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Abstract: Alzheimer’s Disease (AD) is a neurodegenerative disease that commonly occurs in older people. Recently, researchers created a 

novel approach based on deep learning, a branch of machine learning, for the instinctive analysis of AD. It is characterized by both cognitive 

and functional impairment. However, as AD has an unclear pathological cause, it can be hard to diagnose with confidence. This is even 

more so in the early stage of Mild Cognitive Impairment (MCI). Accurate and rapid classification of AD is critical for the diagnosis and 

treatment of elder patients. However, MRI images often present challenges such as variable size and shape, low contrast, blurred 

boundaries, and numerous shadows. To address these issues, In this research article, we propose a lightweight U-Net architecture(LW-

Unet) for the classification of AD. We add residual blocks, and residual convolutional layer pathways are integrated into the atrous spatial 

pyramid pooling (ASPP) module and Multi-Scale Context Fusion  Block (MSCFB). To fuse convolutional feature maps in encoding layers, 

the ASPP unit used a learnable set of parameters. An efficient architecture for feature extraction during the encoding step is the ASPP unit. 

We integrated the AD unit with the benefits of the U-Net network for deep and shallow features. A mixed loss function composed of Dice 

loss, Bce loss, and Focal loss functions is used. The experimental results are validated using the Sensitivity, PPV, Dice similarity 

coefficient(DSC), and IOU values. The AD classification accuracy of the proposed method  LW-Unet is 98.40, and 98.91  in the ADNI 

and  NACC Data sets respectively. The results show a good performance of the proposed MLCNN model in terms of dice similarity 

coefficient criteria and IOU value.. 
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1. Introduction 

Dementia is a general term for a loss of memory, language, 

problem-solving and other thinking skills that are severe enough to 

affect daily life. The commonest causes of dementia include 

Alzheimer’s disease (AD), vascular dementia (VaD), and dementia 

with Lewy bodies (DLB)[1-2]. Both the prevalence and incidence 

of dementia increase with advancing age, but about 5% of cases 

have onset at age all currently available treatments may only delay 

its progress. Nonetheless, the diagnosis of AD, especially in the 

early stages, is important, so that individuals and families can be 

aware and make adjustments to their lives as needed, but also since 

more precise diagnosis will be needed to develop new, potentially 

disease-modifying treatments[3].  

In general, mild cognitive impairment (MCI) represents the early 

stage of AD. Patients diagnosed with MCI are more likely to 

progress to AD with a ratio of about 16% developing AD within 

about 4 years, compared with non-MCI subjects whose conversion 

rate is about 1-2% in this period[4]. However, not all people 

diagnosed with MCI will progress to AD and some will remain 

stable or even return to normal cognition, which indicates that MCI 

can be further divided into two categories: progressive MCI 

(pMCI) and stable MCI (sMCI), according to the future risk of 

progressing to AD in future years. Therefore, identifying MCI and 

its sub-categories (pMCI and sMCI) should have a significant 

impact on the early stage of treatment to mitigate the progress of 

dementia. AD, as a neurodegenerative disease whose pathologic 

cause is unclear, is hard to identify with certainty by noninvasive 

clinical investigations[5-6]. 

Clinical diagnosis usually relies on a combination of history, 

mental state examination, and cognitive testing. The most 

commonly used cognitive instrument for AD diagnosis has been 

the Mini-Mental State Examination (MMSE), which is a short 

questionnaire testing a range of cognitive domains. However, 

despite having quite high sensitivity and specificity for dementia, 

the MMSE performs less well with early-stage MCI [7]. The most 

commonly used cognitive instruments for the diagnosis of AD and 

MCI are Mini-Mental State Examination (MMSE), and MoCA[8-

9]. These cognitive assessment tools are short questionnaires to test 

a range of cognitive domains. However, despite having relatively 

high sensitivity and specificity for dementia, they perform less well 

in the diagnosis of early-stage MCI[10]. Further, their scores are 

affected by educational level and language, and therefore, they are 

insufficiently objective as a means of diagnosis. The sampled brain 

MR image is given in Figure 1. 

