 𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = 𝐹𝑎𝑖𝑙𝑢𝑟𝑒) 𝑻𝒉𝒆𝒏

8. 𝑟𝑒𝑡𝑢𝑟𝑛 "𝐹𝑎𝑖𝑙𝑢𝑟𝑒"

9. 𝑬𝒏𝒅 𝑭𝒐𝒓

10. 𝑟𝑒𝑡𝑢𝑟𝑛 "𝑅𝑢𝑛𝑛𝑖𝑛𝑔"

4. Proposed Active Game Stage Selection

Method

The players are taking an active participant role in

playing games and this has to be more interactive based

on the current emotion and state of mind of a player. The

players are having different style to play the games and it

needs to be evaluated for designing a more interactive

games. One of the primary goal of a game designer is to

make the player to play the game continuously. This can

be achieved through continuously watching the user

behavior. In the proposed adaptive game stage selection

method, we have introduced new factor for measuring

the game stage complexity, through which we can decide

how to assign a new stage in the current game

environment.

Game Stage Complexity

An efficient Game design should attract players and

crates more involvements to participate in the game

activities. This is an optimization problem for the game

designers and this has to provide an optimum solution for

the growth of game stages. In the proposed game stage

selection method, we have used two primary factors,

time complexed to complete one single stage and

complexity level of each stage. The following equation

use to calculate time complexity and stage complexity,

𝐶𝐿𝑒𝑣𝑒𝑙𝐶𝑢𝑟𝑟𝑡𝑆 ← 𝜆 + ∑ 𝑇𝑥𝑖
. 𝐶𝑥𝑖

𝑁

𝑖=1

 ← (1)

𝜆(𝑇𝑆,𝐶𝑆)

←
1

2𝜋. 𝜎𝑇𝑆
. 𝜎𝐶𝑆

. √1 − 𝜌2
𝑒

−
1

2(1−𝜌2)
[(

𝑇𝑥𝑖
−𝜇_𝑇𝑆

𝜎𝑇𝑆
)

2

+(
𝐶𝑥𝑖

−𝜇_𝐶𝑆

𝜎𝐶𝑆
)−2.(

𝑇𝑥𝑖
−𝜇𝑇𝑆

𝜎𝑇𝑆
).(

𝑇𝑥𝑖
−𝜇_𝐶𝑆

𝜎𝐶𝑆
)]

← (2)

𝜇𝑇𝑆
←

∑ 𝑇𝑥𝑖

𝑁
𝑖=1

𝑁
 ← (3)

𝜎𝑇𝑆
← √

1

𝑁
(∑(𝑇𝑥𝑖

− 𝜇𝑇𝑆
)

𝑁

𝑖=1

)

2

 ← (4)

𝜇𝐶𝑆
←

∑ 𝐶𝑥𝑖

𝑁
𝑖=1

𝑁
 ← (5)

𝜎𝐶𝑆
← √

1

𝑁
(∑(𝐶𝑥𝑖

− 𝜇𝐶𝑆
)

𝑁

𝑖=1

)

2

 ← (6)

𝑇𝑁𝑒𝑥𝑡𝑆 ←
𝑇𝐶𝑢𝑟𝑟𝑡𝑆

𝑁
 ← (7)

Here, 𝜌 values may be varying from [0,1]. The proposed

game state selection algorithm illustrated in algorithm1

and algorithm 2 using Single and Multi-variate Normal

Distribution. The algorithm 1 discussed about the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2596-2605| 2601

personalized game tree construction based on the user

level of playing. The algorithm 2 is used to select the

next suitable state from the current state of a game based

on complexity values. The average time taken for

completing a single state 𝑥𝑖 ∈ 𝑋 with maximum

iterations computed as follows,

𝐴𝑣𝑔𝑇𝑥𝑖
←

∑ 𝑇𝑥𝑖

𝑀𝑎𝑥
𝑖=1

𝑁
 ← (8)

 Algorithm 1: Game Next Stage Selection

Input: Game Tree 𝐺 (defined in Definition 1)

Output: Game Wining Status and Terminate State 𝑥𝑗 ∈ 𝑇

1. 𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒 ← 𝑥0 // assign a initial state of a Game 𝐺

2. Assign 𝑇𝑆0
← 0 and 𝐶𝑆0

← 0

3. 𝑊ℎ𝑖𝑙𝑒(𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒 ∉ 𝑇)

