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Abstract: Dimensionality Reduction (DR) encompasses a multifaceted array of techniques essential for addressing the challenges inherent 

in high-dimensional data, particularly evident in the analysis of Hyperspectral Images (HSI). The "Curse of Dimensionality" presents a 

formidable obstacle, rendering the utilization of all spectral bands computationally daunting. DR in HSI endeavors to preserve pertinent 

information while alleviating computational burdens, often through Band Selection methods. This analysis consolidates the contributions 

of researchers in the past 10 years, categorizing methodologies into nine distinct categories. Notably, clustering-based and optimization-

based techniques emerge as frontrunners, consistently yielding superior accuracy. Experimentation across 19 real-time HSI datasets, 

including several highly-cited examples, underscores the efficacy of clustering-based methodologies in achieving optimal accuracy. In 

conclusion, while all DR methods merit appreciation, clustering-based approaches stand out for their demonstrated effectiveness in 

preserving data fidelity while reducing dimensionality. 
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1. Introduction 

HYPERSPECTRAL imagery, a technology akin to giving 

our eyes superpowers, goes beyond the limitations of visible 

light to reveal the intricate spectral tapestry of our world. 

Imagine having a camera that perceives not just colors, but 

a vast spectrum of information hidden within them, like 

chlorophyll content in plants, mineral composition of rocks, 

or even the presence of pollutants in water. Hyperspectral 

remote sensing dives deep into the world of light, not simply 

the vibrant hues we perceive, but the entire spectrum of 

electromagnetic radiation. Hyperspectral sensors hone in on 

specific portions of this spectrum, capturing hundreds, even 

thousands of narrow spectral bands. Unlike a regular 

camera’s three broad RGB bands, hyperspectral data 

unlocks a detailed fingerprint of light for each pixel in the 

image. 1 

Unlike regular RGB images, which capture only three broad 

colour bands, hyperspectral sensors capture hundreds of 

narrow spectral bands, providing a wealth of information 

about the chemical and physical properties of objects in the 

scene. This makes it a valuable tool for various applications: 

Environmental Monitoring: 

Tracking deforestation and forest health: Hyperspectral 

data can reveal subtle changes in vegetation, allowing for 

early detection of deforestation and monitoring of forest 

health. 

Mapping water quality: By analysing the spectral signatures 

of pollutants, hyperspectral imagery can identify and map 

water pollution, ensuring clean water resources. 

Monitoring air quality: Tracking the presence and 

concentration of airborne pollutants like ozone and nitrogen 

dioxide can be achieved through hyperspectral imaging, 

improving air quality management. 

 

Agriculture: 

Precision agriculture: Hyperspectral data can be used to 

assess crop health, identify nutrient deficiencies, and 

optimize fertilizer and water usage, leading to increased 

agricultural efficiency and sustainability. 

Disease and pest detection: Early detection of crop diseases 

and pest infestations can be achieved by analysing changes 

in the spectral reflectance of plants, minimizing crop losses, 

and ensuring food security. 

Yield prediction: Accurately predicting crop yields can be 
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facilitated by hyperspectral data, allowing farmers to 

optimize their resources and make informed decisions. 

Mineral exploration: 

Mineral Identification: Hyperspectral data reveals the 

unique spectral signatures of various minerals, allowing 

geologists to pinpoint mineral deposits like iron ore, copper, 

gold, and even rare earth elements.  

Mapping and Delineation: The detailed spectral the 

information helps in accurately mapping the extent and 

depth of mineral deposits, leading to more efficient resource 

extraction and minimizing environmental impact. 

Lithological Mapping: Understanding the composition of 

rocks becomes a breeze with hyperspectral imagery, 

enabling the identification of rock types often associated 

with certain mineral deposits, and narrowing down 

exploration areas. 

Beyond these sectors, hyperspectral image analysis finds 

applications in diverse fields like Target detection, health 

care, cultural heritage, forensic studies, etc.  

Apart from having rich spatial and spectral information, the 

following major challenges are observed in hyperspectral 

data analysis: 

• High data volume: The immense amount of data 

generated requires advanced processing and 

storage capabilities.  

• High dimensionality: Hyperspectral data cube 

provides abundant spectral information in more 

bands or features or dimensions which can pose 

significant obstacles in analysis and interpretation.  

• Cost: Hyperspectral sensors and software can be 

expensive, limiting their accessibility. 

• Data interpretation: Extracting meaningful 

information from complex data requires expertise 

in spectral analysis. 

Clustering is a process of identifying natural groups in the 

data based on some similarity measure such that the 

intracluster similarity is more and inter-cluster similarity is 

less. Clustering is a key technique in data analysis and plays 

a crucial role in remote sensing research. Clustering 

algorithms group pixels in satellite or aerial images based 

on their spectral reflectance, texture, and other features. This 

helps in identifying and mapping different land cover types, 

such as forests, water bodies, urban areas, and agricultural 

land. It helps in uncovering hidden patterns and structures 

within vast amounts of Earth observation data, providing 

valuable insights into various environmental and 

geographical phenomena. Major applications of Clustering 

in remote sensing include Land Cover Classification, 

Change Detection, Object Detection and Segmentation, 

Anomaly Detection, etc. Clustering is also popularly used 

for dimensionality reduction in hyperspectral images. This 

article focuses on dimensionality issues in hyperspectral 

data analysis and how this problem is addressed using 

clustering techniques. 

2. DIMENSIONALITY REDUCTION PROBLEM 

Hyperspectral data provides rich spectral information and 

hence it has been considered a powerful tool for vegetation 

classification, mineral classification, target detection and 

many other applications. As per the Hughes phenomenon, 

the classification accuracy decreases if the number of 

dimensions grows beyond a threshold. Dimensionality 

reduction in hyperspectral imagery can be achieved either 

by band selection or band extraction. 

2.1. Band Extraction 

Band extraction in hyperspectral data focuses on extracting 

spectral data that is most relevant or informative for a 

particular 

analysis. The goal is to reduce the dimensionality of the data 

while retaining the essential spectral information. There are 

several methods for band extraction in hyperspectral data: 

Principal Component Analysis (PCA), Independent 

Component Analysis (ICA), Kernel PCA (KPCA), etc. 

2.2. BAND SELECTION 

Band selection in hyperspectral data involves choosing a 

subset of bands that are most relevant for a particular task, 

such as classification or analysis. These band selection 

approaches are preferable when the application needs the 

original spectral information to be preserved.  

 Various Band Selection methods can be categorized into 

eleven groups: Clustering, Classification, Statistical 

Measures, Decomposition, Optimization (including Particle 

Swarm Optimization and Genetic Algorithms), Framework 

based Approaches, Ranking, Deep Learning, and Other 

Measures. These categories encompass diverse techniques, 

providing a systematic overview of approaches utilized for 

enhanced multispectral/hyperspectral data analysis. 

