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Abstract: Autism spectrum disease (ASD) is a neuro-developmental disorder that is complicated and degenerative. The majority of 

current approaches use functional MRI to diagnose autism spectrum disorder (ASD), but they have several drawbacks. In order to 

address these issues, a novel framework for diagnosing ASD is presented by the suggested approach, which combines deep learning, 

sophisticated neuroimaging, and game theory. Using an optimized Deep Neuro Fuzzy Network (DNFN) through Feedback-Henry Gas 

Optimization (FHGO) and functional connectivity data, this study builds upon a novel approach and applies game theory to model the 

complex interactions within neural networks and improve the automated autism diagnosis model's performance. The proposed Game 

Theory Optimized DNFN-FHGO shows better accuracy and yield an accuracy of 98.63 % which is 17.54% higher when compared with 

DNN, SVM and DANN and establishing a new standard in the area by fusing the strategic insights of game theory, the adaptability of 

deep learning, and the predictive potential of neuroimaging. 
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1. Introduction 

A spectrum of neurodevelopmental problems spanning a lifetime, 

autism spectrum disorder (ASD) is typified by limited and 

repeated patterns of behaviour as well as challenges with social 

interaction and communication [1]. The WHO estimated that 1 in 

160 children worldwide suffers with ASD [2]. ASD is an 

intellectual disabilities; many people with ASD have remarkable 

skills and abilities[3]. About 40% possess above-average 

intelligence and a special ability to view the world from a distinct 

angle. The most recent Canadian prevalence rate for autism 

spectrum disorder is 1 in 66 children and youth (ages 5–17) 

according to NASS[4] . NIHM states that while the precise origin 

of autism is unknown, certain evidence points to the involvement 

of genetic and environmental factors. A low birth weight is one of 

the probable risk factors for ASD, along with having an older 

parent, a sibling with ASD, and pre-existing genetic disorders 

like Rett disorder, fragility X syndrome, and Down syndrome [5]. 

It's also important to note that studies have revealed structural 

variations in the brains of infants before 27 weeks [4], meaning 

that extremely premature babies have an increased chance of 

having ASD. People on the autistic spectrum do far better when 

diagnosed early in their initial few years of life, yet diagnosis and 

recognition of ASD are frequently delayed. More kids would 

benefit from early treatment if health services were more adept at 

spotting kids who are at increased risk for ASD and getting them 

in sooner for a thorough evaluation. For many classifiers, the 

most major hurdles are the needed computational time and the 

accuracy of the classification while constructing an automatic 

diagnosis system. Even though these techniques are extremely 

accurate, they are also clearly comprehensive, time-overriding, 

and require professional knowledge that may not be available in 

many healthcare facilities. As a result of recent technological 

advancements, a sizable number of research are exploring the 

possibility of automating computer-aided identification of 

autism[6] and creating interactive tools to support the recovery 

and therapy of individuals with autism [7]. Numerous studies 

utilizing neuroimaging methods, like as positron emission 

tomography or Magnetic Resonance Imaging, have shed light on 

the neurodevelopmental traits that underlie ASD [8]. The 

majority of these imaging studies' conclusions are predicated on a 

single analytical method that assumes the independence of every 

voxel[9]. ML models may distinguish between an afflicted and 

control group and recommend an appropriate course of action for 

each patient. MRIs, or magnetic resonance imaging, are useful in 

the detection of neuropsychiatric and neurodegenerative 

conditions [10]. Patients with ASD have behavioral and social 

interaction issues. The term "spectrum" in the nomenclature of 

ASDs refers to the wide range of behavioral abnormalities that 

patients have displayed, including attention deficit, poor social 

skills, and nonsensical speech and actions. Early diagnosis, 

however, can assist medical professionals and caregivers in 

implementing preventative measures and taking first action to 

ensure a certain degree of normalcy in the lives of their patients. 

Following many years of intensive investigation, it has been 

established that early diagnosis is not a simple undertaking. 

Conventional questionnaire-based diagnostic techniques, involve 

assessing patients' interview responses and observing their 

behaviours to make the diagnosis. Unfortunately, because there 

are no certain identifiable behaviours that can be objectively 

classified as ASD, these diagnosis techniques are subjective, 

ineffective, and occasionally deceptive[11]. Therefore, 

developing trustworthy techniques that go beyond simply using 

behavioral questions to diagnose ASD more effectively and 

precisely in a quantitative or partially quantitative manner is 

essential. As artificial intelligence and neuroimaging technology 
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progress, neuroimages are increasingly being used to study 

neurological conditions through functional and/or structural 

research[12]. 