 
Figure 1. Sample brain MR image of a CN, MCI, and AD patient. 
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 Recently, machine learning technology has shown promising 

performance in AD incidence prediction with large-scale 

administrative health data (Park et al., 2020). A more objective 

approach to AD diagnosis is through biomarkers such as brain 

imaging [11-13], and blood and cerebrospinal fluid examination. 

However, due to the unclear pathological cause, there is no 

uniform standard for AD diagnosis through biomarkers. Applying 

such tests for MCI is even less precise because of the heterogeneity 

of the syndrome of MCI. Consequently, with the development of 

artificial intelligence in the field of computer vision, computer-

aided AD diagnosis, including prediction of AD and MCI, using 

medical images has become a research hotspot in recent years[14-

15]. Some recent studies have shown its capability in AD diagnosis 

with various modalities of radiography as input including 

structural MRI (sMRI), functional MRI (fMRI), and positron 

emission tomography (PET). The remaining portions of the paper 

were assembled as follows: Section 2 gives a review regarding 

feature extraction as well as the categorization of AD diagnosis. 

Section 3 explains the proposed LW-Unet methodology. Section 

4, elaborates on the experimental results, comparisons, and 

discussions, followed by Section 5, which concludes the paper. 

2. RELATED WORK 

Detailed preprocessing with refined extraction of 

biomarkers combined with statistical analysis is the accepted 

practice in current medical research. In their study of biomarkers 

derived from T1-weighted MRI scans of AD, MCI, and HC using 

voxel-based morphometry and parcellation methods, Risacher et 

al. The study indicates statistical significance in a number of 

measurements, including entorhinal cortex thickness and 

hippocampal volume. This significance was further supported by 

Qiu et al(2009)[16] who used large deformation diffeomorphic 

metric mapping (LDDMM) to examine regional volumetric 

changes. In order to find microRNA biomarkers in various stages 

of Alzheimer's disease, Guevremont et al(2022)[17] concentrated 

on robustly detecting microRNAs in plasma and employed 

standardized analysis. This study's statistical analysis produced 

valuable diagnostic markers that represent the pathology of the 

underlying disease. To detect changes in biomarkers during 

disease progression, various biomarker information was retrieved 

and fed into statistical analysis methods with changing numbers of 

variables. Other neuroimaging data, genetic information, and CSF 

biomarkers were used in similar investigations. This research 

established the rationale for MRI imaging biomarkers in the 

diagnosis of AD and MCI and provided the groundwork for the 

creation of automatic diagnostic algorithms. 

Due to its ability to adapt to data and generalize information 

with less need for expert experience, machine learning has become 

one of the most prominent automated diagnostic methods in use 

today. Through a performance comparison between the Support 

Vector Machine (SVM) categorization of local grey matter 

volumes and human diagnosis by qualified radiologists, the work 

by Klöppel et al (2018)[18] demonstrated the usefulness of using 

machine learning algorithms in detecting dementia. Using 

penalized regression with resampling, Janousova et al(2013)[19] 

suggested looking for discriminative regions to help Gaussian 

kernel SVM classification. The study's regions were those 

previously identified by morphological investigations. These 

innovations sparked the creation of numerous machine-learning 

algorithms for the identification of AD and MCI[20-21].  

A kernel combination technique was put out by Zhang et al 

(2011)[20] for the fusing of diverse biomarkers for classification 

using a linear SVM. The Multifold Bayesian Kernelization (MBK) 

approach was proposed by Liu et al. [25] and uses a Bayesian 

framework to compute kernel weights and synthesis analysis to 

yield diagnostic probability for each biomarker. Particle swarm 

optimization (PSO), Welch's t-test (WTT), a polynomial kernel 

SVM, and Zhang et al.'s [26] proposal for extracting the eigenbrain 

were used. With the help of CNN deep learning algorithms, Gorji 

and Naima (2019)[21] were able to distinguish between EMCI and 

LMCI with 93% accuracy, 91.48% sensitivity, and 94.82% 

specificity using sagittal characteristics from an MRI picture. 