All these categories and the author's contributions are 

described in the next sections. 

2.3.  Clustering-Based Approaches for Band Selection 

There are a lot of contributions to this type of approach by 

the authors (Datta et al.,2015) proposed a method that is a 

three-step procedure in which the first step attributes of each 

band are determined, in the second step clustering is applied 

upon the bands with clustering. As a result of clustering 

redundant bands form a cluster and an exemplar band from 

each cluster is chosen for the band subset, the subset is 

applied with third step ranking method which removes the 

uncorrelated bands from the subset where the cardinality of 

the bands from subset are compared with original HSI 

bands. These ranking of bands are done according to the 

equation Cardinality of the Pth band concerning to complete 
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HSI Image is represented in equation1 which is Kullback-

Leibler Divergence in which gki is the point probability of 

total HSI image CD is the cardinality of a band, and 

thereafter the first top listed ’k’ bands are selected as band 

subset. 

𝐶𝐷(𝑃𝑘 , 𝐺𝑘)  =  𝐾𝐿𝐷(𝑃𝑘||𝐺𝑘) + 𝐾𝐿𝐷(𝐺𝑘||𝑃𝑘) 

  = ∑ 𝑃𝑘𝑖 ∗ log(𝑃𝑘𝑖/𝐺𝑘𝑖) + ∑ 𝐺𝑘𝑖 ∗ log(𝐺𝑘𝑖/𝑃𝑘𝑖)𝑖𝑖

 (1) 

In another contribution by (Qi Wang et al., 2018) proposed 

a framework for band selection "Optimal Clustering 

Framework (OCF)" which is depicted in Figure 2. As per Qi 

the methodology multiple band subsets are formed an 

optimal subset partition is examined and later the best subset 

partition from where the better representative bands are 

chosen for the band subset. To implement this method 

Dynamic Programming proposed by R.Bellman et al., 1951 

is utilized for band selection which is breaking down the 

complete band set into smaller group band subsets and 

solving the optimal subset to be chosen. Second the usage 

of Continuous Band Indexes Constraint (CBIC) according 

to which the band with closer wavelengths produces similar 

reflectance, and also this is used for clustering the bands so 

that similar bands are grouped into one cluster. Third the 

ranking of cluster-formed bands where from each cluster a 

band is chosen for the band subset this is the optimal band 

subset. 

In another approach by (Huang et al., 2022) proposed a 

novel method called "Structural Subspace 

Clustering(STSC)" for band selection, where STSC depends 

on self-representation properties of a band and structural 

prior information to know the shape of the cluster which are 

clustered. The complete method comprises of four parts 

Structural Subspace Clustering, Structural Regularization, 

Estimation of Number of Bands, and Optimisation. The 

Structural Subspace Clustering method builds a combined 

matrix with related coefficients matrix and sparse 

coefficient matrix which is decomposed into the coarse 

coefficient matrix, which helps us understand the 

representation of original bands in lower dimensional space 

and later adopted by adjusting the matrix. 

Structural Regularization is to build and adjust the coarse 

coefficient matrix structural regularisation is utilized, which 

gives us the prior information related to bands locally and 

globally. The matrix representation reveals that high 

similarities occur mostly on the diagonal of the matrix, 

wherein there is also the possibility that the band far away 

from the diagonal also has high similarities which shows the 

global property of bands. For the local property, it is clear 

that band that are nearer to one another has similar kinds of 

local properties, so considering local property l2,1 norm 

which on a jointly taken lead to column sparsity of 

difference matrix L and guarantees that neighboring 

columns in L are close. The number of bands estimation is 

done with the help of Laplacian graphs, and finally, 

optimization of the band's subset is done using the 

alternating direction method of multipliers (ADMMS). 

Another approach is proposed by (Motiyani et al., 2023) 

where in the proposed work there is initial utilization of the 

’k- means’ algorithm for segmentation of HSI data set. Later 

the segmented image of each segment is calculated with 

Shannon’s Entropy and arranged in Ascending order, which 

is applied with a method called Multiple Feature (band) 

subset selection which identifies the top band for each 

segment with the help of γ by evaluating β and Shannon 

Entropy. From the before step bands with the highest 

Shannon Entropy are considered as band subsets which 

show more variation in bands, later the remaining segments 

are applied with clustering consisting of the top bands using 

pairwise distances between them. 

(Wang et al., 2022) proposed another method called 

Hypergraph Spectral Clustering Band Selection (HSCBS) 

where first a hypergraph is constructed to prioritize the 

bands later a Laplacian matrix is constructed from the 

hypergraph. The Hypergraph is constructed to represent the 

high within-class similarity and the low between-class 

similarity. The process constructs the hypergraph from all 

the bands of HSI utilizing the three band selection criteria 

called Information Entropy(IE) for entropy, Maximum 

Variance Principal Component Analysis(MVPCA) for 

variance, and Enhanced Fast Density Peak 

Clustering(EFDPC) for data structure. The process of 

Hypergraph construction difference from the normal graph 

is represented in figure 3, where it symbolizes that 

hypergraph hyperedge may contain one or more vertices and 

one vertex can belong to one or more hyperedge. In figure 3 

e1,e2 are hyperedges and v1,v2,v3,v4 and v5 are vertices. 

Fig  2 Optimal Clustering Framework (Qi wang et al.,2018) 
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Fig  3 Hypergraph Clustering (Wang et al.,2022) 

Another achievement in this category is (wang et al.,2020) 

introduced a method "Fast Neighbourhood Grouping for 

Band Selection (FNGBS) " represented in Figure 4, where 

the band selection was made using clustering by a coarse-

fine strategy which selects more informative and relevant 

bands also with two factors called local density (LD), 

Information Entropy(IE). The process also determines the 

number of bands to be selected with the help of the 

determinantal point process (DPP), the process is 

implemented as the first step the adjacent bands are grouped 

into many subgroups as the adjacent bands have large 

similarities. second step calculating the two factors LD and 

IE of the formed groups, there is a selection of band from 

each group with the highest weight of the product of the two 

factors LD, IE. Third, there is a minimum number of bands 

to be selected determined by the DPPs, when the condition 

of minimum bands to be selected is achieved the final 

optimal band subset is given as output. 

 

Fig  4 Fast Neighborhood Grouping (Wang et al.,2020)

The contribution by (Moussa et al., 2020) proposed a new 

method that combines two methods first extracting 

automatically spectrally variable endmembers using a linear 

spectral unmixing strategy second dissimilarity values 

vector are calculated between samples of extracted 

endmembers in the first step and segmenting using 

clustering process with the help of Mahalanobis distance. 

This clustering is called sequential clustering from each 

cluster formed in the second step is chosen as a band subset. 

