

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2938-2947 | 2938

Analysis of Data Security Prognostic Method Utilizing Cognitive
Machine Learning Behavior

Mr.Prabhanjan Chaudhari1, Dr. Guddi Singh2, Dr. Amit Bhusari3

Submitted: 27/01/2024 Revised: 05/03/2024 Accepted : 13/03/2024

Abstract: Machine Learning and Big Data of today's IT sector. Large volumes of data are reviewed and information extracted using big
data storage. Machine learning, on the other hand, refers to a computer's ability to learn and develop without being explicitly taught.
Decision trees and neural networks are used in combination with machine learning methods for these reasons. Many sectors have seen
amazing development as a result of the dominating mix of Machine Learning and big data. One of these industries is the e-commerce
industry. Financial analysts may use predictive analytics to track and exchange critical information about the various economic problems.
They automatically retain data on their daily transactions, payments and linked systems, allowing customers to remotely access and manage
the financial transactions using the concept of cognitive behaviour of Machine Learning. Along with this we will cover the part of intrusion
or any other vulnerabilities. We will use Privacy-preserving techniques using Deep learning models with TensorFlow privacy-preserving
method for financial data. we would implement the neural net. Beyond that, we will need to explore various RNNs models to determine
appropriate data and context. We will test the trained model and evaluate performance using Accuracy, Precision, recall and F score.

Keywords: Machine Learning, Big Data, Financial Security, Machine Learning, TensorFlow;

1. Introduction

There are two blue-chips: Machine Learning and Big Data
of today's IT sector. Large volumes of data are reviewed and
information extracted using big data storage. Machine
learning, on the other hand, refers to a computer's ability to
learn and develop without being explicitly taught.
Automatic data processing and decision-making algorithms
are the pillars of machine learning that learn from their past
experiences and improve at each stage of their job. "Evolve
via learning," to put it another way. To keep up with the
ever-growing and ever-changing stream of data in the
context of Big Data, Machine Learning is applied in order
to provide constantly evolving and relevant insights.
Machine learning algorithms explain and detect patterns in
the incoming data, they are then translated into other
languages with actionable insights that can be incorporated
into business processes. Many more decision-making
processes were then automated by use of the algorithms. [1]

Decision trees and neural networks are used in combination
with machine learning methods for these reasons. Many
sectors have seen amazing development as a result of the
dominating mix of Machine Learning and big data. One of
these industries is the e-commerce industry. Integrating

statistical models with data is assisting financial analysts in
determining the solutions for various financial crises and to
decide the remedies to overcome from it and for future
perfectness.
Financial analysts may use predictive analytics to track and
exchange critical information about the various economic
problems. They automatically retain data on their daily
transactions, payments and linked systems, allowing
customers to remotely access and manage the financial
transactions using the concept of cognitive behavior of
Machine Learning [2].

2. Related Work

Rutvij H. Jhaveri (2022) [3] The digital environment of the
Industry 5.0 revolution is rife with massive volumes of data.
Despite the need for data analysis and interpretation,
machine learning is showing promise in a number of fields,
including intelligent control, decision-making, speech
recognition, natural language processing, computer
graphics, and computer vision. Recent years have seen a
wide recognition and use of deep learning & machine
learning techniques by many real-time engineering
applications due to their remarkable performance.
Designing automated and intelligent applications that can
manage data in domains like health, cyber-security, and
intelligent transportation systems requires a solid
understanding of machine learning. In the topic of machine
learning, there are many different approaches, such as
supervised algorithms, semi-supervised algorithms,
unsupervised algorithms, & reinforcement learning. study
offers a thorough examination of managing machine
learning-powered real-time engineering applications, which