Our understanding of the fundamentally disrupted brain systems 

underlying neuro-disorders has improved significantly because to 

neuroimaging[13]. On the other hand, the limited adoption of 

brain imaging methods in clinical settings can be partly ascribed 

to the ongoing debate on the diagnostic precision of these 

instruments. Making a diagnosis based solely on behavioral signs 

can be a laborious and imprecise process[14]. By utilizing 

machine learning, automated diagnostics could become more 

accurate in their predictions and consume less time than they 

already do. Brain imaging sample sets are frequently linked to a 

high number of characteristics and small dataset sizes [15]. As a 

result, a number of machine learning techniques are designed to 

minimize dimensionality and avoid issues with data fitting. 

Further, machine learning classifiers may be taught to forecast the 

severity of the condition and correctly differentiate affected 

controls from healthy ones. Therefore, the combination of 

accurate illness diagnosis with brain imaging could be made 

possible by machine learning algorithms[16]. 

Fuzzy systems are information processing-focused structures 

built on fuzzy approaches. They are mostly utilized in systems 

where using classical binary logic is impractical or challenging. 

Fuzzy conditional IF-THEN rules, which express symbolic 

knowledge, are their primary characteristic. As a result, the 

innovative DNN and fuzzy systems have shown how to use fuzzy 

rules to effectively reduce uncertainty. The use of DNFN has 

become incredibly widespread in the last five to six years within 

AI research circles[17]. Thus, there has been a noticeable increase 

in the application of this paradigm in a number of fields, 

including healthcare. A novel method for identifying ASD from 

brain scans of autistic people is developed. The pre-trained 

DNFN is used to identify patients with autism spectrum 

disorders. Using the suggested FHGO-based DNFN, a novel ASD 

classification technique is created. The goal is to calculate the 

accuracy of the detection efficiency and produce an FHGO-

DNFN for the purpose of identifying the ASD biomarker through 

image analysis. Finding ASD will help clinicians diagnose ASD, 

which is the aim. The previously trained DNFN is employed to 

identify ASD patients. Accurate calculations of the model 

efficiency are made using the training DNFN model's output. The 

suggested FHGO is used to adjust the DNFN weights. In this 

case, the FAT algorithm and Henry Gas Solubility Optimization 

(HGSO) are combined to produce the FHGO. The creation of 

game theory into the diagnostic process is a unique element of 

our technique. Game concept lets in us to conceptualize the 

interactions between exceptional brain regions as strategic moves, 

shedding light at the hidden patterns and complexities of ASD-

associated neural dynamics. This integration not best 

complements the diagnostic accuracy but also opens new avenues 

for exploring healing interventions tailored to the specific 

neurobiological profiles of individuals with ASD. 

1.1 This study’s key contributions are as follows: 

• The framework integrates various superior techniques, 

inclusive of rs-fMRI statistics collection, Deep Neuro 

Fuzzy Network, and hybrid optimization algorithms, to 

address the complexities of ASD analysis 

comprehensively. 

• By leveraging the Learning capabilities of DNN and the 

interpretability of Fuzzy Inference Systems inside the 

DNFN framework, the method pursuits to improve the 

accurateness of ASD analysis. 

• The incorporation of FHGO, a hybrid optimization 

algorithm combining FAT and HGSO, facilitates the 

convergence in the direction of optimal solutions for 

various optimization demanding situations encountered 

in ASD evaluation. This enhances the efficiency of the 

overall technique through effectively addressing 

optimization difficulties 

• The inclusion of Game theory optimization in the 

DNFN framework promotes strategically determine the 

weight assigned to local versus global performance in 

the diagnostic interpretation process. This fosters a 

cooperative environments work together to improve 

segmentation accuracy and overall ASD diagnosis 

development, leading to extra effective results. 

The following is the arrangement of the remained sections in 

this article: A summary of relevant studies is given in 

Section 2. The problem statement for the current system is 

given in Section 3. In Section 4 of the paper, the 

methodology of Deep Neuro Fuzzy Network with Feedback-

Henry Gas Optimization for advanced Autism Spectrum 

Disorder diagnosis is described. The results of the research 

and the discussion that followed are presented in Section5. 