 In another contribution of clustering-based band selection 

(Jia et al., 2016) proposed an improvement to the existing 

algorithm ‘Fast Density Peak Clustering (FDPC) ' and 

made 'Enhanced Fast Density Peak Clustering(E-FDPC) ', 

where the author emphasizes that FDPC introduces a 

combination of ranking bands with different metrics and 

clustering bands would lead to similar band groups for 

selecting band subset. In FDPC ranking of bands is done by 

computing normalized local density and intra-cluster 

distance rather than simply taking into consideration for 

band subset, and a cutoff threshold is used for selecting an 

optimal band subset in E-FDPC. In FDPC each band image 

is decided by two factors local density and intra-cluster 

distance which depend on the similarity matrix, and a cutoff 

is used to know the nearest local dense point thus the cluster 

centers are determined by the highest distance value and the 

interesting point in this method is that cluster centers can 

determine the nonspherical data points which lead to a band 

subset. While coming to the point of E-FDPC it generates 

the intra-cluster distances using square product of distance 

and local density. 

 In 2022 (Baisantry et al.,) proposed a method that is a 

supervised learning-based clustering utilizing loadings of 

the components from Principal Component Analysis (PCA), 

combined with a novel super-pixel-based graph Laplacian. 

This method tries to combine the two strategies Band 

Selection and Feature Extraction, the significance of each 

band is estimated using component loadings of PCA which 

are judged based on an objective functionality consisting of 

data fidelity, classification error, and spatial prior. The 

spatial relationship between bands is measured using the 

novel super pixel-graph method, and the procedure is 

something like initially bands are applied with k-means 

clustering and from each cluster-wise supervised method 

Discriminative Spectral Spatial PCA(DSS-PCA) is applied. 

Later bands selected from each cluster loadings are 

extracted, then selection of bands with the highest loadings 

from each cluster which is the final optimal band subset. 

 In a different approach by (Mali et al., 2023) proposed a 

new method for band selection where segmentation is 

applied with k-means clustering and the segmented image is 

considered as cluster. Arrange all clusters in the order of 

Gini Impurity, and choose the top segments that contain a 

number of pixels > 5 and for each segment calculate Gini 

Impurity, delta which signifies the variability in the band 

that makes is more significant. Now calculate the delta by 

exposing those bands whose Gini is greater than band j and 

by finding the maximum distance among the bands whose 

Gini is greater than band jth band. Evaluate the score and 

arrange all the bands in descending order of score 

parameter, select the top 'k' significant bands as optimal 
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band subset, and utilize it for clustering. 

(He et al., 2022) proposed another method for band selection 

called 'unsupervised multitask artificial bee colony (ABC) 

BS algorithm based on variable-size clustering (MBBS-

VC)’. As per He first the worst variable size band clustering 

is applied based on the worst decomposition upon this band 

selection is achieved as a multitask optimization problem. 

Later multitask multi-micro bee colony algorithm is induced 

with variable coding length, for searching multiple optimal 

band subsets with different sizes in parallel. Moreover, for 

the improvement of MBBS-VC bidirectional neighbouring 

learning and multi-measure integration judgement are 

implemented for increasing the accuracy of optimal band 

subset and increase the classification of HSI. 

  (Li et al., 2023) proposed a band selection algorithm 

'block diagonal representation learning (BDRLA)', that 

gives high-quality utilization in which affinity matrix is 

generated. The spectral band similarity matrix is generated 

that has a clear diagonal structure, using it as a block 

diagonal similarity matrix with ordered partition points 

based upon l2 -norm. The obtained similarity matrix is then 

processed with clustering without indicators and a 

dictionary learning is employed to select the represented 

bands from each cluster. 

(Tang et al., 2023) proposed a new method for band 

selection called 'spatial and spectral structure preserved self-

representation model for unsupervised hyperspectral band 

selection without using any label information(S4P)', which 

takes into consideration spatial and spectral features of the 

bands. According to S4P each band of HSI is transformed 

into a feature vector and applied with PCA, later 

segmentation(clustering) is applied upon the PCA 

transforming HSI into different super-pixels which reflects 

the spatial structure of different homogeneous regions. Each 

super pixel-level feature vector taken for the self-

representation model is utilized for learning spectral 

correlation between bands. An adaptive and weighted 

multiple graph fusion is taken for generating similarity 

graph between super pixels, which enables us to capture 

spatial structure in the self-representation space. 

 (Sun et al.,2019) proposed a method 'Weighted Kernel 

Regularization for Band Selection (WKR-BS) ' where the 

bands are transformed in to matrix X, vector y. Later model 

the non-linear relationships between X and y, into WKR 

problem that considers non-linear structures of HSI using 

WKRR (WKR with Ridge Regression). Now construct L1-

norm regularisation term on weights of all bands, the L1 

penalty considers variable contributions from different 

bands in describing the nonlinear relationships and to 

achieve sparsity between bands to be selected. WKR 

implements the KerNel Iterative-based Feature Extraction 

(KNIFE) algorithm for estimating the proper band weights, 

the KNIFE transforms the nonlinear kernel to reduce 

computational cost and minimize the 2 convex problems for 

solving sample coefficients and band weights. The top 'k' 

bands with larger weights and larger dissimilarity with other 

bands are considered as optimal band subsets. 

2.4. Classification-Based Band Selection 

Various classification approaches for band selection have 

been explored in recent studies. Author (Mehdi et al. 2023) 

applied an Anisotropic Gaussian kernel to Support Vector 

Machines, resulting in a notable 5% improvement in 

classification accuracy. On a different front, (Cao et al. 

2016) introduced Automatic Band Selection (ABS), a novel 

technique integrating classification and clustering. ABS 

utilizes classifiers such as kNN and SVM to categorize 

bands within a represented Band Label vector. The labeled 

vectors are subsequently clustered, and bands from each 

cluster are considered based on a threshold to ensure non-

repetitiveness. Additionally, noteworthy contributions by 

(Dey et al. 2023) involve the incorporation of statistical 

information, such as Mutual Information of Bands, 

combined with the neighborhood principle. This method is 

employed to rank bands based on their 

similarity/dissimilarity, resulting in the selection of an 

optimal band subset. 

2.5. Statistical Measures Based Band Selection 

The author's contribution of Statistical measures is 

encouraged by (Sun et al., 2019), who proposed a method 

named Correntropy-based sparse spectral clustering (CSSC) 

to select the proper band subset. The proposed method 

constructs an affinity matrix with the help of Correntropy 

measurement which considers the non-linear characteristics 

of every band of HSI. 

