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Abstract: An adaptive game design is an attractive area for the researchers to participate and contribute more by including various 

emotional factors, which not only includes emotional factors for a player. The player emotions are directly affect game success factors 

and the emotions can be measured directly through various facial, speech, and text expressions. This can be indirectly calculated through 

efficiency of a player by calculating success factor and time to complete each state of a game. In this paper, we have proposed an 

adaptive game state selection method based on multivariate normal distribution. The proposed method uses two important factor for 

deciding next state selection from the current level of a game, time to complete one single state and complexity of states within the 

particular level. The proposed method is a kind of slow-learning technique using multivariate normal distribution method. The 

experiment evaluation is done by using three different game strategy with 150, 280, and 324 iterations. We have used two other 

distribution functions for taking accuracy and average error ratio for the proposed method. The performance evaluation shows that the 

proposed method achieves 79.3 % accuracy and 20.7 % average error ratio. The exponential and poison distribution achieves accuracy of 

73.7 % and 72.3 % respectively. 

Keyword: Adaptive Game Design, Emotional identification, Complex game environment, Normal distribution, Poison distribution, 

Exponential distribution, Multivariate Dataset     

1. Introduction

Artificial Intelligence provides an excellent solution for 

real-time problems with optimal solution and this field 

has been achieved incredibly over the past two decades. 

Emotion based game tree design is emerging research 

area and AI based optimization techniques are providing 

an efficient solution for generating well suited game 

scenario. The primary characteristic of a video game is to 

attracts and motivate the players to participate actively in 

the game. Any successful video game has the following 

standard features as common elements, excellent goals, 

active states, and interactive graphical user interface. The 

game designer has to consider these basic elements 

during the game design. 

The major area of game design has changed tremendous 

way and they have consider each and every movement of 

player participation. Nowadays, games are designed 

from the player point of view and more weightages are 

given for player emotional values. The technologies 

involved in the game design continuously evolved and 

these games are adaptively changes their states based on 

the ability of player 2] 3]. Maintaining static level 

complicity for designing a game tree is no longer suitable 

for current scenario. The modern game world satisfies 

the player expectations and adaptabilities quickly by 

recognizing user needs and emotions through various 

probabilistic models. 

Research Gaps 

The traditional game design has the following unsolved 

issue, 

1. The traditional game design does not support for

adaptive state selection

2. The existing game design uses static model for

planning a game tree and these techniques are not

supporting for dynamic state selection based on user

emotions

3. Most of the game tree designs are not taking user

emotions as primary factor for selecting the next state

in the running mode of game

4. The traditional methods are constructing the game

trees based on static layouts and these techniques

does  not provide achieves user satisfaction

2. Related Work

Difficulty adjustment by dynamically is used to change 

the mode of game either easy or hard. The dynamic 

adjustment achieves mode changing is an effective way. 

Xue et al. [4] presented a DDA framework based on 

global optimization to create more participation into the 

entire game and they have modelled a players 

progression as a probabilistic graph. Segundo et al. [5] 

proposed a parameter manipulation technique for 
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creating difficulty level dynamically and aims to make 

an improvement in the gaming experience. It is necessary 

to emphasize that the proposed approach uses 

probabilistic calculations that will be used in the 

challenge function. A questionnaire was applied to a 

sample of students in order to determine whether there 

were statistically significant differences in the perception 

of game play, difficulty of the game and desire to play 

several times with and without the use of the technique. 

Bunian et al. [7] modelled an approach using data 

collected from players view point like role-playing game 

(RPG). They developed an approach with hidden 

Markov model for the behavor of a player with 

individual differences and generate behavioural feature 

extraction for classifying player characteristics [6]. 

Khajah et al. [8] designed a gamming method using 

Bayesian optimization techniques and this increase the 

player participation in the game. Engagement in a game 

for several minutes is measured by players inside the 

game mode, projections of how long other players will 

be in game, and to conduct a post-game survey. 