Additionally, Nozadi and Kadoury (2018)[22] used the ADNI 

dataset to examine the FDG and AV-45 biomarkers of the PET 

picture and then used RBF-SVM and RF to separate AD, NC, 

EMCI, and LMCI into six groups. Their method demonstrated 

accuracy for AD versus NC using RBF-SVM and RF with FDG-

PET imaging modalities of 91.7% and 91.2%, respectively. 

The OASIS dataset was utilized for comparison, while Gupta et al 

(2019) [23] offered a solution using the GARD dataset as a known 

private dataset. According to the classifier, the four classifiers 

produced better results when used for binary and tertiary 

classification. The softmax classifier demonstrated the greatest 

accuracy of 99.34%, 100% specificity, and 100% precision for AD 

against HC. The SVM classifier had a 99.2% accuracy, 100% 

specificity, and 100% precision for the HC versus mAD instance. 

Good results were also obtained using the mAD against aAD SVM, 

including 97.77% accuracy, 100% sensitivity, and 97.95% F1 

score. SVM had the highest accuracy of 99.42%, 99.18% 

sensitivity, and 99.99% precision in AD against HC versus mAD 

for tertiary classification. 

 

3. PROPOSED METHODOLOGY 

In this section, we provide a brief introduction to the main 

processing frameworks of this paper as follows: the full 

convolution structure for the generator and the discriminator 

structure are provided, and in addition, a combined loss function 

based on reducing category imbalance is then introduced. 

3.1 Data preprocessing 

The classification accuracy will be inadequate due to the 

morphological diversity of brains, such as high variability of 

brain location, boundary ambiguity, and deviation from manual 

annotations, therefore preparation of brain data is very important. 

3D Brain image size is 240×240×155. In our data preprocessing 

step, invalid pixels of brain images are first removed, and then 

each 3D image data is sliced into a number of 2D images. Then, 

every patch with a size of 128×128 is extracted on each 2D slice. 

Simultaneously, Z-score regularization to regularize irregular 

brain s is used to lessen the intensity difference between distinct 

brain slices, which is described in Eqn(1): 

                                                                                     (1) 

               where z is the input image, z  is the normalized image, 

 
is the average value of the input image, and  is the standard 

deviation of the input image. 

3.2 AD classification using Lightweight U-Net 

In terms of classification performance, an improved U-Net 

network for AD MRI image classification, that is, the Lightweight 

Unet (LW-Unet) network, is constructed, and the U-Net network 
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is improved at the structural and non-structural levels. The goal of 

high accuracy and high precision classification of MRI images of 

ADs has been realized. In terms of classification efficiency, the 

LW-Unet network consumes a large amount of storage and 

computing resources due to the increase in the number of 

parameters and calculations. It also has the risk of over-fitting, 

which hinders the classification network from moving toward 

large-scale clinical applications. In order to solve these problems, 

the LW-Unet network is lightweight and designed to achieve a 

good balance between performance and efficiency. The LW-Unet 

structure is given in Figure 2. Figure 2 shows the network structure 

of the deep convolutional network Light weight Unet for AD MRI 

image classification. The main structure of the network is still the 

encoder and decoder structure of U-Net. The left path of the figure 

represents down-sampling, and the right path of the figure 

represents upsampling. There are 4 feature fusion channels 

between the paths on both sides, and the input is 512 × 512 AD 

MRI images[24]. 

 
Figure 2. Lightweight Unet network structure 

 