In another contribution by (Adolfo et al., 2007) they 

proposed a method for dimensionality reduction dependent 

upon Statistical measures and hierarchical clustering, that 

maximizes the inter-cluster variance and minimizes intra-

cluster variance. The proposed method utilizes Kullback-

Leibler divergence to reduce data redundancy and 

unnecessary information among HSI bands. The procedure 

is implemented using 2 stages i) Calculating the 

Dissimilarity Measures between bands and 2) performing 

the Variance-Reduction Clustering Strategy. In the first 

stage, various dissimilarity measures are calculated between 

the bands to build a matrix like Shannon entropy, 

Normalised Mutual Information, Kullback-Leibler 

Divergence, etc. In the second stage, the observed 

dissimilarities are clustered using a hierarchical clustering 

procedure for optimal band subset selection. 

 As per (Jain et al., 2022) the band selection is done based 

on the "Mutual Information based Dependence Index 

(MIDI)", which is an unsupervised band selection method 

that is competent enough to identify the non-linear 

relationships between bands. The MIDI will first calculate 
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the MIDI score between all the bands of HSI, later sort the 

band with decreasing order and those bands with null values 

are rejected for further process. Repeat the process of band 

selection until the required number of bands is selected, for 

a new band to be included in the band subset calculate the 

ith distance from the sorted array if both the bands are 

already in the selected list then move to the next step or else 

any one of the bands is rejected already then go to next band. 

If both bands are not present in the selected list then 

calculate the sum of distances between the band under 

consideration, and the remaining unselected bands 

whichever is greater is considered for the band subset. 

Iterate through this process until the optimal band subset 

with the required number of bands is obtained. 

According to (Ehsan et al., 2022) the proposed work called 

"Joint-Conditional Mutual Information for Selecting 

Informative Feature (JCIF)", is purely based information 

theoretic feature selection approach that gives a band subset 

with the help of the maximum of the minimum approach. 

First, calculate the Mutual Information (MI) of each band in 

the HSI, and later select the band subset from these HSI 

bands that have maximum MI, these selected bands are then 

calculated with the difference between relevance and 

redundancy. The minimum difference bands are calculated 

with conditional entropy those bands with maximum 

conditional entropy are selected as optimal band subsets. 

In another contribution by (Chug et al., 2023) proposed an 

approach called "Spectrally Optimized Feature 

Identification (SOFI)", which is based on a statistically 

optimal band selection strategy. The proposed method is 

applied in 2 stages first there is Feature Reduction, and 

second is Feature Selection. In the first stage, the bands that 

exhibit more Fisher ratio are only selected and the ones that 

show less are discriminated against, whereas in the second 

stage Genetic Algorithms are used for selecting the optimal 

band subset which is passed by the first stage that leads to 

optimal band subset. 

2.6. Deep Learning Based Band Selection 

Limited contributions have been made in the field of 

decomposition, where (Qi et al., 2023) introduced a novel 

approach using tensor-based decomposition on feature 

vectors (bands) of hyperspectral imagery (HSI). Their 

method involves applying clustering to streamline 

calculations, reducing computational complexity as the 

features are transformed into a lower-dimensional space. 

Another method proposed by (Zang et al., 2023) focuses on 

leveraging the spectral differences between water and other 

ground elements in an HSI dataset. By calculating the 

spectrum differences with various elements, this approach 

selects representative features by identifying the highest 

difference between HSI bands with pure water and the 

lowest difference between HSI bands with land cover. These 

contributions aim to enhance the efficiency and accuracy of 

decomposition techniques in HSI analysis. 

 Another method proposed by (Dou et al., 2020) 

"Attention-Based Auto Encoders for Band selection" where 

there is a utilization of a category of Auto Encoders for Band 

selection which is an unsupervised neural network model. 

These Encoders can output bands as the number of input 

bands, using this model raw HSI data is provided as input 

and after attaining the optimization of the model the column 

vectors of the model are used with K-Means clustering. The 

final optimal band subset consists of the bands selected from 

each cluster as a representative band. 

In the approach by (Bao et al., 2022) "Similarity-based band 

selection using Deep Reinforcement Learning" where their 

model is developed based on a double deep Q-network 

(DDQN). The DDQN introduces more rewards and helps in 

adopting fixed targets, and DQN targets make the training 

samples unstable because the rewards are produced which 

is being solved by fixing the targets. The targets are fixed 

based on the parameters passed to Q-networks, as DQN 

suffers from over-estimation, a new target function is 

proposed as DDQN which fixes the problem of selecting the 

optimal band subset. 

In their 2023 contribution, Liu et al. introduced a pioneering 

model, the Triple Constraints and Attention Network for 

Band Selection (TCANet-BS), which combines deep 

learning principles with innovative methodologies for 

hyperspectral imagery (HSI) analysis. TCANet-BS 

systematically selects bands for inclusion in a band subset 

by leveraging band informativeness, representativeness, and 

correlation. Inspired by deep learning architectures, 

TCANet-BS utilizes an Attention Reconstruction network 

to calculate band representativeness, spectral information 

divergence, and orthogonal subspace projection for band 

informativeness, and inter-band correlation, respectively. 

To address the challenge of highly correlated bands, 

TCANet-BS employs constraint mechanisms and scoring 

functions, iteratively operating until the final required 

number of optimal bands is selected. This sophisticated 

approach represents a significant advancement in 

hyperspectral data analysis, offering improved efficiency 

and precision in band selection processes. 

The contribution by (Zhou et al., 2023) proposed a new 

method called "Iterative Graph Auto Encoder for Band 

Selection (IGAEBS)", which captures the structure 

information using an automatic construction process. This 

model is a new unsupervised pretext task for training 

convolution neural networks to extract features, later these 

features are utilized for building a graph to represent 

systemic relationships among the bands. This graph 

structure is continuously improved and the model that does 

this is an iterative graph improvement, which forwardly 

improves the graph structure and this graph is utilized for 

building clusters. From each cluster, a representative band 
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is selected into the optimal band subset. 

 As per (Francis et al., 2023) a new method has been 

proposed "A TENSOR NON-CONVEX LOW RANK AND 

SPARSE CONSTRAINED BAND SELECTION 

SCHEME" for band selection. An effective Tensor-based 

band selection scheme and a submodule clustering are 

applied to preserve the spatial structure of the spectral bands 

in the proposed framework. The self-expressive 

representation of spectral bands is optimized using a 

representation tensor which leads to the construction of a 

similarity matrix, from which the appropriate number of 

non-redundant bands are extracted using silhouette 

clustering evaluation. To better rank the bands and know the 

self-expressiveness of bands l1/2 -induced Tensor Nuclear 

Norm and l1/2norm regularisation are included. After 

clustering the bands, the bands closest to the clusters' centers 

are chosen for the optimal band subset. 