__

1Research Scholar, Kalinga University-492101, New Raipur,
Chhattisgarh, India.
ORCID ID: 0009-0003-6178-4750.
2Department of CS&E, Kalinga University-492101, New Raipur,
Chhattisgarh, India.
ORCID ID: 0000-0002-5845-2558
3Department of MCA, Trinity Academy of Engineering, Pune, 411048,
Maharashtra, India
ORCID ID: 0009-0000-2784-5191
1 Corresponding Author Email: prabhanjan1111@gmail.com
2 Corresponding Author Email: guddi.singh@kalingauniversity.ac.in
3 Corresponding Author Email: aabhusari@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2938 2947 | 2939

will raise the capabilities & intelligence of an application.
This research advances our knowledge of how different
machine learning techniques can be applied in practical
settings, including intelligent transportation systems, cyber
security, or healthcare. The goals of this study are to shed
insight on the challenges that machine learning techniques
face while handling practical applications. Academics &
experts in the business will use this study as a point of
reference, and from a technical perspective, decision-
makers on a variety of application domains & real-world
situations will use it as a benchmark.

Shiv Hari Tewari (2021) [4] Among the many technological
and operational advancements in cybersecurity in recent
years, data science has emerged as a driving force.
Automating and enhancing a security system requires the
extraction of security event patterns or insights from
cybersecurity data and the creation of a data-driven model.
Data science is the study and analysis of real-world events
utilizing a variety of scientific methodology, machine
learning techniques, processes, and systems. Data science,
its development, and its applications in cloud security are
briefly presented in this study by the Researcher, as well as
how cybersecurity data science came to be, the benefits
provided by Cybersecurity Data Science (CSDS), and the
steps involved, such as gathering data from relevant
cybersecurity sources and combining it with analytics to
provide more effective security solutions. Thoughts of
cybersecurity data science provide more intelligent,
actionable computing compared to traditional cybersecurity
computing. After that, the researcher went through the
numerous potential issues that may arise as a result of the
widespread use of CSDS, as well as how machine learning
and deep learning may be applied to it and the different sorts
of algorithms that can be used. As a result, in addition to
examining the history of Data Science and its current
applications in cybersecurity, the research also examines
how a system that relies on data-driven intelligent decision-
making might protect our system from both known and
unknown cyber threats.

Kosrat Dlshad Ahmed (2021) [5] Users benefit from
enhanced experiences and higher service quality from a
variety of angles thanks to IoT technologies & connectivity.
In this regard, it is necessary to assure the recent growth of
technological prospects & management of sufficient aspects
for the delivery of performance. Broadly connected features,
systems, data storage facilities, management procedures,
applications, devices, users, gateways, services, and
thousands of other components are all connected in the
context of the Internet of Things idea. IoT applications have
become increasingly important in recent years, which has
created enormous development & management potential.
Users' attention has recently been drawn to cybersecurity
and protecting user privacy. An increasing number of people
are connecting as social media platforms gain popularity. As

opportunities for connectivity rise, people require more safe
spaces for connectivity. This article covers a variety of
cybersecurity topics, including developing and managing
cybersecurity, comprehending security & privacy concepts,
and utilizing deep learning models to analyze machine
learning concepts. In order to illustrate the comprehension
of cybersecurity within Internet of Things networks, several
deep learning models, including CNN, MLP, LSTP, and a
hybrid model combining CNN & LSTP, have been
examined. Prospective study opportunities have also been
suggested to aid in the learning process.

Brian Schwartz (2020) [6] In order to recommend the best
course of action for patients based on their pre-treatment
characteristics, this study intends to develop a treatment
selection algorithm that combines statistical inference or
machine learning. The study examined a naturalistic,
disorder-heterogeneous sample of N = 1,379 outpatients
receiving either cognitive behavioral therapy or
psychodynamic therapy. The training data (n = 966) was
used to model the varying treatment response, which
indicates each person's ideal treatment, using a combination
of random forest and linear regression. Personalized
recommendations were assessed using a different holdout
dataset (n = 413). Regarding the training data, there was a
significant difference in the outcomes between patients who
received their optimal treatment and those who did not (b =

0.043, p =.280). However, this difference was not
significant in the holdout data. fortunately, the average
percentage of change on the BSI in the holdout data was
52.6% for their optimal or 38.4% for their non-optimal
treatment (p =.017; d = 0.33 [0.06, 0.61]) for the 50% of
patients with the greatest predicted benefit of receiving their
optimal treatment. A treatment selection algorithm that
supports therapists' clinical decision-making & based on a
blend of machine learning and statistical inference may
enhance treatment outcomes for certain outpatients but not
all of them.