Pedersen et al. [10] examines the relationship with 

design level parameters as platform games, individual 

playing characteristics and experience of a player. These 

investigation parameters are closely related to measuring 

the individual players attitude, which includes, various 

emotional feelings. Yannakakis et al. [11] has taken an 

attempt to construct metric models for designing “Bug 

Suasher” game in a Playware environment. They have 

used a set of numerical features collected through 

interaction process with children’s. Sequential forward 

selection technique and artificial neural network bas n-

best feature selection algorithms are used to build 

function and feature sets for creating fun for this game. 

Shaker et al. [12] design a model based on predicted 

player experience by using features of level design and 

style of game playing. These game models are 

constructed by using preference learning. 

Cowley et al. [13] presented a novel approach to design 

an expert domain knowledge by using theoretical 

framework based on behavior and game design patterns. 

They have developed a model known as “Behavkets” by 

using player behavior with respect to psychological 

theory. They have presented a theoretical supporting of 

psychology, player modeling, temperament theory, and 

game composition.  

Pedersen et al. [14] uses computational intelligence 

methods to develop a quantitative approach of player 

experience for a platform game. Dynamically construct 

the levels for a 2D games with continues suitable 

challenges by using level generation and machine 

learning [15]. Carvalho et al. [16] proposed an approach 

for automatic game level design using computational 

model based on player environment and generative 

system. This generative system signifies with the 

combination of constraint satisfaction and genetic 

algorithms technique. They have constructed a fitness 

function for creating a fun levels for different games. 

Spronck et al. [17] presented a novel approach known as 

“dynamic scripting” to meet the player requirements. In 

this method, an adaptive rule-base is used for creating an 

intelligent opponents on the fly. 

Ultima online is one of the popular online role-playing 

game and this provides an interaction between all the 

involved players [18]. Togelius et al. [19] discussed 

about the issues related to automatically constructing 

tracks tailor made to enhance the enjoyment of 

individual player. This method uses evolutionary 

technique for constructing the tracks in the racing game. 

A method has been proposed to evaluate effects of video 

game playing on motor learning method and their 

potential to increase patient involvement with therapy 

related treatments [20]. Recently many research papers 

reviews and analyze the adaptive game designing for 

collaborative and educational system [21][22].  In the 

concept of educational applications, different studies are 

linked game objects to motivate student as a player and 

learner types [23][24][25][26]. The main idea of adaptive 

game design is use to make an literature analysis in the 

field of education to enhance the learners level of 

understanding, to identify a suitable adaptation method. 

This technique creates an impact on continuous 

improvement through performance to motivation in the 

learning environment     

Contributions 

This paper proposes following contributions in the 

adaptive game state selection methods, 

1. This method uses multivariate normal 

distribution function for selecting suitable or sustainable 

state selection from the given or available states in a 

particular level 

2. We have Time complexity and state complexity 

as two parameters for the selection process. These two 

parameters are evenly distributed over all the stage in the 

game to select an appropriate state 

3. The experiment evaluation conducted for the 

proposed method by using poison distribution and 

exponential distribution 

4. We have created a gaming dataset with seven 

attributes for conducting the experiment evaluation   

The reaming section paper is organized as follows, 

section 2 discussed about the related paper published in 

adaptive game designing. Section 3 discussed about the 

proposed adaptive game design model using multivariate 

normal distribution function. The performance 
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evaluation for the proposed method given in the section 4 

and section 5 conclude evaluation and future directions 

for the proposed method. 

 

3. Proposed Adaptive Game Design Model 

Definition of Game Tree Model 

The game tree design consists of seven fundamental 

components and these components are the basic elements 

to construct the game structure. This section discussed 

about the elements in game tree construction. 

