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Abstract: Machine Learning and Big Data of today's IT sector. Large volumes of data are reviewed and information extracted using big 
data storage. Machine learning, on the other hand, refers to a computer's ability to learn and develop without being explicitly taught. 
Decision trees and neural networks are used in combination with machine learning methods for these reasons. Many sectors have seen 
amazing development as a result of the dominating mix of Machine Learning and big data. One of these industries is the e-commerce 
industry. Financial analysts may use predictive analytics to track and exchange critical information about the various economic problems. 
They automatically retain data on their daily transactions, payments and linked systems, allowing customers to remotely access and manage 
the financial transactions using the concept of cognitive behaviour of Machine Learning. Along with this we will cover the part of intrusion 
or any other vulnerabilities. We will use Privacy-preserving techniques using Deep learning models with TensorFlow privacy-preserving 
method for financial data. we would implement the neural net. Beyond that, we will need to explore various RNNs models to determine 
appropriate data and context. We will test the trained model and evaluate performance using Accuracy, Precision, recall and F score. 
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1. Introduction 

There are two blue-chips: Machine Learning and Big Data 
of today's IT sector. Large volumes of data are reviewed and 
information extracted using big data storage. Machine 
learning, on the other hand, refers to a computer's ability to 
learn and develop without being explicitly taught. 
Automatic data processing and decision-making algorithms 
are the pillars of machine learning that learn from their past 
experiences and improve at each stage of their job. "Evolve 
via learning," to put it another way. To keep up with the 
ever-growing and ever-changing stream of data in the 
context of Big Data, Machine Learning is applied in order 
to provide constantly evolving and relevant insights. 
Machine learning algorithms explain and detect patterns in 
the incoming data, they are then translated into other 
languages with actionable insights that can be incorporated 
into business processes. Many more decision-making 
processes were then automated by use of the algorithms. [1] 
 
Decision trees and neural networks are used in combination 
with machine learning methods for these reasons. Many 
sectors have seen amazing development as a result of the 
dominating mix of Machine Learning and big data. One of 
these industries is the e-commerce industry. Integrating 

statistical models with data is assisting financial analysts in 
determining the solutions for various financial crises and to 
decide the remedies to overcome from it and for future 
perfectness.  
Financial analysts may use predictive analytics to track and 
exchange critical information about the various economic 
problems. They automatically retain data on their daily 
transactions, payments and linked systems, allowing 
customers to remotely access and manage the financial 
transactions using the concept of cognitive behavior of 
Machine Learning [2]. 
 

2. Related Work 

 
Rutvij H. Jhaveri (2022) [3] The digital environment of the 
Industry 5.0 revolution is rife with massive volumes of data. 
Despite the need for data analysis and interpretation, 
machine learning is showing promise in a number of fields, 
including intelligent control, decision-making, speech 
recognition, natural language processing, computer 
graphics, and computer vision. Recent years have seen a 
wide recognition and use of deep learning & machine 
learning techniques by many real-time engineering 
applications due to their remarkable performance. 
Designing automated and intelligent applications that can 
manage data in domains like health, cyber-security, and 
intelligent transportation systems requires a solid 
understanding of machine learning. In the topic of machine 
learning, there are many different approaches, such as 
supervised algorithms, semi-supervised algorithms, 
unsupervised algorithms, & reinforcement learning. study 
offers a thorough examination of managing machine 
learning-powered real-time engineering applications, which 
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will raise the capabilities & intelligence of an application. 
This research advances our knowledge of how different 
machine learning techniques can be applied in practical 
settings, including intelligent transportation systems, cyber 
security, or healthcare. The goals of this study are to shed 
insight on the challenges that machine learning techniques 
face while handling practical applications. Academics & 
experts in the business will use this study as a point of 
reference, and from a technical perspective, decision-
makers on a variety of application domains & real-world 
situations will use it as a benchmark. 