Section 6 discusses the conclusion of the suggested model 

and its future application 

2. Related Works 

ASD recognition model employing functional connectivity 
aspects of resting-state fMRI data was proposed by Subah et al. 
[18]. To complete the classification task, DNN classifier is 
employed. According to simulation data, the suggested model 
performs more accurately than cutting-edge techniques. While the 
state-of-the-art approaches' mean accuracy ranged from 67% to 
85%, the proposed model's mean accuracy was 88%. The 
suggested model's sensitivity, F1-score, and area under 
the AUC score were, in that order, 90%, 87%, and 96%. The 
effective application of this technique could lead to a variety of 
uses, including the identification of the neuronal activity patterns 
that cause autism and the visual assessment of the functioning 
features of the autistic brain. It is also possible to uncover and 
establish the underlying neuronal or biological foundation of 
ASD by comparing the brains of autistic and control individuals. 
One potential limitation of the approach is that its excellent 
performance on simulation data might not transfer well to 
different populations or real-world situations. 

Yin et al.[19] developed a deep learning techniques to diagnose 
ASD using functional brain networks built from brain functional 
magnetic resonance imaging, or fMRI, data. The 
complete ABIDE 1 collection of information to examine the 
effectiveness of the techniques. Using brain fMRI scans, we first 
build brain networks and then define raw features from these 
brain networks. In order to extract sophisticated characteristics 
from the raw data, we secondly use an auto encoder. Next the 
enhanced features to train DNN, which achieves a 76.2% 
classification accuracy and a 79.7% AUC. In contrast, a number 
of conventional machine learning algorithms were trained using 
the same sophisticated features in order to evaluate the 
classification performance. Lastly, to train the DNN with the raw 
features after combining it with the pre trained AE. This results in 
an AUC of 82.4% and a classification accuracy of 79.2%. These 
findings demonstrate that deep learning techniques perform better 
than cutting-edge techniques. 

Ke et al. [20] used 14 distinct model types, including CNN, to 

develop a deep learning model for examining the strategic and 

structural underpinnings of ASD. We illustrated that deep neural 

networks may be utilized as tools for detecting and assessing 

psychiatric diseases using an open-source autism dataset that 
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included over 1000 MRI scan pictures and an excellent quality 

structural MRI dataset. In order to show combinations of brain 

areas and represent the most often referenced regions used by the 

model during image classification, a 3D convolutional neural 

networks. RNN were also used to effectively classify the order of 

brain regions. Strong evidence in both structure and strategy, 

were discovered which the model largely depends upon for 

classification.  The subcortical regions such as the basal ganglia 

(BG) are frequently linked to the structural and strategic 

evidence. In order to assure a cost-effective and timely diagnostic 

procedure, our work streamlines the deductive reasoning that 

physicians can employ to identify the unique brain structures that 

define a complicated psychiatric condition. It may be more 

difficult for academics and clinicians to use the model to gain 

significant insights into the neurobiological mechanisms behind 

ASD if they are unable to understand exactly particular brain 

regions or traits are emphasized by the model. 

A deep learning algorithm for automatic ASD diagnosis was 

created by Niu et al.[22]. 809 participants, were used to test the 
multichannel DANN model using the ABIDE repository. By 
combining three levels of brain functioning connectives and 
personal characteristic data, the model was able to obtain an 
outstanding accuracy of 0.732 on ASD classification, surpassing 
several peer machine learning methods in a k-fold cross 
authentication experiment. Further experiments were carried out 
to evaluate the robustness and generalizability of the suggested 
multichannel DANN model using k-fold and leave-one-site-out 
crossover validation. The findings indicate that deep learning 
models may be useful in supporting automated clinical diagnosis 
of ASD in the future. The chosen cohort for the study is 
comprised of adolescents and young adults, which restricts the 
model's generalizability because the ASD diagnosis was made 
much earlier in life. 

Mayor Torres et al.[23] classified facial emotions perceived by 

people with and without ASD (N = 88) using concurrently logged 

electroencephalography signals using a discriminative and 

modern machine learning technique called DCNN . Despite the 

fact that people with ASD did worse on the concurrent FER task, 

CNN successfully identified facial emotions for both the ASD 

and non-ASD groups. Convolutional neural networks in the ASD 

group actually had higher accuracy, and this difference was 

unrelated to behavioural performance. Three separate participant 

samples showed the same pattern of results. Furthermore, feature 

significance studies revealed that facial emotion categorization 

for people with ASD may benefit particularly from a late 

temporal window of brain activity (1000–1500 ms). The findings 

show that emotion-related facial data is encoded in the brain 

signals of people with (and without) ASD for the first time. 