The contraction path consists of 4 groups of residual modules 

and 4 times 2 × 2 maximum pooling. The use of residual modules 

can effectively avoid gradient disappearance, accelerate the 

convergence of the network, and make the network more stable. In 

the encoding process, every time the residual module is passed, the 

number of channels of the feature layer is doubled, and the spatial 

size remains unchanged. Every time a 2 × 2 maximum pooling 

layer is passed, the spatial size of the feature layer is halved, and 

the number of channels remains constant. Two residual modules 

and one ASPP module are connected at the end of the encoding 

network, which expands the receptive field of the network and 

avoids the problem of losing edge information due to continuous 

pooling. The Res Path is introduced in the feature fusion channel 

so that the feature layer of the encoding network can be cascaded 

with the feature layer of the decoding network after passing the Res 

Path. This can reduce the semantic interval between the two parts 

of the feature layer, and combine the shallow features in the 

network with deep features. The expansion path includes 4 sets of 

CBAM attention modules, 4 sets of residual modules and 4 times 

2 × 2 upsampling operations. Adding CBAM attention modules 

can suppress unimportant information in the image and emphasize 

important features in the image. In the decoding process, when 

upsampling is performed, the feature layer size is doubled and the 

number of channels remains unchanged. After the residual module 

and the CBAM attention module, the feature layer space size 

remains unchanged while the number of channels is halved. The 

last layer of the decoding network uses 1 × 1 convolution to reduce 

the number of feature maps and outputs the classification result 

map of AD s.  

3.2.1 Residual module 

In U-Net, as the number of network layers deepens, the 

network performance improves, but it may face the problem of 

gradient disappearance, resulting in network degradation. 

Introducing a residual network can effectively solve this problem 

[27]. X  is the input of the network and ( )F X  output of the 

feature extraction module, which ( )H X  represents the actual 

mapping. The residual module’s output is: 

                       
( ) ( )H X F X X= +

                        (2) 

The residual module consists of a residual learning part and 

an identity mapping part. The overall operation process is: 

convolution, batch normalization (BN) operation, leaky rectified 

activation function (Leaky ReLU), convolution, BN operation, 

Leaky ReLU, this module can not only speed up convergence 

speed, and effectively solve the problem of network model 

degradation. 

3.2.2 Res path 

The original U-Net network can take into account richer 

global information prediction and more local detail prediction. 

However, in the AD MRI image classification task, it is necessary 

to fuse the underlying semantic features with the high-level 

semantic features, skip the connection will cause the 

incompatibility of the two features. There will be semantic 

differences, which will adversely affect the classification effect of 

the image. In response to this problem, the introduction of Res Path 

into the U-Net network can apply the residual idea to the feature 

propagation path, cascade the feature layers on the encoding and 

decoding path, and fuse two different semantic features. 

 
Figure 3. Res Path structure 

 

The overall structure of the residual convolutional layer chain 

is shown in Figure 3. Res Path consists of four 3 × 3 convolutional 

layers and a 1 × 1 residual structure. After the Res Path, the feature 

layer space size and a number of channels remain the same. As we 

move towards deep skip connections, the semantic gap between 

feature maps on the downsampling and upsampling paths shrinks. 

Thus, the number of convolutional blocks used in the Res Path of 

the LW-Unet decreases progressively, using 4, 3, 2, and 1 

convolutional blocks in Res Path 1, 2, 3, and 4 respectively. The 

addition of Res Path, a non-linear operation, effectively reduces 

the semantic difference between the encoder and the decoder, 
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enabling a better fusion of shallow features and deep features, 

thereby improving the performance of the model. 

3.2.3 ASPP module 

In the U-Net network, the feature resolution is negatively 

correlated with the number of network layers, that is, the feature 

resolution will decrease as the number of network layers increases. 

Although the model can learn more advanced semantic 

information, it is often accompanied by a certain amount of 

information loss, which is generally not conducive to the progress 

of the division task. In order to capture more abstract feature 

information and retain more spatial information, and improve the 

accuracy of classification, an ASPP module is added to the deepest 

layer of the U-Net network. 

 
Figure 4. ASPP structure 

 

The workflow of the ASPP module is shown in Figure 4. 

After the feature map is input, it will enter six parallel branches. 

The first branch directly performs the convolution operation on the 

input feature map 1 × 1 to obtain a multi-scale feature map. In the 

next four branches, the 3 × 3 void convolution expansion rates are 

2, 4, 8, and 16 respectively. The last branch is 1 × 1 the linear 

activation of the convolution. After that, the corresponding pixel 

addition operation is performed on the obtained six feature maps 

to obtain the output features picture. The features extracted through 

different scales of receptive fields are different, which can 

compensate for the information loss caused by deep convolution 

and obtain richer abstract information at the same time. 