a. Internal States (IS) This describe about each 

state of a game and this will be an finite set of states. If 𝐺 

is a game then it has set of internal states defined as 𝑋 ←

(𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑀), here 𝑀 is defined as maximum number 

of internal states in a game tree 

b. Start State The initial starting state of a game 

tree denoted as 𝑥0 ∈ 𝑋 

c. Terminate State This will be a collection of 

states from 𝑥𝑗 ∈ 𝑋, 1 ≤ 𝑗 ≤ 𝑀𝑒𝑛𝑑 and 𝑀𝑒𝑛𝑑 < 𝑀. The 

ending state might consist of either any one of the 

following state Win, Loss, or Tie. The non-empty 

terminate states are the sub-set from internal states, 𝑇 ⊆

𝑋  

d. Status Describe about the current state 

information of a game 𝑇, which may be either ongoing or 

terminate status 

e. State Transaction A transaction function 

represents a transition between current sate to next state 

by applying specific set of inputs, this can be defined as 

follows, 

a. The function of a single state transition defined 

as 𝑓: 𝑋 → 2𝑋 

b. 𝑓(𝑥) consist of set of successor states𝑥𝑖 ∈ 𝑋 

buddy medium  

f. Complexity level of a Current State This will 

provide a label associate with a current state and 

complexity level from 

{𝑈𝑙𝑡𝑟𝑎𝐻𝑎𝑟𝑑, 𝐻𝑎𝑟𝑑, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐸𝑎𝑠𝑦, 𝐵𝑢𝑑𝑑𝑦}. The 

internal state 𝑥𝑖 ∈ 𝑋 labeled with,  

𝐶𝑖 ← {𝑈𝑙𝑡𝑟𝑎𝐻𝑎𝑟𝑑, 𝐻𝑎𝑟𝑑, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐸𝑎𝑠𝑦, 𝐵𝑢𝑑𝑑𝑦} 

g.  State Value Each internal state assigned with a 

real-value 𝑉𝑖to each 𝑥𝑖 ∈ 𝑋 within the interval of 

[−1𝑡 𝑡𝑜 1]. 

Each internal state 𝑥𝑖 ∈ 𝑋 is defined with four tuples 

{𝑥𝑖 , 𝐶𝑖, 𝑉𝑖 , 𝐴𝑣𝑔𝑇𝑖}. The 𝐴𝑣𝑔𝑇𝑥𝑖
denotes the average time 

to complete an internal state 𝑥𝑖 (equation 10). The figure 

1 shows the general structure of a game tree with based 

nodes.

 

Figure 1: General Game Tree Construction 

In game deign, game tree construction taking an 

important role and real time game trees are denoted as 

behavior tree. The following section discussed about the 

fundamental concept of behavior tree. 

Fundamental Concepts of Game Trees  

A Behavior Tree has been designed as a directed graph 

with standard nodes of root, child, parent, 

and leaf nodes. All the leaf and non-leaf nodes are 

represented as running nodes and condition flow nodes.  

The Behavior Trees are associated with an AI entity and 

this will be executed based on timely manner with 

respect to the input.  

The execution starts from the root node in BT and this 

generates Ticks signals based on a given incidence. The 

Ticks signal activates the node through execution and 

this will be move forward to one or more children as a 

ticked node.  

Child nodes are executed if it receives Ticks signal. The 

child node has the responsibility to answers to the parent 

node by using a return signal statement “Running”, if the 
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goal attained then it will returns “Success”, otherwise it 

will return “Failure”.  

If the child node could not completed the required task 

then it needs more AI steps to complete the task, then it 

will returns “Running” [17].  

The “Error” statement is use to indicate the an error 

occurred in a processing node. These errors may be a 

programming error [15]. 

The traditional formulation of Behavior Tree has three 

main categories of control flow nodes with two 

categories of executions nodes. The following section 

explain in detail about the control flow nodes 

a. Sequence Flow Control 

The sequence is a set of actions are completed and few 

more conditions checks needs to performed in a 

sequence order, and the success of one action has 

manipulates  the action next node. The sequence nodes 

are guided by the “Ticks” to other children nodes from 

left to right until reach to find the child node which 

returns either “Failure” or “Success”. The following 

algorithm 1is explains about the role of sequence flow 

control to access a child node from the N children. If all 

its children nodes return signal of “Success” then the 

child node will returns a signal of “Success”. If any child 

node returns “Running” status then the control will be 

transfer to next movement in the game, whereas in the 

case of “Failure” status, the action of a player will be 

completely changed or completed cancel. The sequence 

node in a Behavior Tree is indicated with “→”.   