Therefore, it is likely that issues in deploying or decoding facial 

expression information within the brain signal cause reported 

behavioural FER impairments linked to ASD. One limitation of 

the research is that the strategies ought to concentrate on 

leveraging this intact encoding instead of advocating for FER 

prosthesis. 

The limitations across the reviewed studies on system studying 
models for Autism Spectrum Disorder prognosis include 
concerns approximately generalizability and transferability. 
Several models showcase wonderful performance on simulation 
or unique datasets, however their effectiveness in numerous 
populations or real-international scenarios remains uncertain. 
Interpretability is every other not unusual task, as the complexity 
of deep learning models may also avoid clinicians' information of 
the specific mind regions or trends emphasized all through class. 
Additionally, the age specificity of a few models, which include 
the ones targeted on teens and young adults, limits their 

applicability to a broader age range of ASD prognosis. Moreover, 
troubles like lack of interpretability and capability resistance from 
healthcare specialists to rely upon diagnostic tools without clean 
understanding ought to hinder the practical attractiveness of those 
models. Furthermore, over fitting is recognized as a subject in 
one examine, emphasizing the need for robustness in device 
getting to know models to avoid learning noise and random 
oscillations inside the training facts. 

3. Problem Statement 

Despite tremendous advancements inside the area of Autism 

Spectrum Disorder (ASD) research, the accurate and early 

analysis of ASD stays a difficult assignment. These limitations 

recognized in previous studies underscore the necessity for 

improved generalizability, interpretability, and robustness in 

models designed for predicting ASD analysis [25]. Addressing 

these challenges is pivotal for enhancing the practical utility and 

attractiveness of such models in clinical settings throughout 

numerous populations and age groups. This paper addresses these 

demanding situations via offering a novel framework that 

integrates game theory, advanced neuroimaging, and DNFN-

FHGO algorithm to improve the accurateness and depth of ASD 

analysis. By leveraging the strategic insights supplied with the aid 

of recreation principle, the adaptability of deep mastering, and the 

predictive power of neuroimaging, we goal to triumph over the 

restrictions of current diagnostic methods and offer an extra 

complete information of the neurobiological underpinnings of 

ASD. 

4. Proposed Game theory optimized Deep Neuro 
Fuzzy Network with Feedback-Henry Gas 
Optimization Advanced Autism Spectrum 
Disorder Diagnosis 

The proposed methodology involves the mixing of diverse 

superior techniques to enhance autism spectrum disease (ASD) 

analysis. It starts with data collection of rs-fMRI data following 

information pre-processing, followed by the integration of a 

DNFN for advanced ASD prognosis. DNFN integrates fuzzy 

inference structures and DNN to address high-dimensional 

information efficiently. DNN’s ability to learn complex functions 

from massive datasets, are mixed with FIS, which affords a rule-

based totally structure for obvious decision-making. This 

integration pursuits to harness the getting to know capability of 

DNNs at the same time as preserving the interpretability of FIS. 

Furthermore, the study consists of FHGO, a hybrid optimization 

algorithm that combines FAT and HGSO. FHGO leverages the 

adaptability of FAT and the efficient mechanism of HGSO to 

converge in the direction of optimal solutions for various 

optimization difficulties. Additionally, the combination of 

recreation principle optimization into the DNFN framework 

introduces strategic collaboration among decentralized 

establishments concerned in ASD analysis. This strategic 

interplay fosters a cooperative surroundings in which 

establishments purpose to enhance segmentation accuracy and the 

overall improvement of ASD diagnosis. Figure 1 represents the 

conceptual diagram of the proposed method. 
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Fig. 1. Overall Conceptual Block Diagram of the Proposed 

Methodology. 

 

4.1 Data Collection 

The dataset is engaged from the secondary source[26]. The 

Autism Imaging Data Exchange (ABIDE I) provided the rs-fMRI 

data used in this investigation. ABIDE is a consortium that shares 

rs-fMRI ASD and identical control data that has been previously 

gathered for the goal of data exchange in the scientific 

community. Data from 530 identical controls and 505 ASD 

people were included in the study. The 17 distinct imaging sites 

where the ABIDE dataset were gathered comprise rs-fMRI 

images, brain structure images, and patient phenotypic data. 