Ouissem Ben Fredj (2020) [7] The frequency of
cybersecurity attacks is rising exponentially, which renders
current detection methods inadequate or increases the need
to develop more pertinent prediction models and strategies.
Since current attack prediction models are unable to keep up
with the vast volume or diversity of attacks, this problem
remains unresolved. Researchers have recently focused a lot
of attention on machine learning approaches, particularly
deep learning techniques, due to their exceptional
performance in various prediction-based fields. This paper
investigates the use of deep learning techniques for
cybersecurity attack prediction in this context. Specifically,
it suggests a new set of meticulously crafted LSTM, RNN,
or MLP based models to forecast the kind of attack that
might occur. A recently released dataset called CTF was
used to validate the suggested models, and the outcomes

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2938 2947 | 2940

were encouraging, particularly for the LSTM model, which
had an f-measure of more than 93%.

Emiliano De Cristofaro (2020) [8] In recent years, service
providers like Google, Microsoft, and Amazon have begun
to give users access to software interfaces that make it
simple for them to incorporate machine learning tasks into
their apps. All things considered, businesses can now
outsource complicated tasks like clustering, training
classifiers, making predictions, and so on by using Machine
Learning as a Service (MLaaS) engines. Additionally, they
can allow third parties to query models that were trained
using their data. Naturally, there are other contexts in which
this approach can be applied (and is frequently
recommended), such as government partnerships, citizen
science initiatives, and business-to-business alliances. But if
the data utilized for training these models could be
recovered by hostile users, there would be major problems
due to information leakage. If the model's internal
parameters are thought to be confidential information, then
access to the model shouldn't enable a rival to discover
them. In this paper, we examine the privacy issues in this
field, offering a methodical analysis of the pertinent
research literature and considering potential solutions. More
precisely, we give a thorough introduction to pertinent
machine learning or privacy concepts. After that, we go over
potential adversarial models or settings, go over a variety of
attacks pertaining to the leakage of sensitive or private
information, and examine recent findings that try to thwart
these attacks. In closing, provide a list of unresolved issues
that still need to be investigated. These issues include the
need for improved assessments, more focused defenses, and
research on the relationship between policy and data
protection initiatives.

Shan Suthaharan (2014) [9] The specific issue of classifying
network intrusion traffic using big data is the main focus of
this paper. It talks about the difficulties that the Big Data
issues related to network intrusion prediction pose for the
system. Predicting a potential intrusion attack in a network
necessitates the ongoing gathering of traffic data & quick
learning of its attributes. The network's constant gathering
of traffic data results in Big Data issues, which are brought
on by the volume, variety, and velocity characteristics of
Big Data. ML techniques that capture global traffic pattern
knowledge are necessary for the learning of network
characteristics. The implementation of machine learning
frameworks will present significant system challenges due
to the properties of big data. In this paper, geometric
representation-learning techniques or contemporary Big
Data networking technologies are used to address the issues
and difficulties associated with handling Big Data
classification. This paper specifically addresses the
challenges associated with integrating machine learning,
representation-learning, supervised learning, and big data

technologies (such as Hadoop, Hive, or cloud) to address
issues relating to network traffic classification.

Ishan Banerjee (2013) [10] GUI testing is system testing of
a software that has a graphical-user interface (GUI) front-
end. Because system testing entails that the entire software
system, including the user interface, be tested as a whole,
during GUI testing, test cases modeled as sequences of
user input events are developed and executed on the

and clickable buttons). More than 230 articles have
appeared in the area of GUI testing since 1991.