b. Fallbacks Flow Control 

Fallbacks [2] are defined with alternative set of actions to 

achieving a similar goal. The following algorithm 2 

explains about the Fallback steps in detail. The Fallback 

node directs the “Ticks” to the corresponding to left side 

children till it find a child node that returns any one of 

the signal like “Success” or a “Running”. If all the 

children nodes are returning “Failure” then it will return 

“Failure”. The Fallback algorithm will not send the 

“Ticks” to next level if a child node returns “Running” or 

“Success”. The “?” is used to indicate the Fallback node 

in a Behavior Tree 

c. Parallel Nodes 

The Parallel node performs Tick process in 

simultaneously. The following algorithm 3 shows that 

form the M child nodes out of N children returns the 

value of Success, then the node will be a parallel node. If 

𝑁 − 𝑀 returns Failure thus translation success 

unbearable, then it returns a signal of Failure 

d. Reference Components 

For referring another BT from an old BT we used a 

reference component and this is use to connect simple 

sub behaviors. The new BT can be constructed and 

incorporate with the existing BT by using reference 

component. The reference component status code are 

produced by the existing BT to make link with other BT. 

A double-boxed labelled nodes are used to represent a 

reference component with an identifier as a name of 

another BT 

e. Action Component 

The action component updates the entity state by using 

an action, which agrees to execute the exact game code. 

For example the action in the game is defined by 

including movement in the simulated world, altering 

internal state, sound playing or applying some special 

logics. If the action accomplished successfully then it 

will return “Success”. If the action could not be 

completed means it will return “Failure”. In the case of 

returning the Running status, the action to be continued 

with new set of actions 

A condition component is a Boolean function and this 

function will return either true or false. These functions 

can be tested with direct questions. If the Boolean 

function returns Success then the status code is true, 

otherwise it returns false. The condition component is 

represented with question mark in a labelled box 

The selector component control flow is used to take a 

choice. The selector processes all the child nodes from 

the direction of left side to right side and this will returns 

a signal as Success mode if any one of the child node 

returns a signal of achievement as Success. It executes a 

signal as Running code if any one of its children node 

returns signal as a Running code. If the child node 

returns signal value as Failure, then same process will be 

continued by the selector for the following component. 

This selector node is indicated in a labelled with question 

mark as circle. 

Algorithm 1: Sequence 

1. For Each child from BT do 

2. 𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖)  ← 𝑇𝑖𝑐𝑘(𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖)) 

3. 𝑪𝒉𝒆𝒄𝒌 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 (𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = “𝑅𝑢𝑛𝑛𝑖𝑛𝑔”) 

4.           𝑟𝑒𝑡𝑢𝑟𝑛 "Running" 

5. 𝑬𝒍𝒔𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 (𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = “𝐹𝑎𝑖𝑙𝑢𝑟𝑒”) 

6.          𝑟𝑒𝑡𝑢𝑟𝑛 "𝐹𝑎𝑖𝑙𝑢𝑟𝑒" 

7. 𝑬𝒏𝒅 𝑭𝒐𝒓 
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8. 𝑟𝑒𝑡𝑢𝑟𝑛 "𝑆𝑢𝑐𝑐𝑒𝑠𝑠"  

 

Algorithm 2: Fallback 

1. For Each child from BT do 

2. 𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖)  ← 𝑇𝑖𝑐𝑘(𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖)) 

3. 𝑪𝒉𝒆𝒄𝒌 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 (𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = 𝑅𝑢𝑛𝑛𝑖𝑛𝑔) 𝑻𝒉𝒆𝒏 

4.           𝑟𝑒𝑡𝑢𝑟𝑛 "Running" 

5. 𝑬𝒍𝒔𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 (𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠) 

6.          𝑟𝑒𝑡𝑢𝑟𝑛 "𝑆𝑢𝑐𝑐𝑒𝑠𝑠" 

7. 𝑬𝒏𝒅 𝑭𝒐𝒓 

8. 𝑟𝑒𝑡𝑢𝑟𝑛 "𝐹𝑎𝑖𝑙𝑢𝑟𝑒" 