 

3.2.4 Multi-Scale Context Fusion  Block (MSCFB) 

The U-Net network in the AD  classification task is not ideal, 

which is largely due to the problems of more shadows and blurred 

boundaries in AD MRI images. As a lightweight network module, 

the MSCFB module can be easily implanted into other network 

structures. The MSCFB module can selectively focus on important 

information in the image, ignore unimportant areas, and apply to 

Excellent performance in classification tasks. Introducing the 

MSCFB attention mechanism into the decoding path of the U-Net 

network can enable the U-Net network to focus on the features of 

the AD region when performing the classification task of AD MRI 

images. The specific performance is as follows: During the 

network training process, the MSCFB module will give a larger 

weight to the AD region of the image in the convolutional layer 

through continuous learning so that the network can obtain more 

AD feature information and achieve the purpose of improving the 

model classification performance[31]. 

 

Continuous convolution and pooling operations can detect feature 

maps with different scales. Due to the fixed network layers, it has 

some shortages on multi-scale context extraction. Faced with this 

issue, a MCF block is proposed for context enhancement to obtain 

multi-scale spatial context information. Combined with the atrous 

convolution, it offers a practical way to acquire various receptive 

fields. Additionally, it produces fewer model parameters than 

traditional convolution, such as 5*5 convolution, 7*7 convolution, 

etc. Inspired by this advantage, atrous spatial pyramid pooling 

(ASPP) block has been proposed to detect multi-scale contexts. 

However, it exists the grid effect that some image pixels are in the 

visual blind area, and could not be involved in the information loss 

to cause the information loss(see Fig.5). Inspired by As the PP 

block, by stacking four 3*3 atrous convolutions, the MCF block is 

proposed for MA classification. For the MCF block, combined 

with atrous convolution, four parallel network branches are built 

for multi-scale feature representation, and the dilation rates for four 

atrous convolution layers are set as 1, 3, 5, and 7. The specific 

mathematical description is given in Eq.(3). 

                                           

                            (3) 

      where Fd1 represents the 3*3 atrous convolution of the dilation 

rate of 1, Fd3 represents the 3*3 atrous convolution of the dilation 

rate of 3, Fd5 represents the 3*3 atrous convolution of the dilation 

rate of 5, Fd7 represents the 3*3 atrous convolution of the dilation 

rate of 7. Ha represents the input feature maps, and (Hc1, Hc2, 

Hc3, Hc4) represents the four output feature maps from four 

parallel network branches. Meanwhile, the global pooling layer is 

also introduced to acquire the average of the global contexts. The 

final output of the proposed MCF block is defined as per Eqn (4). 

                                     

                                (4) 

where G represents the network branch with global pooling. 

                   

Fig. 5: Grid effect on cascaded atrous convolution. (a) 3*3 atrous 

convolution; (b) Two cascaded 3*3 atrous convolution; (c) Three 

cascaded 3*3 atrous convolution. 

3.2.5  Loss function 

The loss function is used to evaluate the difference between 

the predicted value of the model and the real value. The loss 

function gradually converges, which means that the training of the 

model has reached a better level. Therefore, it is also very 

important to choose an appropriate loss function.  In this paper, the 

absolute error loss 𝐿1 and the minimization of the perceptual loss 

𝐿𝑝 are thoroughly examined, and a loss function appropriate for 
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Colonoscopy images is developed. As we all know, norm loss 

functions 𝐿1 and 𝐿2 will have fuzzy problems regarding image 

classification. The loss function 𝐿1 , the minimum absolute 

deviation function, has higher robustness and less fuzziness than 

the loss function 𝐿2. Therefore, we introduce 𝐿1 to encourage the 

network to segment an image with higher similarity to the ground 

truth image by measuring the pixel-level value difference between 

them. The loss function is as follows: 

 

                                             (5) 

where 𝐼̂ and 𝐼 ∗ represent segmented images and ground truth 

images from the training dataset, respectively; 𝜀 represents the 

error offset. The perceptual loss function is an advanced feature 

retrieved from the 𝑏𝑙𝑜𝑐𝑘5 layer of the pre-trained LW-Unet. 