Shiv Hari Tewari (2021) [4] Among the many technological 
and operational advancements in cybersecurity in recent 
years, data science has emerged as a driving force. 
Automating and enhancing a security system requires the 
extraction of security event patterns or insights from 
cybersecurity data and the creation of a data-driven model. 
Data science is the study and analysis of real-world events 
utilizing a variety of scientific methodology, machine 
learning techniques, processes, and systems. Data science, 
its development, and its applications in cloud security are 
briefly presented in this study by the Researcher, as well as 
how cybersecurity data science came to be, the benefits 
provided by Cybersecurity Data Science (CSDS), and the 
steps involved, such as gathering data from relevant 
cybersecurity sources and combining it with analytics to 
provide more effective security solutions. Thoughts of 
cybersecurity data science provide more intelligent, 
actionable computing compared to traditional cybersecurity 
computing. After that, the researcher went through the 
numerous potential issues that may arise as a result of the 
widespread use of CSDS, as well as how machine learning 
and deep learning may be applied to it and the different sorts 
of algorithms that can be used. As a result, in addition to 
examining the history of Data Science and its current 
applications in cybersecurity, the research also examines 
how a system that relies on data-driven intelligent decision-
making might protect our system from both known and 
unknown cyber threats. 

Kosrat Dlshad Ahmed (2021) [5] Users benefit from 
enhanced experiences and higher service quality from a 
variety of angles thanks to IoT technologies & connectivity. 
In this regard, it is necessary to assure the recent growth of 
technological prospects & management of sufficient aspects 
for the delivery of performance. Broadly connected features, 
systems, data storage facilities, management procedures, 
applications, devices, users, gateways, services, and 
thousands of other components are all connected in the 
context of the Internet of Things idea. IoT applications have 
become increasingly important in recent years, which has 
created enormous development & management potential. 
Users' attention has recently been drawn to cybersecurity 
and protecting user privacy. An increasing number of people 
are connecting as social media platforms gain popularity. As 

opportunities for connectivity rise, people require more safe 
spaces for connectivity. This article covers a variety of 
cybersecurity topics, including developing and managing 
cybersecurity, comprehending security & privacy concepts, 
and utilizing deep learning models to analyze machine 
learning concepts. In order to illustrate the comprehension 
of cybersecurity within Internet of Things networks, several 
deep learning models, including CNN, MLP, LSTP, and a 
hybrid model combining CNN & LSTP, have been 
examined. Prospective study opportunities have also been 
suggested to aid in the learning process.  

Brian Schwartz (2020) [6] In order to recommend the best 
course of action for patients based on their pre-treatment 
characteristics, this study intends to develop a treatment 
selection algorithm that combines statistical inference or 
machine learning.  The study examined a naturalistic, 
disorder-heterogeneous sample of N = 1,379 outpatients 
receiving either cognitive behavioral therapy or 
psychodynamic therapy. The training data (n = 966) was 
used to model the varying treatment response, which 
indicates each person's ideal treatment, using a combination 
of random forest and linear regression. Personalized 
recommendations were assessed using a different holdout 
dataset (n = 413).  Regarding the training data, there was a 
significant difference in the outcomes between patients who 
received their optimal treatment and those who did not (b = 

0.043, p =.280). However, this difference was not 
significant in the holdout data. fortunately, the average 
percentage of change on the BSI in the holdout data was 
52.6% for their optimal or 38.4% for their non-optimal 
treatment (p =.017; d = 0.33 [0.06, 0.61]) for the 50% of 
patients with the greatest predicted benefit of receiving their 
optimal treatment. A treatment selection algorithm that 
supports therapists' clinical decision-making & based on a 
blend of machine learning and statistical inference may 
enhance treatment outcomes for certain outpatients but not 
all of them. 

Ouissem Ben Fredj (2020) [7] The frequency of 
cybersecurity attacks is rising exponentially, which renders 
current detection methods inadequate or increases the need 
to develop more pertinent prediction models and strategies. 
Since current attack prediction models are unable to keep up 
with the vast volume or diversity of attacks, this problem 
remains unresolved. Researchers have recently focused a lot 
of attention on machine learning approaches, particularly 
deep learning techniques, due to their exceptional 
performance in various prediction-based fields. This paper 
investigates the use of deep learning techniques for 
cybersecurity attack prediction in this context. Specifically, 
it suggests a new set of meticulously crafted LSTM, RNN, 
or MLP based models to forecast the kind of attack that 
might occur. A recently released dataset called CTF was 
used to validate the suggested models, and the outcomes 
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were encouraging, particularly for the LSTM model, which 
had an f-measure of more than 93%. 