4.2 Data Pre-Processing 

To remove between-subjects variability caused by data capture, 

different detectors, artifacts, or partial volume effects, pre-

processing is an essential prerequisite. Furthermore, non-brain 

tissues are typically detected in brain MRI studies. To extract 

morphological characteristics from each sMRI volume it 

undergoes surface inflation and spherical atlas registration, brain 

separation and skull stripping, brain segmentation and region 

labelling, and tessellation of the grey white matter boundary. 

Magnetic susceptibility artifacts and RF-field in homogeneities 

are usually the cause of the differences in both intensity and 

contrast across sMRI images, which lead to the degradation of the 

sMRI images. Any segmentation process that uses intensity 

information to categorize voxel data into distinct tissue types 

should avoid this contamination. 

The technique of automatically removing the skull and any non-

brain tissue from an intensity-normalized image is known as 

"brain extraction" or "skull stripping." A tessellated ellipsoidal 

template is distorted into the shape of the inner surface of the 

skull in order to eliminate the skull and any non-brain tissue. The 

deformation process is driven by two types of forces: (i) a 

curvature-reducing force and (ii) an MRI-based force. The force 

derived from MRI is intended to push the template away from the 

brain. It is computed using nonlocal information that is gleaned 

from sampling the MRI data perpendicular to every vertex of the 

template tessellation along its surface. 

4.3 Deep Neuro Fuzzy Network (DNFN) for Advanced ASD 

Diagnosis 

Deep neuro-fuzzy Network (DNFN) are considered unique 

methodologies that integrate FL (fuzzy inference systems) and 

DNNs to handle high-dimensional data in various real-world 

problem solving scenarios. Thus, before elucidating the idea 

behind the creation of DNFNs, this part provides an overview of 

DNNs and FIS. Multi-layered artificial neural networks (DNNs) 

are an improved form of ANNs that were first developed in 2006. 

Two important elements are taken into account by the network: 

supervised or unsupervised learning, and nonlinear processing in 

various layers or stages [27]. A single perceptron's fundamental 

components are as follows: the input layer multiplies the number 

of inputs , ,..., ) by the weight connections , ,..., 

) [20]. 

The f is used to introduce nonlinearity into the function's 

parameters and the output x, while the bias b is used to calculate 

the threshold value. The DNN's design is an expansion of the 

fundamental ANN, which has one hidden layer, one input, and 

one output. DNN, on the other hand, automatically derives 

features from the data, enabling more abstract unsupervised 

training. This DNN benefit makes it easier for the model to learn 

complex nonlinear functions from a given input, hence reducing 

error. The DNN model consists of an input layer processing input 

data, multiple hidden layers processing information in a forward 

pass, and an output layer computing the error cost. 

In order to maximize a cost function, these two variables are 

adjusted periodically. The network is given a training set of  

inputs and outputs, and on the output layer that comes before 

it, a transformation using a nonlinear function f is applied. In 

addition to helping to link each layer using the w and b 

parameters, this transformation also produces the activation 

values of the neuron using the subsequent Eqns. (1) & (2) 

(1) 

                                                     (2)                                                  

(2)                                        (3) 

where  is the definition of the final layer that is hidden 

activation for input y. The outcome for target class tc is 

connected to the last hidden layer by using the weighted matrix 

 and the bias vector ; After the output is produced, 

the parameters are adjusted iteratively using the Stochastic 

Gradient Descent (SGD) method in Eqn. (4) until the anticipated 

output for the effective data classification matches the intended 

output. 

 

 

                                     (4) 

The rate of learning g dictates the degree of alteration in each 

iteration. In each iteration, the SGD algorithm meets minimum 

and produces the optimal value for the weight parameter. 

In 1965, Zadeh introduced FL [28]. Any problem that is 

dependent on ambiguous, inaccurate, or insufficient data can be 

solved using FL. FIS was first established using fuzzy sets, where 

each object's membership function determines its partial (fuzzy) 

belongingness to the relevant fuzzy sets. 