The perceptual loss function is primarily calculated by comparing 

the features taken from the image to a LW-Unet network that has 

already been trained. The following is what we propose: 

                                                 (6) 

where 𝜑 represents the feature map of the pre-trained LW-Unet  

network. 𝐻 and 𝑊 are the height and width of the feature map. The 

total loss function is expressed as: 

                                                                    (7) 

where 𝜆1 and 𝜆2 represent the weight of the absolute error loss 

function and the perceptual loss function in the total loss function, 

respectively. 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Data set: 

The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, 

which is freely accessible online at http://adni.loni.usc.edu, is the 

data source for this work. With the help of biomarkers, the ADNI 

hopes to develop more sensitive and precise methods for detecting 

Alzheimer's disease in its early stages. We employed a total of 694 

structural MRI scans for this study, of which 198 were initially 

categorized as AD, 230 as NC, 166 as pMCI, and 101 as MCI at 

baseline. The 166 pMCI participants were initially identified as 

having MCI at baseline, but after a 36-month follow-up, it was 

discovered that they had converted to AD. The subjects' MMSE 

scores ranged from 20 to 26 (AD), 24 to 30 (MCI), and 24 to 30 

(MCI) for each group, and their ages ranged from 55 to 90.The 

NACC data set https://www.alz.washington.edu, and the 

ARWIBO one from https://www.gaaindata.org, which is publicly 

available on the web.  In this work, we used a total of 694 structural 

MRI scans that were initially classified into AD (n = 122), HCI 

(n = 130), EMCI (n = 69), and LMCI (n = 54). 

 

4.2. Performance of proposed LW-Unet Model  

We have trained the LW-Unet based on Nvidia V100 32GB GPU 

for 400 epochs with the batch size set to 10. We have conducted 5-

fold cross-validation on the dataset of MRI  with 80% for training 

and 20% for testing. Evaluation criteria Various criteria are used 

to evaluate the performance of the proposed method in determining 

the AD area. These include dice similarity coefficient (DSC), 

intersection-Over-Union (IOU) sensitivity, and positive predictive 

value (PPV) as measured by Eqn(8) 

                                                                (8) 

where ‘TP’ is the number of pixels in the true AD area, ‘FP’ is the 

number of pixels in the false AD area, ‘TN’ is the number of pixels 

in the true non-AD area, and ‘FN’ is the number of pixels in the 

false non-AD area. 

This study selected different convolutional neural network-based 

models for training and testing in three different datasets. The 

convolutional neural network models are AlexNet (Krizhevsky et 

al, 2018), UNet (Ronneberger et al., 2015), UNet++ (Tulsani et al., 

2021), and DeeplabV3+ (Yang et al., 2020)[28-30]. The 

experimental results of the proposed LW-UNet using the ADNI 

dataset is given in Table 1 and the NACC dataset is given in Table 

2.  

Table 1: Detailed Results of the  proposed LW-Unet model with 

different Categories on ADNI Data set 

Proposed 

Models Accuracy 

(%) 

AUC(%) Sensitivity

(%) 

Specifici

ty(%) 

F1-

Score(%) 

AD 
98.77 98.96 98.40 98.67 98.12 

NCI 97.63 96.56 98.58 97.11 97.33 

sMCI 98.54 98.12 97.76 97.43 97.15 

pMCI 98.91 97.91 97.36 98.15 98.93 

 

Experimental results of different DCNN models with the 

ADNI dataset are given in Table 3. As shown in Table 3, the 

proposed model, which is good at processing medical images, has 

achieved good classification accuracy, compared with the other 

models.  

 

Table 2: Detailed Results of the  proposed LW-Unet model with 

different Categories on the NACC and ARWIBO Data set 

Propose

d Models Accuracy 

(%) 

AUC(%) Sensitivity

(%) 

Specific

ity(%) 

F1-

Score(%) 

AD 98.45 98.48 97.91 98 98.91 

NCI 
95.83 94.74 92.56 99 99.21 

sMCI 
96.43 95.45 92.75 97.12 

97.15 

pMCI 
95 94.87 91.89 92.75 

97.93 

 

https://www.alz.washington.edu/
https://www.gaaindata.org/
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TABLE 3 Comparisons of AD classification results in different 