Another contribution by (Das et al.,2022) proposed a 

"Sparsity Regularized Deep Subspace Clustering for Multi-

criterion-Based Band Selection" that utilizes the deep 

subspace clustering process framework with multicriteria-

based band selection. As per Das deep subspace clustering 

identifies the underlying non-linear subspace structure, and 

sparsity measure to identify self-representative bands. To 

obtain the deep subspace the auto-encoders are utilized 

which deduce the self-representative coefficient matrix, 

which represents self-expressive layers with pq-norm 

sparsity that also reduces the dimensionality. The reduced 

dimension data are then optimized so that self-

representation is present in the subspace data and the bands 

from each cluster after subspace clustering are selected by 

looking at the structural information along with statistical 

similarity measures to obtain the optimal band subset. 

2.7. Optimization Based Band Selection 

Optimization-based techniques for band selection in HSI are 

divided into three sub-categories: a) Particle Swarm 

Optimisation (PSO) b) Genetic Algorithm Based 

Optimisation (GAO) c) Other Optimisation techniques 

(OT). This area's contributions are less shown in PSO 

compared to OT and GAO. 

2.7.1. Particle Swarm Optimisation (PSO) 

 In this category, (Zang et al. 2017) made notable 

contributions by introducing a hybrid approach, combining 

clustering (Fuzzy C-means) with the optimization technique 

Particle Swarm Optimization (PSO) for Band Subset 

Selection (PSO-FCM). Within this method, the fuzzy 

membership is updated by PSO, and for each cluster formed 

through PSO-FCM, a band is selected based on the 

maximum entropy, representing the cluster optimally. 

 Another significant method proposed by (Wan et al. 

2023) involves the application of an innovative technique 

called Adaptive Multistrategy Particle Swarm Optimization 

for Band Selection (AMSPSO\_BS). In this approach, the 

Particle Update Strategy (PUS) is categorized into five 

distinct strategies, and an adaptive self-adjustment strategy 

automatically selects and applies the appropriate update 

strategy. These contributions showcase advancements in 

optimization techniques for band selection, enhancing the 

adaptability and effectiveness of the selection. 

2.7.2. Genetic Algorithms Based Optimisation (GAO) 

 In the realm of Genetic approaches to band selection, 

(Paul et al. 2015) proposed a novel technique that integrates 

both clustering and Genetic algorithms for optimal band 

subset identification. The method initiates spatial clustering 

in the first phase, where each candidate is selected from a 

formed cluster. In the second phase, the Genetic Algorithm 

and Kullback–Leibler divergences are applied to refine the 

candidate solution set, eliminating adjacent bands and 

achieving the best band subset.  On a different 

front, (Tong et al. 2023) introduced a hybrid approach by 

combining cross-genetic algorithms, incorporating both 

Artificial Bee Colony and Genetic Algorithm. After 

applying the Artificial Bee Colony procedure to each band 

candidate, the selected band subset undergoes Genetic 

crossover operations, mitigating potential disadvantages 

from the earlier procedure. Subsequently, the refined band 

subset is submitted to a 3D-CNN for improved classification 

accuracy. 

 In another innovative algorithm, (Yin et al. 2012) 

introduced the Immune Clonal Strategy for band subset 

selection. The method involves selecting a random band 

subset and arranging bands in decreasing order of affinity. 

Clonal proliferation of each band occurs in descending order 

of the affinity function, followed by hybrid mutation. This 

process iterates until an improved combination of band 

subsets is found, resulting in enhanced classification 

accuracy of hyperspectral imagery.  

2.7.3. Other Optimisation Based Techniques (OT) 

 In the realm of band subset selection procedures, 

(Alkithab et al. 2020) have made a significant contribution 

with their innovative Column Subset Selection (CSS) 

algorithm. This algorithm strategically reduces bands based 

on a minimum residual errors strategy, employing Singular 

Value Decomposition (SVD) and QR factorizations to yield 

a refined subset of bands. By doing so, Alkithab et al. 

present an effective methodology for band selection, 

demonstrating the efficacy of their approach in minimizing 

errors and enhancing the overall performance of the selected 

bands. 

 Wang et al. (2022) present a pioneering Hybrid Grey 

Wolf Optimizer (HGWO) technique distinguished by its 

adaptive decreasing convergence factor, a departure from 

traditional linear approaches. The algorithm, rooted in the 
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Grey Wolf Optimizer framework, treats bands as entities 

within a wolf pack. Designating a band as ' alpha' to 

represent the optimal solution across the entire band set, the 

algorithm strategically selects successors 'beta' and 'delta' at 

the ground level of the wolf pack hierarchy. This 

hierarchical mimicry guides the band selection process, 

ultimately leading to the identification of an optimal subset. 

The adaptive convergence factor plays a pivotal role in 

preventing premature convergence, ensuring the algorithm's 

effectiveness in navigating the solution space and yielding 

superior outcomes. 

In the study by Wu et al. (2024), a novel algorithm is 

introduced, drawing inspiration from the 'Cuckoo Search 

(CS)' algorithm, renowned for its exceptional feature search 

capabilities despite facing challenges in initial iterations. To 

address the issue of late iterations, the authors innovatively 

integrate CS with a 'Match Filter (MF),' enhancing band 

selection through a filter-based comparison involving the 

noise ratio of bands within the CS-selected band subset. 

This hybrid approach not only mitigates the initial struggles 

of CS but also introduces a sophisticated MF mechanism to 

refine band selection further. Additionally, the model 

incorporates a Neighbourhood-based grouping strategy to 

diminish similarities between bands filtered by the MF, 

thereby augmenting the algorithm's overall performance in 

efficiently identifying relevant features. This integrated 

methodology demonstrates a comprehensive and effective 

solution to enhance the algorithm's search efficiency and 

feature selection capabilities. 

In the research conducted by (Xu et al. 2023), a pioneering 

Dingo Optimization Algorithm (DOA) is introduced to 

identify an optimal band subset that accurately represents 

relevant features within hyperspectral imaging (HSI) 

datasets. The proposed methodology integrates Fuzzy C-

Means (FCM) clustering to partition the dataset into 'C' 

clusters. Subsequently, the DOA is applied to optimize the 

objective function, a clever combination of Entropy and 

correlation of bands. The algorithm strategically selects 'K' 

bands from each cluster to form the final band subset. 

Notably, the band population is dynamically updated using 

a hunting strategy inspired by dingoes, ensuring a 

systematic exploration of the solution space. The 

optimization process continues until the band subset attains 

the best fitness value, at which point the algorithm ceases, 

underscoring its efficiency in achieving an optimal 

representation of relevant features within the HSI dataset. 