 

Algorithm 3: Parallel 

1. N denoted total Nodes in Behavior Tree 

2. M denoted subset of Nodes in Behavior Tree 

3. For Each child from BT do 

4. 𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖)  ← 𝑇𝑖𝑐𝑘(𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖)) 

5. 𝑰𝒇 (∀𝑀 𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠) 𝑻𝒉𝒆𝒏 

6.           𝑟𝑒𝑡𝑢𝑟𝑛 "𝑆𝑢𝑐𝑐𝑒𝑠𝑠" 

7. 𝑬𝒍𝒔𝒆 𝑰𝒇 (∀(𝑁 − 𝑀) 𝑆𝑡𝑎𝑡𝑢𝑠𝐶ℎ𝑖𝑙𝑑(𝑁𝑜𝑑𝑒𝑖) = 𝐹𝑎𝑖𝑙𝑢𝑟𝑒) 𝑻𝒉𝒆𝒏 

8.          𝑟𝑒𝑡𝑢𝑟𝑛 "𝐹𝑎𝑖𝑙𝑢𝑟𝑒" 

9. 𝑬𝒏𝒅 𝑭𝒐𝒓 

10. 𝑟𝑒𝑡𝑢𝑟𝑛 "𝑅𝑢𝑛𝑛𝑖𝑛𝑔" 

 

4. Proposed Active Game Stage Selection 

Method 

The players are taking an active participant role in 

playing games and this has to be more interactive based 

on the current emotion and state of mind of a player. The 

players are having different style to play the games and it 

needs to be evaluated for designing a more interactive 

games. One of the primary goal of a game designer is to 

make the player to play the game continuously. This can 

be achieved through continuously watching the user 

behavior. In the proposed adaptive game stage selection 

method, we have introduced new factor for measuring 

the game stage complexity, through which we can decide 

how to assign a new stage in the current game 

environment.    

Game Stage Complexity 

An efficient Game design should attract players and 

crates more involvements to participate in the game 

activities. This is an optimization problem for the game 

designers and this has to provide an optimum solution for 

the growth of game stages. In the proposed game stage 

selection method, we have used two primary factors, 

time complexed to complete one single stage and 

complexity level of each stage. The following equation 

use to calculate time complexity and stage complexity, 

𝐶𝐿𝑒𝑣𝑒𝑙𝐶𝑢𝑟𝑟𝑡𝑆 ← 𝜆 + ∑ 𝑇𝑥𝑖
. 𝐶𝑥𝑖

𝑁

𝑖=1

    ← (1) 

𝜆(𝑇𝑆,𝐶𝑆)

←
1

2𝜋. 𝜎𝑇𝑆
. 𝜎𝐶𝑆

. √1 − 𝜌2
𝑒

−
1

2(1−𝜌2)
[(

𝑇𝑥𝑖
−𝜇_𝑇𝑆

𝜎𝑇𝑆
)

2

+(
𝐶𝑥𝑖

−𝜇_𝐶𝑆

𝜎𝐶𝑆
)−2.(

𝑇𝑥𝑖
−𝜇𝑇𝑆

𝜎𝑇𝑆
).(

𝑇𝑥𝑖
−𝜇_𝐶𝑆

𝜎𝐶𝑆
)]

    

← (2) 

𝜇𝑇𝑆
←

∑ 𝑇𝑥𝑖

𝑁
𝑖=1

𝑁
    ← (3) 

𝜎𝑇𝑆
← √

1

𝑁
(∑(𝑇𝑥𝑖

− 𝜇𝑇𝑆
)

𝑁

𝑖=1

)

2

    ← (4) 

𝜇𝐶𝑆
←

∑ 𝐶𝑥𝑖

𝑁
𝑖=1

𝑁
    ← (5) 

𝜎𝐶𝑆
← √

1

𝑁
(∑(𝐶𝑥𝑖

− 𝜇𝐶𝑆
)

𝑁

𝑖=1

)

2

    ← (6) 