Emiliano De Cristofaro (2020) [8] In recent years, service 
providers like Google, Microsoft, and Amazon have begun 
to give users access to software interfaces that make it 
simple for them to incorporate machine learning tasks into 
their apps. All things considered, businesses can now 
outsource complicated tasks like clustering, training 
classifiers, making predictions, and so on by using Machine 
Learning as a Service (MLaaS) engines. Additionally, they 
can allow third parties to query models that were trained 
using their data. Naturally, there are other contexts in which 
this approach can be applied (and is frequently 
recommended), such as government partnerships, citizen 
science initiatives, and business-to-business alliances. But if 
the data utilized for training these models could be 
recovered by hostile users, there would be major problems 
due to information leakage. If the model's internal 
parameters are thought to be confidential information, then 
access to the model shouldn't enable a rival to discover 
them. In this paper, we examine the privacy issues in this 
field, offering a methodical analysis of the pertinent 
research literature and considering potential solutions. More 
precisely, we give a thorough introduction to pertinent 
machine learning or privacy concepts. After that, we go over 
potential adversarial models or settings, go over a variety of 
attacks pertaining to the leakage of sensitive or private 
information, and examine recent findings that try to thwart 
these attacks. In closing, provide a list of unresolved issues 
that still need to be investigated. These issues include the 
need for improved assessments, more focused defenses, and 
research on the relationship between policy and data 
protection initiatives. 

Shan Suthaharan (2014) [9] The specific issue of classifying 
network intrusion traffic using big data is the main focus of 
this paper. It talks about the difficulties that the Big Data 
issues related to network intrusion prediction pose for the 
system. Predicting a potential intrusion attack in a network 
necessitates the ongoing gathering of traffic data & quick 
learning of its attributes. The network's constant gathering 
of traffic data results in Big Data issues, which are brought 
on by the volume, variety, and velocity characteristics of 
Big Data. ML techniques that capture global traffic pattern 
knowledge are necessary for the learning of network 
characteristics. The implementation of machine learning 
frameworks will present significant system challenges due 
to the properties of big data. In this paper, geometric 
representation-learning techniques or contemporary Big 
Data networking technologies are used to address the issues 
and difficulties associated with handling Big Data 
classification. This paper specifically addresses the 
challenges associated with integrating machine learning, 
representation-learning, supervised learning, and big data 

technologies (such as Hadoop, Hive, or cloud) to address 
issues relating to network traffic classification. 

Ishan Banerjee (2013) [10] GUI testing is system testing of 
a software that has a graphical-user interface (GUI) front-
end. Because system testing entails that the entire software 
system, including the user interface, be tested as a whole, 
during GUI testing, test cases modeled as sequences of 
user input events are developed and executed on the 

and clickable buttons). More than 230 articles have 
appeared in the area of GUI testing since 1991. 

3. Objectives of the study  

1. Collect Amazon Review Dataset, which is publically 
available.  

2. Pre-processing of the training data which include:  

a. Remove duplicate and star reviews  

b. Lemmatization  

c. Word Cloud  

d. Clean Text  

e. Stemming  

3. Feature selection and engineering by TF-IDF method.  

4. Fitting the data in different deep learning classification 
models.  

5. Hyper tuning the model to obtain the best results in the 
terms of accuracy, precision, F1-score, etc.  

6. Originate various plots to show the distribution of 
sentiment classes. 

4. Methodology 

Methodology is the systematic, theoretical analysis of the 
methods applied to a field of study. It comprises the 
theoretical analysis of the body of methods and principles 
associated with a branch of knowledge. This project is 
problem-driven and will involve a large amount of deep 
learning, RNN, or hybrid algorithm implementation.  

Initially, experiment with data, gather from accessible sites, 
etc. Once this data is ready for the next preprocessing step, 
we can determine after numerous analyses which features 
are useful and which ones should be excluded to create a 
very useful, sharply driven, and finely tuned dataset.  First, 
we will use Deep Learning RNN models, and once we 
extract the features, we will apply hybrid models. We 
anticipate a lot of features.  

This data is structured using RNNs, which we understand to 
be good.  
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The neural net would then be put into use. Beyond that, in 
order to find relevant data and context, we will need to 
investigate different RNNs models.  

Steps for work we will do 

1. 
Approach immunes the Data Security in Data science 
while analyzing Big Data specific to Financial Data 
using the concept Mature behavior of Machine 

 
2. We will need to modify the methodology according to 

the title and redesign it. 
3. To apply data security, I will use Privacy-preserving 

techniques using Deep learning models with 
TensorFlow privacy-preserving method for financial 
data. 