  In their work, Ou et al. (2023) present an 

innovative model centered around a Multi-Objective 

Cuckoo Search (MOCS) for band selection, building upon 

the foundation of the 'Cuckoo Search (CS)' algorithm. To 

address challenges in initial iterations, an adaptive strategy 

is incorporated, enhancing the algorithm's efficacy. This 

method leverages information-sharing through grouping 

and crossover operations to achieve a balance between 

global exploration and local exploitation, effectively 

tackling the issues encountered in initial iterations. The 

proposed algorithm introduces the use of dispersion 

coefficient and cross-correlation to optimize the band 

selection process, fostering a higher quantity of information 

and lower intercorrelation between bands. This strategic 

approach ultimately leads to the identification of a superior 

band subset from the original hyperspectral imaging (HSI) 

band set. By applying MOCS to evaluate fitness based on 

the dispersion coefficient and cross-correlation, the 

algorithm systematically refines the band selection process 

until an optimal band subset is obtained, demonstrating its 

capability to enhance the quality of selected bands in HSI 

data. 

In their 2023 work, Yang et al. introduced the 

Multiobjective Optimization method for Adaptive Band 

Selection (MMOABS), a groundbreaking strategy to tackle 

the band subset selection problem. Employing a multitask 

multi-objective framework during subset selection, 

MMOABS identifies bands with high discrimination, 

information richness, and low redundancy, ensuring a well-

balanced and informative band subset. The dual-task 

approach enhances the overall efficiency of the selection 

process. Subsequently, the selected bands are utilized in 

classification tasks, where MMOABS has demonstrated 

superior accuracy compared to alternative methods. This 

innovative technique represents a significant advancement 

in band selection methodologies, showcasing its 

effectiveness in addressing the complexities of the band 

subset selection problem and improving classification 

accuracy. 

Another work by (Ma et al., 2023) proposed a work called 

spectral correlation-based diverse Band Selection (SCDBS), 

which considers the correlation weights for building of 

weighted sparse reconstruction based on which the band 

subset is chosen, this leads to a band subset with high 

correlation to the original HSI data set. Another study by 

(wang et al., 2023) introduced a structure-conserved and 

neighborhood-grouped evolutionary algorithm (SNEA), 

which is an un-supervised method where first there is an 

optimization in between all the spatial structures present in 

the HSI scene with the help of an affinity matrix. The next 

strategy is to select the bands based on the spatial structures 

not being disturbed by any band included in the subset. To 

eliminate the redundancy there is a neighborhood grouping 

strategy applied so that the offspring solution from the 

above said method will be non-redundant. 

2.8. Framework-Based Band Selection 

This category has the least contributions where the 

author(Hu et al., 2023) proposed a framework methodology, 

called "One-shot Neural Band Selection(NBS)" to achieve a 

band subset. The proposed framework converse to the 
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traditional band selection strategies rather than searching 

with a random subset and finding the optimal Band subset 

this strategy helps us find the optimal band subset with 

gradient descent problem-solving search methodology. 

2.9. Ranking and Other Functionality Based Selection 

The significance of this category is underscored by (Yang et 

al.'s 2019) introduction of the Shared Nearest Neighbour 

Co-relation Analysis (SNNCA) method. This approach 

builds upon the principles proposed by (Qiang et al. 2019) 

in their "Shared Nearest Neighbour Clustering (SNNC)" 

theory. SNNCA relies on shared nearest neighbours to 

determine the local density of each band, reflecting their 

characteristics. The calculation involves a combined 

equation utilizing the Gaussian Kernel Function, Distance 

factor, and Information Entropy. Bands' local densities are 

then ranked in descending order, with the top bands serving 

as cluster centers in SNNC. In the case of SNNCA, the most 

representative bands, correlated within each cluster, are 

selected to form the band subset. This methodological 

refinement enhances the understanding and selection of key 

bands in the context of shared nearest-neighbour analysis. 

  In an additional contribution to this line of 

research, (Llaveria et al. 2022) have introduced the 

Sequential BS Ranking (SBSR) method for efficient Band 

Subset Selection in Hyperspectral Imaging (HSI). The 

innovative approach involves calculating the entropy of 

each band in the HSI, followed by reordering the bands in 

descending order of their entropy values. Subsequently, the 

method selects the band with the highest entropy, 

incorporating it into the initial band subset S! = Ɵ. The 

process iteratively continues as each band is evaluated using 

a scoring function, resembling a form of correlation, 

concerning the bands already included in subset 'S'. This 

stepwise procedure ensures the selection of bands in set S 

based on their compatibility with the existing subset, 

effectively optimizing the band subset until the desired 

number of bands is attained. 

  In their work, (Sun et al. 2020) have introduced a 

novel approach named fast and latent low-rank subspace 

clustering (FLLRSC), representing a distinctive ranking 

method in hyperspectral imaging (HSI) analysis. The 

methodology strategically employs Hadamard random 

projections to alleviate the computational complexities 

associated with higher-dimensional data. Initially, the HSI 

dataset undergoes Hadamard Random Projections, 

facilitating the extraction of representative bands within a 

low sparse representation. This transformation effectively 

moulds the original HSI into a low-rank structure, crucial 

for subsequent computations. The correntropy measure 

similarity is then calculated based on this low-rank 

representation, providing a robust measure of similarity. 

The ensuing similarity matrix is subjected to spectral 

clustering, resulting in 'k' clusters. Bands proximate to the 

normalized rows around cluster centers are identified, 

forming the selected band subset. Sun et al.'s FLLRSC 

method showcases a nuanced integration of Hadamard 

random projections, low-rank structures, and spectral 

clustering, contributing to a more computationally efficient 

and representative band subset selection in hyperspectral 

data analysis. 

  In their contribution, (Xu et al. 2020) propose an 

innovative algorithm termed Similarity-based Ranking-

Structural Similarity (SR-SSIM), which offers a unique 

blend of ranking principles inspired by density-based 

clustering. This method prioritizes the selection of bands 

into the band subset based on both ranking and structural 

similarity considerations. Notably, the ranking strategy 

draws inspiration from Fast Density Peak Clustering 

(FDPC), wherein instead of employing density and 

similarity for each band, Xu integrates the similarity 

parameter 𝛼 and dissimilarity parameter 𝜃. The 

determination of 𝛼 involves a cut-off similarity score, while 

𝜃 is computed using the equation 𝜃 = √1 − 𝜑𝑖 , signifying 

the nearest band with a larger average similarity. In the 

proposed method, bands exhibiting both normalized 𝛼 and 

𝜃 are ranked according to the cross-product of the norm(𝛼) 

X norm(𝜃). The top 'k' bands are then selected as the band 

subset according to the SR-SSIM algorithm. This intricate 

combination of density-based clustering principles and 

structural similarity metrics distinguishes Xu et al.'s SR-

SSIM as a promising method for robust and nuanced band 

subset selection in hyperspectral data analysis. 

  Shuying Li et al.'s (2023) research introduces the 

Difference between Intergroups (DIG) method for band 

selection, incorporating two key strategies: Grouping-

Strategy via Intragroup Similarity (GSIS) and Ranking-

Strategy via Difference between Intergroup (RSDI). GSIS 

facilitates a more dispersed band selection by reducing 

similarity within groups through coarse and fine grouping. 