3. Objectives of the study

1. Collect Amazon Review Dataset, which is publically
available.

2. Pre-processing of the training data which include:

a. Remove duplicate and star reviews

b. Lemmatization

c. Word Cloud

d. Clean Text

e. Stemming

3. Feature selection and engineering by TF-IDF method.

4. Fitting the data in different deep learning classification
models.

5. Hyper tuning the model to obtain the best results in the
terms of accuracy, precision, F1-score, etc.

6. Originate various plots to show the distribution of
sentiment classes.

4. Methodology

Methodology is the systematic, theoretical analysis of the
methods applied to a field of study. It comprises the
theoretical analysis of the body of methods and principles
associated with a branch of knowledge. This project is
problem-driven and will involve a large amount of deep
learning, RNN, or hybrid algorithm implementation.

Initially, experiment with data, gather from accessible sites,
etc. Once this data is ready for the next preprocessing step,
we can determine after numerous analyses which features
are useful and which ones should be excluded to create a
very useful, sharply driven, and finely tuned dataset. First,
we will use Deep Learning RNN models, and once we
extract the features, we will apply hybrid models. We
anticipate a lot of features.

This data is structured using RNNs, which we understand to
be good.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2938 2947 | 2941

The neural net would then be put into use. Beyond that, in
order to find relevant data and context, we will need to
investigate different RNNs models.

Steps for work we will do

1.
Approach immunes the Data Security in Data science
while analyzing Big Data specific to Financial Data
using the concept Mature behavior of Machine

2. We will need to modify the methodology according to

the title and redesign it.
3. To apply data security, I will use Privacy-preserving

techniques using Deep learning models with
TensorFlow privacy-preserving method for financial
data.

4. Data collection, preprocessing, and Eda remain the
same but neural network implementation will change
according to the requirements.

5. We only focus on research work implementation
(Results analysis, performance evaluation, and
comparative analysis of algorithms with proposed
work) and the remaining application part like GUI
implementation based on client requirement.

Dataset- In this case, we will use financial fraud detection
or credit card fraud detection data open access data.

Neural Network- In this case for defining mature behavior
we will create our own custom transfer learning model for
training data with the existing trained feature. To this, we
will consider text data and implement recurrent neural
networks to convey existing features based on mature
behavior or transfer learning concepts.

Preprocessing- Pre-processing of the training data which
includes:

a. Remove duplicate and star reviews

b. Lemmatization

c. Word Cloud

d. Clean Text

e. Stemming

Performance Evaluation- Test the trained model and
evaluate performance using Accuracy, Precision, recall and
F score.

5. Implementation

To implement this concept, we will use financial fraud
detection or credit card fraud detection data open access
data.

Step 1 Dataset collection

Link https://www.kaggle.com/datasets/ealaxi/paysim1/data

Dataset Description

NOTE: Transactions which are detected as fraud are
cancelled, so for fraud detection these columns
(oldbalanceOrg, newbalanceOrig, oldbalanceDest,
newbalanceDest) must not be used.

Headers

Here is an example of one row with an explanation of the
headers:

1,PAYMENT,1060.31,C429214117,1089.0,28.69,M15916
54462,0.0,0.0,0,0

step - displays a real-world time interval. One step in this
instance equals one hour. 744 steps in total (30 days of
simulation).

type - CASH-IN, CASH-OUT, DEBIT, PAYMENT and
TRANSFER.

Amount -
The transaction amount expressed in local currency.

OldbalanceOrg is the initial balance prior to the transaction,
and nameOrig is the customer who initiated the transaction.

newbalanceOrig - new balance following the transaction.

nameDest: The client who will be receiving the transaction

oldbalanceDest: The recipient of the starting balance prior
to the transaction. Please take note that there is no
information available for clients beginning with M
(Merchants).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2938 2947 | 2942

newbalanceDest: The recipient of the new balance
following the transaction. Please take note that there is no
information available for clients beginning with M
(Merchants).

isFraud: These are the transactions that the fictitious agents
inside the simulation make. The fraudulent activity of the
agents in this particular dataset seeks to profit by seizing
control of the customers' accounts, attempting to withdraw
all of the money by moving it to another account, and then
using the system to cash out.

isFlaggedFraud: The goal of the business model is to
prevent unauthorized attempts at transfer of large amounts
of money between accounts. In this dataset, transferring
more than 200,000 in a single transaction is considered
illegal.