4. Data collection, preprocessing, and Eda remain the 
same but neural network implementation will change 
according to the requirements. 

5. We only focus on research work implementation 
(Results analysis, performance evaluation, and 
comparative analysis of algorithms with proposed 
work) and the remaining application part like GUI 
implementation based on client requirement. 

Dataset- In this case, we will use financial fraud detection 
or credit card fraud detection data open access data. 

Neural Network- In this case for defining mature behavior 
we will create our own custom transfer learning model for 
training data with the existing trained feature. To this, we 
will consider text data and implement recurrent neural 
networks to convey existing features based on mature 
behavior or transfer learning concepts. 

Preprocessing- Pre-processing of the training data which 
includes: 

a.       Remove duplicate and star reviews 

b.      Lemmatization 

c.       Word Cloud 

d.      Clean Text       

e.       Stemming 

Performance Evaluation- Test the trained model and 
evaluate performance using Accuracy, Precision, recall and 
F score. 

5. Implementation  

To implement this concept, we will use financial fraud 
detection or credit card fraud detection data open access 
data. 

Step 1 Dataset collection  

Link https://www.kaggle.com/datasets/ealaxi/paysim1/data 

Dataset Description 

NOTE: Transactions which are detected as fraud are 
cancelled, so for fraud detection these columns 
(oldbalanceOrg, newbalanceOrig, oldbalanceDest, 
newbalanceDest ) must not be used. 

Headers 

Here is an example of one row with an explanation of the 
headers: 

 

 

1,PAYMENT,1060.31,C429214117,1089.0,28.69,M15916
54462,0.0,0.0,0,0 

step - displays a real-world time interval. One step in this 
instance equals one hour. 744 steps in total (30 days of 
simulation). 

type - CASH-IN, CASH-OUT, DEBIT, PAYMENT and 
TRANSFER. 

Amount - 
The transaction amount expressed in local currency. 

OldbalanceOrg is the initial balance prior to the transaction, 
and nameOrig is the customer who initiated the transaction. 

newbalanceOrig - new balance following the transaction. 

nameDest: The client who will be receiving the transaction 

oldbalanceDest: The recipient of the starting balance prior 
to the transaction. Please take note that there is no 
information available for clients beginning with M 
(Merchants). 
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newbalanceDest: The recipient of the new balance 
following the transaction. Please take note that there is no 
information available for clients beginning with M 
(Merchants). 

isFraud: These are the transactions that the fictitious agents 
inside the simulation make. The fraudulent activity of the 
agents in this particular dataset seeks to profit by seizing 
control of the customers' accounts, attempting to withdraw 
all of the money by moving it to another account, and then 
using the system to cash out. 

isFlaggedFraud: The goal of the business model is to 
prevent unauthorized attempts at transfer of large amounts 
of money between accounts. In this dataset, transferring 
more than 200,000 in a single transaction is considered 
illegal. 

Step 2 Visualization and EDA 
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Step 3 Feature Selection 

 

data_fraud appears to be a DataFrame or a dataset that 
contains information related to fraud detection or a similar 
binary classification problem. 

data_fraud.drop(['isFraud'], axis=1) is used to separate the 
features (input variables) from the target variable (label). 
Here's what's happening: 

data_fraud.drop(['isFraud'], axis=1) is calling the drop 
method on the data_fraud  

DataFrame. It specifies that we want to drop the column 
labeled 'isFraud'. 

axis=1 indicates that we are specifying the column axis (i.e., 
columns are dropped). 

After this operation, X will contain all the columns from the 
original data_fraud DataFrame except for the 'isFraud' 
column. In other words, X contains the feature variables 
used for making predictions. 

y = data_fraud[['isFraud']] is used to extract the target 
variable (the variable you want to predict). Here's what's 
happening: 

data_fraud[['isFraud']] is used to select the 'isFraud' column 
from the data_fraud DataFrame. 

After this operation, y contains the values of the 'isFraud' 
column, which typically represents whether a transaction is 
fraudulent (1) or not fraudulent (0). 

 Step 4 Data splitting, Standard Scaling, and reshaping 
and Create tensorflow data for prognostic approach for 
immune the data for privacy preserving 

i. Splitting the Dataset: 

X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.2, random_state=42) 

This code uses the train_test_split function from scikit-learn 
to split the dataset into a training set & testing (validation) 
set. 