4. Begin

a. Start 𝑃𝐿𝐴𝑌(𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒)

b. 𝑇𝑆𝑖
← 𝑇𝑖𝑚𝑒𝑇𝑎𝑘𝑒𝑛(𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒)

c. 𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒 ← 𝑁𝑒𝑥𝑡 − 𝑆𝑡𝑎𝑡𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒, 𝑇𝑆𝑖
, 𝐶𝑆𝑖

)

5. End

6. 𝑹𝒆𝒕𝒖𝒓𝒏 (𝑆𝑡𝑎𝑡𝑢𝑠(𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒))

Algorithm 2: Game Next State Selection

Input: 𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒, Time taken for completing previous state, Complexity of previous state

Output: Next Optimal State 𝑥𝑖 ∈ 𝑋

1. Compute 𝜇𝑇𝑆
 and 𝜇𝐶𝑆

 using equation (3) and (5)

2. Compute 𝜎𝑇𝑆
 and 𝜎𝐶𝑆

 using equation (4) and (6)

3. For each 𝑥𝑖 ∈ 𝑋 do

a. Compute average time 𝐴𝑣𝑔𝑇𝑥𝑖
 using equation (8)

b. Compute complexity level of state 𝑥𝑖 by using equation (1)

c. Compute average time 𝜇𝑇𝑆
 consumption rate using equation (3)

d. 𝐼𝑓[(𝜇𝑇𝑆
≤ 𝐴𝑣𝑔𝑇𝑥𝑖

) 𝑎𝑛𝑑 (𝐶𝐿𝑒𝑣𝑒𝑙𝐶𝑢𝑟𝑟𝑡𝑆 ≤ 𝐶𝑥𝑖−1
)] 𝑡ℎ𝑒𝑛 𝑹𝒆𝒕𝒖𝒓𝒏(𝒙𝒊)

4. End For

5. Result and Discussion

Dataset

We have designed a dataset for game tree construction

based on the model assumption defined in the definition

part. In which the following parameters are added, game

level (𝐺𝐿), level complexity (𝐿𝐶), State number (𝑆#),

individual state complexity (𝐼𝑆𝐶𝑥𝑖
), average time for

completing particular state (𝐴𝑣𝑔𝑇𝑥𝑖
), state nature(𝑆𝑁),

and winning possibility (𝑊𝑃𝑥𝑖
). The following table

provides sample of data feed taken from dataset,

𝐺𝐿 𝑆# 𝐿𝐶 𝐼𝑆𝐶𝑥𝑖
 𝐴𝑣𝑔𝑇𝑥𝑖

(seconds)

𝑆𝑁 𝑊𝑃𝑥𝑖
(%)

1 3 0.21 0.18 38 NT 93

1 6 0.21 0.16 33 NT 95

2 1 0.26 0.25 67 NT 91

2 5 0.26 0.27 64 NT 91.5

3 6 0.29 0.36 93 NT 89.4

3 2 0.29 0.35 96 NT 88.7

5 4 0.61 0.58 182 NT 63.4

7 6 0.72 0.67 192 NT 18.7

9 2 0.84 0.78 162 T -1

16 4 0.89 0.85 183 T 1

Table 1: Sample Dataset from Game Tree construction with 16 Levels

We have used three different dataset with 16 levels, 24

levels, and 30 levels. The table 1 contains the samples

taken from a game dataset, which contains 16 levels. The

complexity of level in a game tree is assigned in as

increasing order within the interval of [0, 1]. The 0.01

indicates complexity is very less and 0.93 indicates high

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2596-2605| 2602

complexity. The average time for completing individual

state indicates the average time taken for completing one

single state. State nature attribute indicates the current

state is either terminate state 𝑇 or non-terminate state

𝑁𝑇. The winning probability attribute contains a non-

linear integer value as a percentage of success in the

game. If the winning probability is 1 then Game

completed with wining and if it is -1 means then the

player Loss the game. If it is 0 then game ended with tie

mode.

Experimental Evaluation

We have created three different dataset by varying the

levels from 16, 24, and 30. These data sets are contains

553, 417, and 623 individual state entries respectively.