Step 2 Visualization and EDA

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2938 2947 | 2943

Step 3 Feature Selection

data_fraud appears to be a DataFrame or a dataset that
contains information related to fraud detection or a similar
binary classification problem.

data_fraud.drop(['isFraud'], axis=1) is used to separate the
features (input variables) from the target variable (label).
Here's what's happening:

data_fraud.drop(['isFraud'], axis=1) is calling the drop
method on the data_fraud

DataFrame. It specifies that we want to drop the column
labeled 'isFraud'.

axis=1 indicates that we are specifying the column axis (i.e.,
columns are dropped).

After this operation, X will contain all the columns from the
original data_fraud DataFrame except for the 'isFraud'
column. In other words, X contains the feature variables
used for making predictions.

y = data_fraud[['isFraud']] is used to extract the target
variable (the variable you want to predict). Here's what's
happening:

data_fraud[['isFraud']] is used to select the 'isFraud' column
from the data_fraud DataFrame.

After this operation, y contains the values of the 'isFraud'
column, which typically represents whether a transaction is
fraudulent (1) or not fraudulent (0).

 Step 4 Data splitting, Standard Scaling, and reshaping
and Create tensorflow data for prognostic approach for
immune the data for privacy preserving

i. Splitting the Dataset:

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

This code uses the train_test_split function from scikit-learn
to split the dataset into a training set & testing (validation)
set.

X represents the features or input data, and y represents the
labels or target variable.

test_size=0.2 specifies that 20% of the data will be used for
testing, and the rest (80%) for training.

random_state=42 sets a random seed for reproducibility.

ii. Standardizing the Data:

scaler = StandardScaler()

The StandardScaler from scikit-learn is created to
standardize (normalize) the data.

X_train = scaler.fit_transform(X_train)

The fit_transform method is used to compute the mean &
standard deviation of the training data and then transform it
to have a mean of 0 & standard deviation of 1. This
standardization helps the model learn more effectively.

X_test = scaler.transform(X_test)

The same transformation is applied to the test data, using the
mean & standard deviation computed from the training data.

iii. Reshaping Data for Model Input:

X_train = np.reshape(X_train, (X_train.shape[0], 1,
X_train.shape[1])

This code reshapes the training data to be compatible with a
Model layer.

It changes the shape from (batch_size, sequence_length) to
(batch_size, sequence_length, input_features), which is the
required input shape for LSTM layers.

X_test = np.reshape(X_test, (X_test.shape[0], 1,
X_test.shape[1])

The same reshaping operation is applied to the test data to
match the model's input requirements.

iv. Creating TensorFlow Datasets:

train_dataset = tf.data.Dataset.from_tensor_slices((X_train,
y_train)

This code creates a TensorFlow dataset from the training
data. TensorFlow datasets are an efficient way to handle and
batch data.

train_dataset =
train_dataset.shuffle(buffer_size=1024).batch(batch_size)

The dataset is shuffled to randomize the order of samples in
each epoch. Shuffling helps prevent the model from
memorizing the order of training samples.

It's then batched into mini-batches of size batch_size.
Batching is used to train the model more efficiently.

Step 5 Modeling Neural network

I) LSTM Model Details

1. Create a Sequential Model:

model_LSTM = Sequential(): This line initializes a
Sequential model in Keras. A Sequential model allows you
to create a linear stack of layers.

2. Add LSTM Layers:

model_LSTM.add(LSTM(128, input_shape=(1,
X.shape[1], return_sequences=True)): This line adds an
LSTM layer to the model.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2938 2947 | 2944

LSTM(128): It creates an LSTM layer with 128 units (or
neurons) in this layer. LSTM layers are commonly used for
handling sequential data.

input_shape=(1, X.shape[1]): Specifies the input shape for
the first LSTM layer. In this case, it expects input data with
one time step and the number of features represented by
X.shape[1].

return_sequences=True: Indicates that this LSTM layer
should return sequences (output for each time step) instead
of just the final output. This is useful when you're stacking
multiple LSTM layers.