X represents the features or input data, and y represents the 
labels or target variable. 

test_size=0.2 specifies that 20% of the data will be used for 
testing, and the rest (80%) for training. 

random_state=42 sets a random seed for reproducibility. 

ii. Standardizing the Data: 

scaler = StandardScaler() 

The StandardScaler from scikit-learn is created to 
standardize (normalize) the data. 

X_train = scaler.fit_transform(X_train) 

The fit_transform method is used to compute the mean & 
standard deviation of the training data and then transform it 
to have a mean of 0 & standard deviation of 1. This 
standardization helps the model learn more effectively. 

X_test = scaler.transform(X_test) 

The same transformation is applied to the test data, using the 
mean & standard deviation computed from the training data. 

iii. Reshaping Data for Model Input: 

X_train = np.reshape(X_train, (X_train.shape[0], 1, 
X_train.shape[1]) 

This code reshapes the training data to be compatible with a 
Model layer. 

It changes the shape from (batch_size, sequence_length) to 
(batch_size, sequence_length, input_features), which is the 
required input shape for LSTM layers. 

X_test = np.reshape(X_test, (X_test.shape[0], 1, 
X_test.shape[1]) 

The same reshaping operation is applied to the test data to 
match the model's input requirements. 

iv. Creating TensorFlow Datasets: 

train_dataset = tf.data.Dataset.from_tensor_slices((X_train, 
y_train) 

This code creates a TensorFlow dataset from the training 
data. TensorFlow datasets are an efficient way to handle and 
batch data. 

train_dataset = 
train_dataset.shuffle(buffer_size=1024).batch(batch_size) 

The dataset is shuffled to randomize the order of samples in 
each epoch. Shuffling helps prevent the model from 
memorizing the order of training samples. 

It's then batched into mini-batches of size batch_size. 
Batching is used to train the model more efficiently.

Step 5 Modeling Neural network 

I) LSTM Model Details 

1. Create a Sequential Model: 

model_LSTM = Sequential(): This line initializes a 
Sequential model in Keras. A Sequential model allows you 
to create a linear stack of layers. 

2. Add LSTM Layers: 

model_LSTM.add(LSTM(128, input_shape=(1, 
X.shape[1], return_sequences=True)): This line adds an 
LSTM layer to the model. 
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LSTM(128): It creates an LSTM layer with 128 units (or 
neurons) in this layer. LSTM layers are commonly used for 
handling sequential data. 

input_shape=(1, X.shape[1]): Specifies the input shape for 
the first LSTM layer. In this case, it expects input data with 
one time step and the number of features represented by 
X.shape[1]. 

return_sequences=True: Indicates that this LSTM layer 
should return sequences (output for each time step) instead 
of just the final output. This is useful when you're stacking 
multiple LSTM layers. 

3. Add More LSTM Layers: 

The next three lines (model_LSTM.add(LSTM(128, 
return_sequences=True)), model_LSTM.add(LSTM(64, 
return_sequences=True)), and 
model_LSTM.add(LSTM(64, return_sequences=True))) 
add additional LSTM layers to the model. 

These layers are similar to the first LSTM layer but without 
the input_shape parameter since it has already been 
specified in the first layer. 

All of these LSTM layers return sequences. 

4. Add Dense Layers: 

model_LSTM.add(Dense(64, activation='relu'), 
model_LSTM.add(Dense(32, activation='relu'), and 
model_LSTM.add(Dense(16, activation='relu')): These 
lines add Dense layers to the model. 

Dense layers are fully connected layers with the specified 
number of units (64, 32, and 16) and use the ReLU 
(Rectified Linear Unit) activation function. They are used 
for nonlinear feature processing. 

5. Add the Output Layer: 

model_LSTM.add(Dense(1, activation='sigmoid')): This 
line adds the output layer to the model. 

The output layer has a single unit, typically used for binary 
classification tasks, and uses the sigmoid activation function 
to produce binary output values (0 or 1). 

II) Hybrid Model details 

1. Model Type and Architecture: 

model_hybrid = Sequential(): Initializes a sequential model 
using Keras, which is a linear stack of layers. 

The model consists of a combination of Bidirectional LSTM 
& Bidirectional GRU (Gated Recurrent Unit) layers, along 
with Dense layers for feature processing and nonlinearity. 