𝑇𝑁𝑒𝑥𝑡𝑆 ←
𝑇𝐶𝑢𝑟𝑟𝑡𝑆

𝑁
    ← (7) 

Here, 𝜌 values may be varying from [0,1]. The proposed 

game state selection algorithm illustrated in algorithm1 

and algorithm 2 using Single and Multi-variate Normal 

Distribution. The algorithm 1 discussed about the 
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personalized game tree construction based on the user 

level of playing. The algorithm 2 is used to select the 

next suitable state from the current state of a game based 

on complexity values. The average time taken for 

completing a single state 𝑥𝑖 ∈ 𝑋 with maximum 

iterations computed as follows, 

𝐴𝑣𝑔𝑇𝑥𝑖
←

∑ 𝑇𝑥𝑖

𝑀𝑎𝑥
𝑖=1

𝑁
           ← (8) 

  Algorithm 1: Game Next Stage Selection  

Input: Game Tree 𝐺 (defined in Definition 1) 

Output: Game Wining Status and Terminate State 𝑥𝑗 ∈ 𝑇 

1. 𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒 ← 𝑥0  // assign a initial state of a Game 𝐺 

2. Assign 𝑇𝑆0
← 0 and 𝐶𝑆0

← 0 

3. 𝑊ℎ𝑖𝑙𝑒(𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒 ∉ 𝑇) 

4. Begin 

a. Start 𝑃𝐿𝐴𝑌(𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒)  

b. 𝑇𝑆𝑖
← 𝑇𝑖𝑚𝑒𝑇𝑎𝑘𝑒𝑛(𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒) 

c. 𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒 ← 𝑁𝑒𝑥𝑡 − 𝑆𝑡𝑎𝑡𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒, 𝑇𝑆𝑖
, 𝐶𝑆𝑖

) 

5. End 

6. 𝑹𝒆𝒕𝒖𝒓𝒏 (𝑆𝑡𝑎𝑡𝑢𝑠(𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒)) 

 

Algorithm 2: Game Next State Selection 

Input: 𝐶𝑢𝑟𝑟𝑡𝑆𝑡𝑎𝑡𝑒, Time taken for completing previous state, Complexity of previous state 

Output: Next Optimal State 𝑥𝑖 ∈ 𝑋 

1. Compute 𝜇𝑇𝑆
 and 𝜇𝐶𝑆

 using equation (3) and (5) 

2. Compute 𝜎𝑇𝑆
 and 𝜎𝐶𝑆

 using equation (4) and (6) 

3. For each 𝑥𝑖 ∈ 𝑋 do 

a. Compute average time 𝐴𝑣𝑔𝑇𝑥𝑖
 using equation (8) 

b. Compute complexity level of state 𝑥𝑖 by using equation (1)  

c. Compute average time 𝜇𝑇𝑆
 consumption rate using equation (3)  

d. 𝐼𝑓[(𝜇𝑇𝑆
≤ 𝐴𝑣𝑔𝑇𝑥𝑖

) 𝑎𝑛𝑑 (𝐶𝐿𝑒𝑣𝑒𝑙𝐶𝑢𝑟𝑟𝑡𝑆 ≤ 𝐶𝑥𝑖−1
)] 𝑡ℎ𝑒𝑛 𝑹𝒆𝒕𝒖𝒓𝒏(𝒙𝒊) 

4. End For 

 

5. Result and Discussion 

Dataset 

We have designed a dataset for game tree construction 

based on the model assumption defined in the definition 

part. In which the following parameters are added, game 

level (𝐺𝐿), level complexity (𝐿𝐶), State number (𝑆#), 

individual state complexity (𝐼𝑆𝐶𝑥𝑖
), average time for 

completing particular state (𝐴𝑣𝑔𝑇𝑥𝑖
), state nature(𝑆𝑁), 

and winning possibility (𝑊𝑃𝑥𝑖
). The following table 

provides sample of data feed taken from dataset, 

𝐺𝐿 𝑆# 𝐿𝐶 𝐼𝑆𝐶𝑥𝑖
 𝐴𝑣𝑔𝑇𝑥𝑖

 