3. Add More LSTM Layers:

The next three lines (model_LSTM.add(LSTM(128,
return_sequences=True)), model_LSTM.add(LSTM(64,
return_sequences=True)), and
model_LSTM.add(LSTM(64, return_sequences=True)))
add additional LSTM layers to the model.

These layers are similar to the first LSTM layer but without
the input_shape parameter since it has already been
specified in the first layer.

All of these LSTM layers return sequences.

4. Add Dense Layers:

model_LSTM.add(Dense(64, activation='relu'),
model_LSTM.add(Dense(32, activation='relu'), and
model_LSTM.add(Dense(16, activation='relu')): These
lines add Dense layers to the model.

Dense layers are fully connected layers with the specified
number of units (64, 32, and 16) and use the ReLU
(Rectified Linear Unit) activation function. They are used
for nonlinear feature processing.

5. Add the Output Layer:

model_LSTM.add(Dense(1, activation='sigmoid')): This
line adds the output layer to the model.

The output layer has a single unit, typically used for binary
classification tasks, and uses the sigmoid activation function
to produce binary output values (0 or 1).

II) Hybrid Model details

1. Model Type and Architecture:

model_hybrid = Sequential(): Initializes a sequential model
using Keras, which is a linear stack of layers.

The model consists of a combination of Bidirectional LSTM
& Bidirectional GRU (Gated Recurrent Unit) layers, along
with Dense layers for feature processing and nonlinearity.

2. Bidirectional LSTM and GRU Layers:

Bidirectional layers process input data in both forward and
backward directions, which allows the model to capture

information from past and future time steps. The model
includes multiple stacked Bidirectional LSTM and
Bidirectional GRU layers.

model_hybrid.add(Bidirectional(LSTM(128,
input_shape=(1, X.shape[1]), return_sequences=True))):
The first Bidirectional LSTM layer with 128 units and input
shape specified for the first layer. It returns sequences as
output.

model_hybrid.add(Bidirectional(GRU(128,
return_sequences=True))): The second Bidirectional GRU
layer with 128 units, returning sequences.

model_hybrid.add(Bidirectional(GRU(64,
return_sequences=True))): The third Bidirectional GRU
layer with 64 units, returning sequences.

model_hybrid.add(Bidirectional(GRU(64))): The fourth
Bidirectional GRU layer with 64 units. It does not return
sequences.

3. Dense Layers:

After the Bidirectional LSTM and GRU layers, the model
includes Dense layers for feature processing and
nonlinearity.

model_hybrid.add(Dense(64, activation='relu')): The first
Dense layer with 64 units and ReLU (Rectified Linear Unit)
activation function.

model_hybrid.add(Dense(32, activation='relu')): The
second Dense layer with 32 units and ReLU activation.

model_hybrid.add(Dense(16, activation='relu')): The third
Dense layer with 16 units and ReLU activation.

4. Output Layer:

model_hybrid.add(Dense(1, activation='sigmoid')): This is
the final Dense layer with a single unit, using the sigmoid
activation function. It produces binary output values (0 or 1)
and is suitable for binary classification tasks.

5. Compiling the Model:

model_hybrid.compile(loss='binary_crossentropy',
optimizer='adam', metrics=['accuracy']): This line compiles
the model, specifying the loss function
('binary_crossentropy' for binary classification), the
optimizer ('adam'), and the metric to monitor during training
('accuracy').