2. Bidirectional LSTM and GRU Layers: 

Bidirectional layers process input data in both forward and 
backward directions, which allows the model to capture 

information from past and future time steps. The model 
includes multiple stacked Bidirectional LSTM and 
Bidirectional GRU layers. 

model_hybrid.add(Bidirectional(LSTM(128, 
input_shape=(1, X.shape[1]), return_sequences=True))): 
The first Bidirectional LSTM layer with 128 units and input 
shape specified for the first layer. It returns sequences as 
output. 

model_hybrid.add(Bidirectional(GRU(128, 
return_sequences=True))): The second Bidirectional GRU 
layer with 128 units, returning sequences. 

model_hybrid.add(Bidirectional(GRU(64, 
return_sequences=True))): The third Bidirectional GRU 
layer with 64 units, returning sequences. 

model_hybrid.add(Bidirectional(GRU(64))): The fourth 
Bidirectional GRU layer with 64 units. It does not return 
sequences. 

3. Dense Layers: 

After the Bidirectional LSTM and GRU layers, the model 
includes Dense layers for feature processing and 
nonlinearity. 

model_hybrid.add(Dense(64, activation='relu')): The first 
Dense layer with 64 units and ReLU (Rectified Linear Unit) 
activation function. 

model_hybrid.add(Dense(32, activation='relu')): The 
second Dense layer with 32 units and ReLU activation. 

model_hybrid.add(Dense(16, activation='relu')): The third 
Dense layer with 16 units and ReLU activation. 

4. Output Layer: 

model_hybrid.add(Dense(1, activation='sigmoid')): This is 
the final Dense layer with a single unit, using the sigmoid 
activation function. It produces binary output values (0 or 1) 
and is suitable for binary classification tasks. 

5. Compiling the Model: 

model_hybrid.compile(loss='binary_crossentropy', 
optimizer='adam', metrics=['accuracy']): This line compiles 
the model, specifying the loss function 
('binary_crossentropy' for binary classification), the 
optimizer ('adam'), and the metric to monitor during training 
('accuracy'). 

Step 6 Privacy Preserving for Immune the data security 
using DPSDG Optimizer  

It is designed to provide differential privacy guarantees to 
the training process by adding noise to the gradients during 
optimization. Let's break down how this part of the code is 
used for privacy-preserving and detail each parameter: 

l2_norm_clip: 
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l2_norm_clip is a hyperparameter that sets an upper limit on 
the L2 (Euclidean) norm of the gradients of the model's loss 
function. It represents the maximum allowable magnitude 
of the noise that can be added to the gradients. 

noise_multiplier: 

noise_multiplier is another hyperparameter that controls the 
amount of noise added to the gradients. A higher 
noise_multiplier introduces more noise, which increases 
privacy but can negatively affect model utility (accuracy). 

num_microbatches: 

num_microbatches refers to the number of mini-batches into 
which each batch of data is divided. Differentially private 
stochastic gradient descent (DP-SGD) computes gradients 
for each mini-batch separately, adds noise to the gradients, 
and then aggregates the noisy gradients to update model 
parameters. Smaller values of num_microbatches lead to 
stronger privacy guarantees. 

target_delta: 

target_delta is the desired privacy guarantee. It is a measure 
of the risk of privacy breaches. A smaller target_delta 
corresponds to a stronger guarantee, but it may require more 
noise to achieve. 

learning_rate: 

learning_rate is the step size used in the optimization 
process. It controls how quickly the model updates its 
parameters in the direction of minimizing the loss. A typical 
hyperparameter for training neural networks, though it can 
affect both model utility and privacy. 

optimizerDP_SGD: 

optimizerDP_SGD is an instance of the 
DPKerasSGDOptimizer from TensorFlow Privacy. 

It is specifically designed for use with differential privacy. 
This optimizer computes noisy gradients using the 
parameters you set (l2_norm_clip, noise_multiplier, 
num_microbatches) and then updates the model's weights 
using these noisy gradients. 

The DPKerasSGDOptimizer helps you train a deep learning 
model while providing differential privacy guarantees to 
protect sensitive data. It combines the benefits of privacy 
and utility by adding carefully calibrated noise to the 
gradients during training. 

Step 7 Continuous Training to achieving the mature 
behavior of models 

The provided code snippet represents a training loop that 
continuously retrains a machine learning model for credit 
card fraud detection across multiple iterations. The goal of 
this approach is to achieve mature behavior for the model. 