RSDI then leverages knowledge and similarity within each 

group, selecting the maximum local density-represented 

band. The proposed method involves applying GSIS first, 

followed by RSDI, and subsequently employing DIG to 

handle redundant bands within the same groups. Multiple 

band subsets are generated, and an evaluation function is 

applied to determine the optimal subset based on the 

achieved evaluation function value. This comprehensive 

approach aims to enhance band selection efficacy, and the 

research suggests potential improvements through a 

thorough evaluation and comparative analysis of results.

  

  In their work, Datta et al. (2012) introduced an 

unsupervised band selection algorithm comprising three 

sequential steps. Initially, the algorithm extracts attributes 

from bands by treating each pixel as an attribute and clusters 

them using DBSCAN, producing initial clusters. From these 
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clusters, mean representative points are derived, 

maintaining equal attribute representation, and a matrix is 

constructed. In the subsequent stage, the matrix undergoes 

another round of DBSCAN clustering to segregate 

representative bands and isolated clusters containing bands 

deviating significantly. The resultant intermediate band 

subset comprises a combination of representative and 

isolated bands. Finally, in the third stage, bands within the 

intermediate subset are ranked based on their discriminatory 

power, quantified by their non-Gaussianity. This ranking, 

determined by Information Divergence, yields a list of 

bands ordered according to their discriminatory capability, 

from which the top 'k' bands are selected as the optimal band 

subset, enhancing the efficiency and effectiveness of 

hyperspectral data analysis. 

  In the realm of band selection, Chang et al. (2023) 

proposes an unsupervised RDF-based band subset selection 

(RDFBSS) method, employing the Radial Bias Function 

(RBF) for optimal band selection. The methodology 

comprises two distinct types: SQ-RBFBSS-MIN and SC-

RBFBSS-MIN, both inspired by the N-FINDR algorithm to 

iteratively enhance band selection. In SQ-RDFBSS-MIN, 

bands are selected based on the difference in RDF curve 

scores, utilizing a Spectral Angle Mapper (SAM) and 

Spectral Information Divergence (SIDAM). The distortion 

matrix, calculated through SAM and SIDAM, is combined 

with the entropy of each band and processed using Blahut’s 

rate-distortion algorithm to normalize RDF over 

hyperspectral imagery (HSI) data, ultimately yielding an 

optimal band subset. If the threshold value is not surpassed, 

the iterative process continues within the specified limit, 

refining the band subset further. The SC-RDFBSS-MIN 

process follows a similar functionality with initial 

conditional changes, presenting an innovative approach to 

unsupervised band selection using RDF and RBF. 

  In their 2021 work, Zhu et al. introduced a novel 

approach for band selection utilizing Improved Affinity 

Propagation (IAP), a technique akin to clustering. The 

method involves calculating the information entropy for 

each hyperspectral band, followed by the permutation of 

bands in decreasing order to construct a similarity matrix 

with itself. This permutated matrix is then partitioned into 

'k' blocks, with the constraint that the value of 'k' should be 

greater than 1 and less than the square root of the total 

number of bands √𝐿 ÷ 2 , where L represents the bands in 

hyperspectral imagery (HSI). The submatrices obtained 

from this process are subsequently employed in the Affinity 

Propagation (AP) algorithm, and their combination forms 

the availability matrix for AP, yielding exemplars. These 

exemplars are transformed into the format of an identical 

matrix with only diagonal elements available. The resultant 

intermediate matrix undergoes entropy calculation, 

culminating in the selection of band subsets represented by 

the output exemplars, showcasing an innovative method for 

effective band selection using IAP and entropy 

considerations. 

  Another contribution by (Meenakshi et al., 2023) 

proposed a new method called Wavelet entropy-based Band 

Selection, where each band is calculated with a wavelet 

entropy and rank the bands based on entropy value. The first 

top 'k' bands are chosen as the optimal band subset. 

2.10. Decomposition Based Selection 

 In the realm of hyperspectral image analysis, the 

contribution of methods addressing bottleneck-causing 

factors of graph regularization, particularly about 

correlations among bands and neighboring pixels, has been 

comparatively understated in comparison to optimization 

and ranking-based approaches. Herbenger et al. (2023) 

sought to address this gap by proposing a novel solution 

involving the utilization of spectral/spatial Laplacians and 

matrix CUR decomposition. The method commences with 

the construction of symmetrically normalized spectral and 

spatial Laplacians, subsequently optimizing these 

Laplacians through the alternating direction method of 

multipliers (ADMM) algorithm. This iterative process 

continues until convergence, resulting in a decomposed 

matrix of the original hyperspectral imagery (HSI), which is 

then transposed. The transposed matrix is further subjected 

to a classifier, such as Herbenger's chosen K-means, to 

identify optimal bands closely aligned with the cluster 

center. This method presents a significant advancement in 

mitigating graph regularization issues, showcasing its 

potential to contribute meaningfully to the broader field of 

hyperspectral image analysis. 

  In their contribution, Qi et al. (2023) introduced a 

groundbreaking method named the Tensor Decomposition-

based Latent Feature Clustering (TDLFC) model designed 

for band selection. This innovative approach employs the 

CANDECOMP/PARAFAC (CP) tensor decomposition 

method to represent low-dimensional bands, effectively 

capturing both spatial and spectral information. To mitigate 

the risk of overfitting in the CP decomposition process, a 

regularization function is strategically applied. Following 

the decomposition, the resulting bands undergo 'K-Means' 

clustering, partitioning the dataset into 'n' clusters. 

Subsequently, representative bands are selected by 

identifying the points nearest to the centers of these clusters, 

forming an optimal band subset. The TDLFC model thus 

offers a comprehensive and sophisticated solution for band 

selection by leveraging tensor-based decomposition and 

latent feature clustering, showcasing its potential to enhance 

the extraction of meaningful information from hyperspectral 

data. 

  In the work presented by Zhang et al. (2024), a 

novel approach named Sparse Principal Component 

Analysis and Adaptive Multigraph Learning (SPCA-
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AMGL) is introduced to address the challenge of achieving 

a low-dimensional representation of original hyperspectral 

data points. This method involves the projection of 

hyperspectral image (HSI) data points onto a low-

dimensional space through Sparse Principal Component 

Analysis (SPCA). Subsequently, local manifold 

preservation is implemented to ensure that pixels belonging 

to the same class in the original dimensions also belong to 

the same class in the reduced-dimensional representation. 