Step 6 Privacy Preserving for Immune the data security
using DPSDG Optimizer

It is designed to provide differential privacy guarantees to
the training process by adding noise to the gradients during
optimization. Let's break down how this part of the code is
used for privacy-preserving and detail each parameter:

l2_norm_clip:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2938 2947 | 2945

l2_norm_clip is a hyperparameter that sets an upper limit on
the L2 (Euclidean) norm of the gradients of the model's loss
function. It represents the maximum allowable magnitude
of the noise that can be added to the gradients.

noise_multiplier:

noise_multiplier is another hyperparameter that controls the
amount of noise added to the gradients. A higher
noise_multiplier introduces more noise, which increases
privacy but can negatively affect model utility (accuracy).

num_microbatches:

num_microbatches refers to the number of mini-batches into
which each batch of data is divided. Differentially private
stochastic gradient descent (DP-SGD) computes gradients
for each mini-batch separately, adds noise to the gradients,
and then aggregates the noisy gradients to update model
parameters. Smaller values of num_microbatches lead to
stronger privacy guarantees.

target_delta:

target_delta is the desired privacy guarantee. It is a measure
of the risk of privacy breaches. A smaller target_delta
corresponds to a stronger guarantee, but it may require more
noise to achieve.

learning_rate:

learning_rate is the step size used in the optimization
process. It controls how quickly the model updates its
parameters in the direction of minimizing the loss. A typical
hyperparameter for training neural networks, though it can
affect both model utility and privacy.

optimizerDP_SGD:

optimizerDP_SGD is an instance of the
DPKerasSGDOptimizer from TensorFlow Privacy.

It is specifically designed for use with differential privacy.
This optimizer computes noisy gradients using the
parameters you set (l2_norm_clip, noise_multiplier,
num_microbatches) and then updates the model's weights
using these noisy gradients.

The DPKerasSGDOptimizer helps you train a deep learning
model while providing differential privacy guarantees to
protect sensitive data. It combines the benefits of privacy
and utility by adding carefully calibrated noise to the
gradients during training.

Step 7 Continuous Training to achieving the mature
behavior of models

The provided code snippet represents a training loop that
continuously retrains a machine learning model for credit
card fraud detection across multiple iterations. The goal of
this approach is to achieve mature behavior for the model.

Let's break down the key components and explain how this
process contributes to the model's maturity:

i. Loop for Continuous Retraining:

The loop iterates for a specified number of total iterations.
In each iteration, the model is retrained using new data.

ii. Loading and Combining New Data:

In each iteration, new data is loaded from a CSV file
(credit_card_transactions_iterationX.csv, where X is the
iteration number).

The new data is combined with the initial data. This
combination ensures that the model adapts to new patterns
and potentially changing characteristics of the data. It allows
the model to continuously learn from fresh data.

iii. Data Preprocessing:

After combining the data, features and labels are separated.

The combined dataset is split into training and testing sets
for model training and evaluation.

Data standardization is applied using a StandardScaler.
Standardization ensures that the data has a mean of 0 and a
standard deviation of 1, which is a common preprocessing
step for many machine learning algorithms.

iv. Reshaping Data for Model Input:

The data is reshaped to fit the input requirements of the
model. In this case, the data is reshaped for a Bidirectional
GRU model, which expects input data in the form of
(batch_size, sequence_length, feature_dim). The reshaping
is necessary to match the model's architecture.

v. Privacy Guarantee Calculation:

The code calculates the privacy guarantee for the current
iteration. It uses the compute_dp_sgd_privacy function to
estimate the privacy loss. The epsilon value represents the
privacy budget expended. Privacy is a critical concern in
applications involving sensitive data, such as fraud
detection. This step ensures that the model's training process
adheres to privacy regulations and protects individuals' data.

vi. Differential Privacy (DP) Optimizer
Configuration:

An instance of the DPKerasSGDOptimizer is configured
with parameters that control the privacy preservation
aspects, such as l2_norm_clip, noise_multiplier, and
num_microbatches. This optimizer introduces privacy-
aware noise during gradient computation.

vii. Model Compilation and Training:

The machine learning model (presumably a Bidirectional
GRU model) is compiled using the DP optimizer. The loss
function, optimizer, and evaluation metrics are specified.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2938 2947 | 2946

The model is trained for a fixed number of epochs (in this
case, 10) to update its parameters based on the new data and
privacy constraints.

viii. Model Evaluation:

After training, the model is evaluated on a separate testing
dataset.