Let's break down the key components and explain how this 
process contributes to the model's maturity: 

i. Loop for Continuous Retraining: 

The loop iterates for a specified number of total iterations. 
In each iteration, the model is retrained using new data. 

ii. Loading and Combining New Data: 

In each iteration, new data is loaded from a CSV file 
(credit_card_transactions_iterationX.csv, where X is the 
iteration number). 

The new data is combined with the initial data. This 
combination ensures that the model adapts to new patterns 
and potentially changing characteristics of the data. It allows 
the model to continuously learn from fresh data. 

iii. Data Preprocessing: 

After combining the data, features and labels are separated. 

The combined dataset is split into training and testing sets 
for model training and evaluation. 

Data standardization is applied using a StandardScaler. 
Standardization ensures that the data has a mean of 0 and a 
standard deviation of 1, which is a common preprocessing 
step for many machine learning algorithms. 

iv. Reshaping Data for Model Input: 

The data is reshaped to fit the input requirements of the 
model. In this case, the data is reshaped for a Bidirectional 
GRU model, which expects input data in the form of 
(batch_size, sequence_length, feature_dim). The reshaping 
is necessary to match the model's architecture. 

v. Privacy Guarantee Calculation: 

The code calculates the privacy guarantee for the current 
iteration. It uses the compute_dp_sgd_privacy function to 
estimate the privacy loss. The epsilon value represents the 
privacy budget expended. Privacy is a critical concern in 
applications involving sensitive data, such as fraud 
detection. This step ensures that the model's training process 
adheres to privacy regulations and protects individuals' data. 

vi. Differential Privacy (DP) Optimizer 
Configuration: 

An instance of the DPKerasSGDOptimizer is configured 
with parameters that control the privacy preservation 
aspects, such as l2_norm_clip, noise_multiplier, and 
num_microbatches. This optimizer introduces privacy-
aware noise during gradient computation. 

vii. Model Compilation and Training: 

The machine learning model (presumably a Bidirectional 
GRU model) is compiled using the DP optimizer. The loss 
function, optimizer, and evaluation metrics are specified. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2938 2947 |  2946 

The model is trained for a fixed number of epochs (in this 
case, 10) to update its parameters based on the new data and 
privacy constraints. 

viii. Model Evaluation: 

After training, the model is evaluated on a separate testing 
dataset. 

Various evaluation metrics, as accuracy, precision, recall, 
and F1 score, are calculated. These metrics assess the 
model's performance in identifying credit card fraud. It's 
essential to continuously monitor and evaluate the model's 
effectiveness. 

ix. Maturity and Continuous Learning: 

By repeating this process over multiple iterations, the model 
continuously adapts to evolving data patterns, privacy 
requirements, and the changing characteristics of the credit 
card transaction data. 

This continuous learning approach aims to achieve mature 
behavior for the model by keeping it up-to-date and privacy-
compliant. 

A continuous learning and privacy-preserving approach for 
a credit card fraud detection model. It incorporates new data, 
adapts to changing conditions, and ensures privacy 
compliance while continuously monitoring the model's 
performance. This iterative process is designed to maintain 
the model's effectiveness and reliability over time. 

6. Results  

Privacy-preserving techniques using Deep learning models 
with TensorFlow privacy-preserving method for financial 
data, will follow the TensorFlow DP-SGD optimizer 
process. we were considering text data and implement 
recurrent neural networks to convey existing features based 
on mature behavior or transfer learning concepts. Test the 
trained model and evaluate performance using Accuracy, 
Precision, recall and F score. 

Table 1: Results Evaluation 

Model Accuracy Precision Recall F Score 

LSTM 99.95 99.81 67.90 80.61 

GRU 99.85 40.75 31.11 35.32 

Hybrid 
Approach  

99.95 98.98 66.48 79.54 

 

7. Conclusion 

We were enhanced data security within the field of data 
science through the application of a prognostic approach 
that leverages the concept of cognitive behavior in machine 
learning. We were studied to using a prognostic approach, 
which involves predicting future security threats based on 

historical data and patterns, can enhance data security in the 
field of data science. This approach leverages the cognitive 
behavior of machine learning, implying that ML algorithms 
can learn from past security incidents to proactively identify 
and mitigate potential risks, ultimately strengthening data 
security measures. We will begin with Deep Learning RNN 
models and then implement hybrid models on the features 
we ultimately extract. Privacy-preserving techniques using 
deep learning models 
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