(seconds) 

𝑆𝑁 𝑊𝑃𝑥𝑖
(%) 

1 3 0.21 0.18 38 NT 93 

1 6 0.21 0.16 33 NT 95 

2 1 0.26 0.25 67 NT 91 

2 5 0.26 0.27 64 NT 91.5 

3 6 0.29 0.36 93 NT 89.4 

3 2 0.29 0.35 96 NT 88.7 

5 4 0.61 0.58 182 NT 63.4 

7 6 0.72 0.67 192 NT 18.7 

9 2 0.84 0.78 162 T -1 

16 4 0.89 0.85 183 T 1 

Table 1: Sample Dataset from Game Tree construction with 16 Levels 

We have used three different dataset with 16 levels, 24 

levels, and 30 levels. The table 1 contains the samples 

taken from a game dataset, which contains 16 levels. The 

complexity of level in a game tree is assigned in as 

increasing order within the interval of [0, 1]. The 0.01 

indicates complexity is very less and 0.93 indicates high 
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complexity. The average time for completing individual 

state indicates the average time taken for completing one 

single state. State nature attribute indicates the current 

state is either terminate state 𝑇 or non-terminate state 

𝑁𝑇. The winning probability attribute contains a non-

linear integer value as a percentage of success in the 

game. If the winning probability is 1 then Game 

completed with wining and if it is -1 means then the 

player Loss the game. If it is 0 then game ended with tie 

mode. 

Experimental Evaluation 

We have created three different dataset by varying the 

levels from 16, 24, and 30. These data sets are contains 

553, 417, and 623 individual state entries respectively. 

We have used simple python code for writing the 

proposed adaptive game state selection method. The 

experiment evaluation conducted with different set of 

iterations for each game dataset. The experiments are 

coined with 150, 280, and 324 iterations for each game 

and we have measure two parameters, time take for 

completing all the iterations and average success, failure 

and tie in the game. The following equation (8), (9), and 

(10) used to calculate the average winning, losing, and 

tie for each game with different number of iterations 

(#𝑃𝑙𝑎𝑦𝑒𝑑). Here #𝑊𝑖𝑛 , #𝐿𝑜𝑠𝑠, and #𝑇𝑖𝑒indicates number 

of times success, loss, and tie in the game. The accuracy 

for the proposed is calculated by using the equation 11 

and equation 12 is used measure the average error ratio. 

𝐴𝑣𝑔𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ←
#𝑊𝑖𝑛

#𝑃𝑙𝑎𝑦𝑒𝑑

    → (8) 

𝐴𝑣𝑔𝐿𝑜𝑠𝑠 ←
#𝐿𝑜𝑠𝑠

#𝑃𝑙𝑎𝑦𝑒𝑑

    → (9) 

𝐴𝑣𝑔𝑇𝑖𝑒 ←
#𝑇𝑖𝑒

#𝑃𝑙𝑎𝑦𝑒𝑑

    → (10) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←
𝐴𝑣𝑔𝑆𝑢𝑐𝑐𝑒𝑠𝑠 + 𝐴𝑣𝑔𝑇𝑖𝑒

𝐴𝑣𝑔𝑆𝑢𝑐𝑐𝑒𝑠𝑠 + 𝐴𝑣𝑔𝐿𝑜𝑠𝑠 + 𝐴𝑣𝑔𝑇𝑖𝑒

    → (11) 

    𝐴𝑣𝑔𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑖𝑜 ←
𝐴𝑣𝑔𝐿𝑜𝑠𝑠

𝐴𝑣𝑔𝑆𝑢𝑐𝑐𝑒𝑠𝑠 + 𝐴𝑣𝑔𝐿𝑜𝑠𝑠 + 𝐴𝑣𝑔𝑇𝑖𝑒

→ (12) 