We have used simple python code for writing the

proposed adaptive game state selection method. The

experiment evaluation conducted with different set of

iterations for each game dataset. The experiments are

coined with 150, 280, and 324 iterations for each game

and we have measure two parameters, time take for

completing all the iterations and average success, failure

and tie in the game. The following equation (8), (9), and

(10) used to calculate the average winning, losing, and

tie for each game with different number of iterations

(#𝑃𝑙𝑎𝑦𝑒𝑑). Here #𝑊𝑖𝑛 , #𝐿𝑜𝑠𝑠, and #𝑇𝑖𝑒indicates number

of times success, loss, and tie in the game. The accuracy

for the proposed is calculated by using the equation 11

and equation 12 is used measure the average error ratio.

𝐴𝑣𝑔𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ←
#𝑊𝑖𝑛

#𝑃𝑙𝑎𝑦𝑒𝑑

 → (8)

𝐴𝑣𝑔𝐿𝑜𝑠𝑠 ←
#𝐿𝑜𝑠𝑠

#𝑃𝑙𝑎𝑦𝑒𝑑

 → (9)

𝐴𝑣𝑔𝑇𝑖𝑒 ←
#𝑇𝑖𝑒

#𝑃𝑙𝑎𝑦𝑒𝑑

 → (10)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←
𝐴𝑣𝑔𝑆𝑢𝑐𝑐𝑒𝑠𝑠 + 𝐴𝑣𝑔𝑇𝑖𝑒

𝐴𝑣𝑔𝑆𝑢𝑐𝑐𝑒𝑠𝑠 + 𝐴𝑣𝑔𝐿𝑜𝑠𝑠 + 𝐴𝑣𝑔𝑇𝑖𝑒

 → (11)

 𝐴𝑣𝑔𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑖𝑜 ←
𝐴𝑣𝑔𝐿𝑜𝑠𝑠

𝐴𝑣𝑔𝑆𝑢𝑐𝑐𝑒𝑠𝑠 + 𝐴𝑣𝑔𝐿𝑜𝑠𝑠 + 𝐴𝑣𝑔𝑇𝑖𝑒

→ (12)

We have used multivariate normal distribution in the

proposed method. In the experiment evaluation, we have

used following two types of distribution mechanisms,

exponential and poison distribution. The nature of these

two distributions are different and equation (13) and (14)

illustrate process of distribution,

𝜆(𝑇𝑆,𝐶𝑆)
𝐸𝐷𝑖𝑠 ← (𝜇𝑇𝑆

+ 𝜇𝐶𝑆
). 𝑒−(𝜇𝑇𝑆

.𝑇𝑥𝑖
+𝜇𝐶𝑆

.𝐶𝑥𝑖
)

 → (13)

𝜆(𝑇𝑆,𝐶𝑆)
𝑃𝐷𝑖𝑠 ←

𝑒−(𝜇𝑇𝑆
+𝜇𝐶𝑆

)
. 𝜇𝑇𝑆

𝑇𝑥𝑖 . 𝜇𝐶𝑆

𝐶𝑥𝑖

(𝑇𝑥𝑖
+ 𝐶𝑥𝑖

)!
 → (14)

 Proposed Method

with different

Distributions

Number of Iterations

Accuracy

Avg.

Error

Ratio

150 280 324

Win Loss Tie Win Loss Tie Win Loss Tie

Multivariate

Normal

Distribution

(MND)

95 19 36 152 42 76 201 55 68 85.6 16.3

Poison Distribution

(PD)
92 24 34 137 49 84 189 56 79 83.1 17.9

Exponential

Distribution (ED)
86 34 30 129 57 84 188 60 76 81 19

Table 2: Performance Evaluation for Game Strategy 1 with 16 Levels

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2596-2605| 2603

Figure 2: Performance Evaluation for Game Strategy 1 with 16 Levels

Proposed Method

with different

Distributions

Number of Iterations

Accuracy

Avg.

Error

Ratio

150 280 324

Win Loss Tie Win Loss Tie Win Loss Tie

Multivariate

Normal

Distribution

(MND)

104 21 25 162 44 74 221 52 61 86.1 13.9

Poison Distribution

(PD)
94 24 30 150 52 78 203 62 59 83.6 17.4

Exponential

Distribution (ED)
85 31 34 151 49 80 192 71 61 79.3 20.7

Table 3: Performance Evaluation for Game Strategy 2 with 24 Levels

Figure 3: Performance Evaluation for Game Strategy 2 with 24 Levels

Proposed Method

with different

Distributions

Number of Iterations

Accuracy

Avg.