DCNN methods 

Models Sensitivity Specificity F1 ACC AUC 

                                      ADNI   Data set 

UNet++ 0.8628  0.8112  0.7526  0.8157  0.9167 

DeeplabV3+  0.6269  0.9821  0.6909  0.9511 0.9534 

UNet 0.6851  0.9800  0.7232  0.9543  0.9584 

AlexNet 0.6972  0.9889  0.7691  0.9635  0.9769 

LW-Unet 0.9879 0.9896  0.9840  0.9840  0.9871 

                        NACC and ARWIBO    Data set 

UNet++ 0.8823 0.8643  0.8123 0.8412  0.9512 

 

DeeplabV3+  

0.7122 0.9712 0.7342 0.9612 0.9712 

UNet 0.7841  0.9721 0.8232  0.9612 0.9612 

AlexNet 0.7911 0.9767 0.8691  0.9712 0.9811 

LW-Unet 0.9812 0.9912 0.9851  0.9891  0.9812 

 

4.3 Comparison with Other State-of-the-Art Methods 

In this section, a comparison is shown between the 

suggested approach and other methods that already exist for 

detecting AD. In light of the fact that various approaches have been 

tested on MR images, various handmade feature-based methods 

and deep learning-based methods for the identification of AD in 

MRI images have been selected. In Table 4, we compare the 

findings of the ADNI dataset with those obtained by several 

current methodologies. In the approaches that are now in use, the 

detection of an AD candidate comes first, followed by the 

collection of characteristics that are used to determine if the 

candidate is normal or abnormal. As can be shown in Table 4, the 

suggested technique achieves superior detection results when 

compared to other methods already in use for detecting nodules 

using MR imaging.  

 

Table 4 : AD Classification results of the proposed method and 

state-of-the-art methods 

Model Accuracy Recall Precision F1-

score 

AUC 

 

Liu et al. 

(2018) 

92.65 92.88 92.10 91.34 89.34 

Liu et al. 

(2020) 

 

93.54 

 

92.73 

 

93.35 

 

93.01 

 

90.50 

Xia et al. 

(2020) 

 

97.22 

 

96.63 

 

97.01 

 

96.81 

 

95.64 

Kruthika et 

al. (2019) 

 

95.58 

 

95.52 

 

94.78 

 

95.12 

 

93.15 

Zhang et al. 

(2019) 

 

95.75 

 

94.91 

 

95.08 

 

94.96 

 

93.36 

Proposed 

(LW-Net) 

98.79 98.96  98.40  99 99.8 

 

The AD classification visualization results of the proposed LW-

Unet model are given in Figure 6. . Furthermore, as shown in Fig. 

6, the age difference allowance for constructing an edge can be 

varied to adjust the degree of connection restriction between nodes. 

With the large age difference allowance, the connection restriction 

should be loose, which results in more edges for each node, and 

vice versa. 

 
Fig. 6. Visual comparison of AD classification produced by LW-

Unet frameworks. 

 

5 . CONCLUSION 

In the current study, a new pipeline methodology was offered for 

the automatic classification of AD from MRI images. The process 

starts with a pre-processing stage including noise reduction and 

contrast enhancement and then it is fed to the main process. We 

propose an LW-Unet work for AD classification using MRI 

images, which has proved effective owing to the performance 

improved by deep learning algorithms with types of different types 

of classes for AD diagnosis. The experimental results also show 

that our proposed Lightweight UNet-based node classifier with 

graphs constructed from the image and phenotypic data has the 

best performance. In order to verify the effectiveness of the 

improvements made to the U-Net network, three comparative 

experiments were designed: the comparison test of the LW-Unet 

network model and other classic classification network models in 

terms of classification performance conducted ablation 

experiments on different improved modules and verified the 

performance of the loss function in terms of classification. The 

number of network layers and parameters is effectively decreased 

by connecting the internal convolutional layers in parallel. To boost 

prediction abilities, Dense Block is specifically used to extract rich 

low-level characteristics. The suggested decoder reduces boundary 

loss and degree of overfitting in image classification by fusing 

multi-scale semantic information to restore image details. 

Extensive testing on the ADNI dataset shows that our suggested 

strategy performs better than the state of the art. 
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