Graph theory is utilized to represent the local manifold, 

constructing a graph based on the 'KNN' (K-nearest 

neighbors) principle, preserving the essential structure of 

the original HSI dataset in lower dimensions. The image 

classification process is then executed using adaptive 

multigraph learning, facilitating the exploration and 

learning of the similarity graph between bands. The SPCA-

AMGL method offers a comprehensive solution for 

achieving an effective low-dimensional representation 

while preserving the local structure of hyperspectral data, 

showcasing its potential for accurate and meaningful image 

classification.   

2.11. Other Game/Graph Theory Based Band Selection 

 In the domain of graph and game theory-based 

approaches, (Zhou et al. 2022) introduced a method 

grounded in the "maximum empirical volume (MEV) 

theory" principle. This innovative approach amalgamates 

the benefits of orthogonal projection and cross-entropy, 

relying on the Sequential Forward Selection (SFS) 

algorithm. The orthogonal projection involves the 

utilization of a hyperplane formed by the selected band 

subset. In a parallel contribution to this category, You et al. 

(2023) proposed the Global Affinity Matrix Reconstruction 

(GAMR) method. GAMR constructs pseudo labels for 

hyperspectral image (HSI) bands within the low-

dimensional manifold space projected by the original data. 

The pseudo labels are intricately constrained by a graph 

regularization function formulated using a global affinity 

matrix reconstructed through the amalgamation of multiple 

predefined local similarities. Both methods showcase the 

potential of graph and game theory-inspired techniques in 

enhancing band selection processes, offering advanced 

strategies for maximizing empirical volume and 

constructing pseudo labels in a low-dimensional manifold 

space. 

  In this category of graph and game theory-based 

approaches, (Shang et al. 2023) introduced the Hypergraph 

Regularized Self-Representation (HyGSR) model for band 

selection, combining spectral similarity and band index to 

create a novel metric that normalizes the local structure of 

bands using Hypergraph. The utilization of an $l_2,_1$ -

norm helps extract sparse properties of data, enhancing the 

efficiency of band selection. In a distinct contribution, 

(Jeenath et al. 2022) proposed an ensemble method that 

integrates strategic and competitive theory applications, 

incorporating Principal Component Analysis (PCA) for 

Fig  4 Hierarchical Representation of Band Selection methods 
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dimensionality reduction. Furthermore, (Race et al. 2023) 

provided a concise comparison of various dimensionality 

reduction methods, such as PCA, MNF, OSP, PPCA, 

revealing that faster techniques like PCA consistently yield 

superior accuracy compared to methods like PPCA. These 

advancements collectively underscore the diverse strategies 

within the graph and game theory-based approaches, 

showcasing their potential for refining hyperspectral band 

selection and dimensionality reduction processes. 

3. Results 

 

Fig  6 Contribution of Authors over HSI data sets used for Experimentation

 

Figure 5 categorizes literature-based Band selection 

techniques into nine groups, with a specific focus on 

optimization techniques, further classified into Particle 

Swarm Optimization (PSO), Genetic Algorithm 

Optimization (GAO), and Other Techniques (OT) as 

detailed in Section 2.7. Figure 5 illustrates the author’s 

contributions within these categories. Simultaneously, 

Figure 6 highlights dataset utilization, with Indian Pines 

being the predominantly used dataset, followed by Pavia 

University, Botswana, and KSC. Despite various datasets 

employed for methodological experimentation, the 

evaluation is based on five selected datasets. Clarifying the 

placeholders and providing specific details will enhance the 

overall coherence and completeness of the analysis. 

The study's results underscore the supremacy of clustering-

based methods in achieving high accuracy compared to the 

eleven band selection techniques assessed. These findings, 

applied to five widely used hyperspectral imaging (HSI) 

datasets available online, hold particular significance as 

these datasets align with those frequently utilized in the 

surveyed articles. The band selection process is 

standardized, ranging from 2 to 30 bands, allowing for 

flexibility across various literature methods. Notably, the 

results on the Indian Pines dataset, as depicted in Figure 7, 

highlight the effectiveness of author Qi Wang's 

contribution, the Top Rank-Cut with Edge Preserving Filter 

(TC-EPF), a clustering approach, which achieved the 

highest Overall Accuracy (OA) of approximately 0.91. 

Furthermore, in the Pavia University dataset, the same 

methodology by Qi Wang et al., 2018 demonstrated 

exceptional performance with an impressive Overall 

Accuracy (OA) of 0.98 with Normalised-cut with Edge 

Preserving Filter (NC-EPF) shown in Figure 8. 

 

 

Fig  7 Overall Accuracy of Indian Pines Data set from top Band Selection Methods.
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Fig  8 Overall Accuracy of Pavia University Data set from top Band Selection Methods.

The other end (Wu et al.,2024) proposed Heterogenous 

Cuckoo optimization search-based (\textbf{HCS-MF-

EPF}) Band Selection has given better accuracy over 

Salinas data set figure \ref{fig:SA} with classification 

technique of SVM for HSI data set labeling. Botswana is 

applied by 16 different methods in the literature, which 

include Search optimization with clustering, and the filter-

based approach is the best technique. Along with this figure 

\ref{fig:PIE} refers to the number of articles each of the data 

sets is being utilized to experiment with the author's 

methods, where the highest used HSI data set is Indian 

Pines. Among the  Data sets used Pavia University, Salinas, 

Botswana, and Kennedy Space Center are at the top, so only 

these are utilized for study in the paper. 

 

Fig  9 Overall Accuracy of Botswana Data set from top Band Selection Methods.

Figure 9 represents the top methods with 17 authors 

contributing to the survey providing the best accuracy with 

the HCS-MF-EPF method showing very high accuracy 

achieved mostly near 0.98, other than this (JCIF-SVM) 

proposed by (Ehsan et al., 2022) a combination of Statistical 

and clustering-based method for Band subset selection 

produced an accuracy of 0.942. And later talking about 

Figure 10 the contributions are only 9 for this data set, 

among which HCS-MF-EPF with SVM classifier is at the 

top with 0.99 OA. Then the next work which shows better 

classification accuracy is NC-EPF with an accuracy of 

0.875. These outcomes affirm the efficacy and versatility of 

clustering-based techniques with optimization techniques 

resulting in best band subset selection for hyperspectral 

image analysis. 

 

Fig  10 Overall Accuracy of KSC Data set from top Band Selection Methods
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4. Conclusion 

The author's pioneering work in the clustering mechanism 

stands out as the most effective among all eleven categories, 

with statistical approaches claiming the second position, 

closely followed by clustering in the third place. Particularly 

noteworthy are the clustering techniques that achieve top-

tier accuracy through a neighbor grouping-based band 

subset selection framework. This framework meticulously 

selects a band subset using a threshold, seamlessly 

integrating the most representative bands. The result is a 

highly effective method for Hyperspectral Image 

Classification, showcasing the author's significant 

contribution to advancing this field. The predominant 

contributions lie within clustering techniques, with the least 

significant advancements originating from statistical 

theory-based optimization. 
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