Error

Ratio

150 280 324

Win Loss Tie Win Loss Tie Win Loss Tie

Multivariate

Normal

Distribution

(MND)

97 14 39 171 39 70 215 51 58 90.6 9.4

Poison Distribution

(PD)
89 21 40 158 52 70 209 61 44 85.3 14.7

Exponential

Distribution (ED)
82 27 41 163 48 69 205 58 61 84.4 15.6

Table 4: Performance Evaluation for Game Strategy 3 with 30 Levels

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2596-2605| 2604

Figure 4: Performance Evaluation for Game Strategy 3 with 30 Levels

Performance Evaluation

This section discussed about the performance evaluation

for the proposed adaptive game state selection method

based on different set of iterations like 150, 280, and

324. The accuracy and average error ratio for the

proposed method shows that 78.7% and 21.3%

respectively. The poison and exponential distribution

methods are providing accuracy of 73% and 72%. The

proposed adaptive game design methods are performing

well.

6. Conclusion

In this paper, we have proposed an adaptive game state

selection method using multivariate normal distribution

function for selecting game states in a linear way. The

proposed method uses two important factors for deciding

next state selection from the current level of a game, time

to complete one single state and complexity of states

within the particular level. The proposed method is a

kind of slow-learning technique using multivariate

normal distribution method. The experiment evaluation

is done by using three different game strategy with 150,

280, and 324 iterations. We have used two other

distribution functions for taking accuracy and average

error ratio for the proposed method. The performance

evaluation shows that the proposed method achieves 79.3

% accuracy and 20.7 % average error ratio. The

exponential and poison distribution achieves accuracy of

73.7 % and 72.3 % respectively.

Reference

[1] S. Bunian, A. Canossa, R. Colvin, and M. S. El-

Nasr, “Modeling individual differences in game

behavior using HMM,” in Proceedings of the 13th

AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment (AIIDE-17), 2017

[2] P. Sweetser and P. Wyeth, “GameFlow,”

Computers in Entertainment, vol. 3, no. 3, 2005.

[3] K. M. Gilleade, A. Dix, and J. Allanson, “Afective

videogames and modes of afective gaming: Assist

me, challenge me, emote me,” in Proceedings of the

2nd International Conference on Digital Games

Research Association: Changing Views: Worlds in

Play (DiGRA ’05), 20, 16 pages, Vancouver,

Canada, June 2005

[4] S. Xue, M. Wu, J. Kolen, N. Aghdaie, and K. A.

Zaman, “Dynamic Difculty Adjustment for

Maximized Engagement in Digital Games,” in

Proceedings of the 26th International Conference,

pp. 465–471, Perth, Australia, April 2017

[5] C. V. Segundo, K. Emerson, A. Calixto, and R. P.

Gusmao, “Dynamic difculty adjustment through

parameter manipulation for Space Shooter game,”

in Proceedings of SB Games, Brazil, 2016

[6] H. Hsieh, Generation of Adaptive Opponents for a

Predator-Prey Game, Asia University, 2008.

[7] S. Bunian, A. Canossa, R. Colvin, and M. S. El-

Nasr, “Modeling individual diferences in game

behavior using HMM,” in Proceedings of the 13th

AAAI Conference on Artifcial Intelligence and

Interactive Digital Entertainment (AIIDE-17),

2017.

[8] M. M. Khajah, B. D. Roads, R. V. Lindsey, Y.-E.

Liu, and M. C. Mozer, “Designing engaging games

using Bayesian optimization,” in Proceedings of the

34th Annual Conference on Human Factors in

Computing Systems, CHI 2016, pp. 5571–5582,

San Jose, Calif, USA, May 2016.

[9] A. Hintze, R. S. Olson, and J. Lehman,

“Orthogonally evolved AI to improve difculty

adjustment in video games,” in European

Conference on the Applications of Evolutionary

Computation, vol. 9597 of Lecture Notes in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2596-2605| 2605

Computer Science, pp. 525–540, Springer

International Publishing, Cham, Switzerland, 2016.

[10] C. Pedersen, J. Togelius, and G. N. Yannakakis,

“Modeling player experience in Super Mario Bros,”

in Proceedings of the 2009 IEEE Symposium on

Computational Intelligence and Games (CIG), pp.

132–139, Milano, Italy, September 2009.