We have used multivariate normal distribution in the 

proposed method. In the experiment evaluation, we have 

used following two types of distribution mechanisms, 

exponential and poison distribution. The nature of these 

two distributions are different and equation (13) and (14) 

illustrate process of distribution, 

𝜆(𝑇𝑆,𝐶𝑆)
𝐸𝐷𝑖𝑠 ← (𝜇𝑇𝑆

+ 𝜇𝐶𝑆
). 𝑒−(𝜇𝑇𝑆

.𝑇𝑥𝑖
+𝜇𝐶𝑆

.𝐶𝑥𝑖
)

    → (13) 

𝜆(𝑇𝑆,𝐶𝑆)
𝑃𝐷𝑖𝑠 ←

𝑒−(𝜇𝑇𝑆
+𝜇𝐶𝑆

)
. 𝜇𝑇𝑆

𝑇𝑥𝑖 . 𝜇𝐶𝑆

𝐶𝑥𝑖  

(𝑇𝑥𝑖
+ 𝐶𝑥𝑖

)!
    → (14) 

 

 Proposed Method 

with different 

Distributions 

Number of Iterations 

Accuracy 

Avg. 

Error 

Ratio 

150 280 324 

Win Loss Tie Win Loss Tie Win Loss Tie 

Multivariate 

Normal 

Distribution 

(MND) 

95 19 36 152 42 76 201 55 68 85.6 16.3 

Poison Distribution 

(PD) 
92 24 34 137 49 84 189 56 79 83.1 17.9 

Exponential 

Distribution (ED) 
86 34 30 129 57 84 188 60 76 81 19 

Table 2: Performance Evaluation for Game Strategy 1 with 16 Levels 
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Figure 2: Performance Evaluation for Game Strategy 1 with 16 Levels 

 

Proposed Method 

with different 

Distributions 

Number of Iterations 

Accuracy 

Avg. 

Error 

Ratio 

150 280 324 

Win Loss Tie Win Loss Tie Win Loss Tie 

Multivariate 

Normal 

Distribution 

(MND) 

104 21 25 162 44 74 221 52 61 86.1 13.9 

Poison Distribution 

(PD) 
94 24 30 150 52 78 203 62 59 83.6 17.4 

Exponential 

Distribution (ED) 
85 31 34 151 49 80 192 71 61 79.3 20.7 

Table 3: Performance Evaluation for Game Strategy 2 with 24 Levels 

 

Figure 3: Performance Evaluation for Game Strategy 2 with 24 Levels 

Proposed Method 

with different 

Distributions 

Number of Iterations 

Accuracy 

Avg. 

Error 

Ratio 

150 280 324 

Win Loss Tie Win Loss Tie Win Loss Tie 

Multivariate 

Normal 

Distribution 

(MND) 

97 14 39 171 39 70 215 51 58 90.6 9.4 

Poison Distribution 

(PD) 
89 21 40 158 52 70 209 61 44 85.3 14.7 

Exponential 

Distribution (ED) 
82 27 41 163 48 69 205 58 61 84.4 15.6 

Table 4: Performance Evaluation for Game Strategy 3 with 30 Levels 
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Figure 4: Performance Evaluation for Game Strategy 3 with 30 Levels 

Performance Evaluation 

This section discussed about the performance evaluation 

for the proposed adaptive game state selection method 

based on different set of iterations like 150, 280, and 

324. The accuracy and average error ratio for the 

proposed method shows that 78.7% and 21.3% 

respectively. The poison and exponential distribution 

methods are providing accuracy of 73% and 72%. The 

proposed adaptive game design methods are performing 

well.   

6. Conclusion 

In this paper, we have proposed an adaptive game state 

selection method using multivariate normal distribution 

function for selecting game states in a linear way. The 

proposed method uses two important factors for deciding 

next state selection from the current level of a game, time 

to complete one single state and complexity of states 

within the particular level. The proposed method is a 

kind of slow-learning technique using multivariate 

normal distribution method. The experiment evaluation 

is done by using three different game strategy with 150, 

280, and 324 iterations. We have used two other 

distribution functions for taking accuracy and average 

error ratio for the proposed method. The performance 

evaluation shows that the proposed method achieves 79.3 

% accuracy and 20.7 % average error ratio. The 

exponential and poison distribution achieves accuracy of 

73.7 % and 72.3 % respectively. 
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