Various evaluation metrics, as accuracy, precision, recall,
and F1 score, are calculated. These metrics assess the
model's performance in identifying credit card fraud. It's
essential to continuously monitor and evaluate the model's
effectiveness.

ix. Maturity and Continuous Learning:

By repeating this process over multiple iterations, the model
continuously adapts to evolving data patterns, privacy
requirements, and the changing characteristics of the credit
card transaction data.

This continuous learning approach aims to achieve mature
behavior for the model by keeping it up-to-date and privacy-
compliant.

A continuous learning and privacy-preserving approach for
a credit card fraud detection model. It incorporates new data,
adapts to changing conditions, and ensures privacy
compliance while continuously monitoring the model's
performance. This iterative process is designed to maintain
the model's effectiveness and reliability over time.

6. Results

Privacy-preserving techniques using Deep learning models
with TensorFlow privacy-preserving method for financial
data, will follow the TensorFlow DP-SGD optimizer
process. we were considering text data and implement
recurrent neural networks to convey existing features based
on mature behavior or transfer learning concepts. Test the
trained model and evaluate performance using Accuracy,
Precision, recall and F score.

Table 1: Results Evaluation

Model Accuracy Precision Recall F Score

LSTM 99.95 99.81 67.90 80.61

GRU 99.85 40.75 31.11 35.32

Hybrid
Approach

99.95 98.98 66.48 79.54

7. Conclusion

We were enhanced data security within the field of data
science through the application of a prognostic approach
that leverages the concept of cognitive behavior in machine
learning. We were studied to using a prognostic approach,
which involves predicting future security threats based on

historical data and patterns, can enhance data security in the
field of data science. This approach leverages the cognitive
behavior of machine learning, implying that ML algorithms
can learn from past security incidents to proactively identify
and mitigate potential risks, ultimately strengthening data
security measures. We will begin with Deep Learning RNN
models and then implement hybrid models on the features
we ultimately extract. Privacy-preserving techniques using
deep learning models

References

[1] Pecht, Michael G. (2008). Prognostics and Health
Management of Electronics Wiley. ISBN 978-0-470-
27802-4.

[2] Chaudhari Prabhanjan, and Dr. Amit Bhusari.
"Transfer Optimistic Outcome-based Learning for
Mature Behavior of Machine in Deep Learning." 2020
IEEE International Conference on Advent Trends in
Multidisciplinary Research and Innovation
(ICATMRI). IEEE, 2020.

[3] Jhaveri, R. H., Revathi, A., Ramana, K., Raut, R., &
Dhanaraj, R. K. (2022). A review on machine learning
strategies for real-world engineering
applications. Mobile Information Systems, 2022.

[4]
for enhanced Cybersecu
Data Science and Big Data Analytics, Volume 1, Issue
1, ISSN: 2710-2599

[5] Ahmed, K. D., & Askar, S. (2021). Deep learning
models for cyber security in IoT networks: A review.
International Journal of Science and Business, 5(3),
61-70.

[6] Schwartz, B., Cohen, Z. D., Rubel, J. A.,
Zimmermann, D., Wittmann, W. W., & Lutz, W.
(2021). Personalized treatment selection in routine
care: Integrating machine learning and statistical
algorithms to recommend cognitive behavioral or
psychodynamic therapy. Psychotherapy
Research, 31(1), 33-51.

[7] Ben Fredj, O., Mihoub, A., Krichen, M.,
Cheikhrouhou, O., & Derhab, A. (2020, November).
CyberSecurity attack prediction: a deep learning
approach. In 13th International Conference on
Security of Information and Networks (pp. 1-6).

[8] De Cristofaro, E. (2020). An overview of privacy in
machine learning. arXiv preprint arXiv:2005.08679.

[9] Suthaharan, S. (2014). Big data classification:
Problems and challenges in network intrusion
prediction with machine learning. ACM
SIGMETRICS Performance Evaluation
Review, 41(4), 70-73.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 2938 2947 | 2947

[10] Banerjee, I., Nguyen, B., Garousi, V., & Memon, A.
(2013). Graphical user interface (GUI) testing:
Systematic mapping and repository. Information and
Software Technology, 55(10), 1679-1694.