[11] G. N. Yannakakis and J. Hallam, “Game and player

feature selection for entertainment capture,” in

Proceedings of the 2007 IEEE Symposium on

Computational Intelligence and Games, pp. 244–

251, Honolulu, Hawaii, USA, April 2007

[12] N. Shaker, G. Yannakakis, and J. Togelius,

“Towards automatic personalized content

generation for platform games,” in Proceedings of

the 6th AAAI Conference on Artifcial Intelligence

and Interactive Digital Entertainment, AIIDE 2010,

pp. 63–68, Stanford, Calif, USA, October 2010.

[13] Cowley, B., Charles, D. Behavlets: a method for

practical player modelling using psychology-based

player traits and domain specific features. User

Model User-Adap Inter 26, 257–306 (2016).

https://doi.org/10.1007/s11257-016-9170-1

[14] C. Pedersen, J. Togelius, and G. N. Yannakakis,

“Modeling player experience for content creation,”

IEEE Transactions on Computational Intelligence

and AI in Games, vol. 2, no. 1, pp. 54–67, 2010.

[15] M. Jennings-Teats, G. Smith, and N. Wardrip-

Fruin, “Polymorph: A model for dynamic level

generation,” in Proceedings of the 6th AAAI

Conference on Artifcial Intelligence and Interactive

Digital Entertainment, AIIDE 2010, pp. 138–143,

Stanford, Calif, USA, October 2010.

[16] L. V. Carvalho, A. V. M. Moreira, V. V. Filho, M.

T´ulio, C. F. Albuquerque, and G. L. Ramalho, “A

Generic Framework for Procedural Generation of

Gameplay Sessions,” in Proceedings of the SB

Games 2013, XII SB Games, S˜ao Paulo, Brazil,

2013.

[17] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma,

“Online adaptation of game opponent AI with

dynamic scripting,” International Journal of

Intelligent Games & Simulation, vol. 3, no. 1, pp.

45–53, 2004.

[18] Z. Simpson, “The In-game Economics of Ultima

Online,” in Proceedings of the Game Developers

Conference, San Jose, Calif, USA, 2000.

[19] J. Togelius, R. DeNardi, and S. M. Lucas, “Making

racing fun through player modeling and track

evolution,” in Proceedings of the Workshop

Adaptive Approaches Optim. Player Satisfaction

Comput. Phys. Games, p. 70, 2006

[20] K. Lohse, N. Shirzad, A. Verster, N. Hodges, and

H. F. Van der Loos, “Video Games and

Rehabilitation,” Journal of Neurologic Physical

Terapy, vol. 37, no. 4, pp. 166–175, 2013

[21] Hallifax, S.; Serna, A.; Marty, J.; Lavoué, E.

Adaptive Gamification in Education: A Literature

Review of Current Trends and Developments. Lect.

Notes Comput. Sci. 2019, 11722, pp. 294–307

[22] Dalponte Ayastuy, M.; Torres, D.; Fernández, A.

Adaptive gamification in Collaborative systems, a

systematic mapping study. Comput. Sci.

Rev. 2021, 39, 100333

[23] Denden, M.; Tlili, A.; Essalmi, F.; Jemni, M. Does

personality affect students’ perceived preferences

for game elements in gamified learning

environments? In Proceedings of the IEEE 18th

International Conference on Advanced Learning

Technologies, ICALT 2018, Mumbai, India, 9–13

July 2018; pp. 111–115

[24] Borges, S.; Mizoguchi, R.; Durelli, V.H.S.;

Bittencourt, I.; Isotani, S. A link between worlds:

Towards a conceptual framework for bridging

player and learner roles in gamified collaborative

learning contexts. In Advances in Social Computing

and Digital Education, Croatia; Koch, F., Koster,

A., Primo, T., Guttmann, C., Eds.; Springer:

Berlin/Heidelberg, Germany, 2016; pp. 19–34

[25] Škuta, P.R.; Kostolányová, K. Adaptive approach

to the gamification in education. In Proceedings of

the European Conference on Technology Enhanced

Learning, Transforming Learning with Meaningful

Technologies, Delft, The Netherlands, 16–19

September 2018; Springer International Publishing:

Berlin/Heidelberg, Germany, 2018; p. 367

[26] Barata, G.; Gama, S.; Jorge, J.; Gonçalves, D.

Gamification for smarter learning: Tales from the

trenches. Smart Learn. Environ. 2015, 2, 1–23