A fuzzy function of membership that yields a level of truth and 

membership is used to express the inputs in FL. The fuzzy 

version of the IF-THEN rules given in the below Eqn. (5) defines 

the relationship between inputs and outputs. According to the 

criterion in Eqn. (5), the output value of q corresponds to fuzzy 

set S IF the value of p is inside the acceptable limits of fuzzy set 

R. The parameters in this rule's IF section are referred to as 

antecedent parameters because they justify or offer proof for the 

conclusion, while the parameters in the THEN section are 

referred to as consequence constraints because they allow 

judgments to be made based on one or more IF statements. 

          

}        (5) 

 

A system that maps inputs into outputs using FL is called a FIS. 

The FIS structure consists of four primary parts: (i) fuzzification; 

(ii) reasoning (rule-based); (iii) the inference engine; and (iv)de-
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fuzzification. The fuzzification process uses the value of the input 

membership functions to change the system's input values from 0 

to 1. FIS creates a list of fuzzy IF–THEN rules to categorize 

fuzzy outputs utilizing fuzzy inputs and membership function. 

Generally speaking, a rule is represented by the logic implication 

p q, where p stands for the rule's premise and q for its 

conclusion. By utilizing the output membership function and the 

defuzzification formula, the defuzzification process transforms 

fuzzier data into crisp output values. Research employing deep 

learning methods, like DNN, has garnered a lot of interest thus 

far, and a number of intriguing findings have been published in 

academic journals. Recent years have seen a notable advancement 

in DNN thanks to its effective applications in numerous 

scientific, commercial, and technical fields. DNN is regarded as a 

cutting-edge method that can handle large or complicated 

amounts of data. Because of its deep design, this approach also 

calculates and optimizes millions of parameters. As a result, the 

DNN model is frequently criticized for lacking transparency and 

for being a "black box," making it impossible for people to track 

the predictions it makes. As a result, the disadvantage of lack of 

transparency has recently presented researchers with a chance to 

apply the idea of fusing DNNs with the understandable FIS to 

create a model known as the DNFN. 

In a sequential model, information flows by layers, with each 

layer's output depending on the layer before it. The FIS can be 

positioned in front of the neural network in this configuration to 

transform clear data into fuzzy linguistic values that the DNN 

classifier can analyse. As an alternative, FIS can be used to assist 

the network in producing a final, comprehensible result following 

the DNN classifier. The FIS and DNN models each send out 

information individually, which is eventually combined to 

provide the final result.  Lastly, the FIS model's defuzzification 

component produces the result in the same clear format. Deep 

learning approaches can be used by the potent DNFN method to 

process massive amounts of data. The DNNs' learning technique 

and mechanism are used to train the membership function 

parameters in the DNFN model's FIS. Because of this, DNFN are 

not only more computationally capable than other conventional 

classifiers, but the model is also more adaptive. Parametric 

optimization involves optimizing and adjusting the fuzzification 

part's parameters, such as the kind and quantity of membership 

functions. Structural optimization involves to increase the 

network's performance with the fewest possible rules by 

optimizing the network's structure and adding more units to each 

layer. These two optimizations are executed by DNFN. Figure 2 

shows the representation of DNFN is given below. Figure 2 

shows an example of the potentials of DNFN, combining the 

benefits of DNN and FIS. 

 

 

 

 

 

 

Fig. 2. Representation of Deep Neuro Fuzzy Network 

 

4.4 Feedback-Henry Gas Optimization (FHGO) 

In this case, the FAT algorithm and Henry Gas Solubility 

Optimization (HGSO) are combined to produce the FHGO.  

The FAT (Feedback Artificial Tree) algorithm represents an 

evolution of the original Artificial Tree (AT) set of rules, drawing 

idea from organic matter transport and branch update theories. 

Building upon AT's basis, FAT introduces several upgrades for 

enhanced performance. It keeps the concept of moving organic 

remember between nodes, similar to AT, but augments this with a 

remarks mechanism for moisture level within the tree shape. Eqn. 

(6) represents 

 

   (6) 

 

In FAT, a comments mechanism for moisture is introduced. This 

may want to involve a mechanism wherein moisture degrees are 

adjusted based on the nation of the tree and its surroundings. An 

Eqn. (7) governing this remarks mechanism is given by 

 

  (7) 

The Self-Propagating Operator in the FAT (Feedback Artificial 

Tree) algorithm ensures self-replication and dissemination of 

statistics inside the tree structure, using rules or mechanisms 

governing node reproduction and unfold. Similarly, the 

Dispersive Propagation Operator helps the dissemination of 

records throughout the tree, doubtlessly utilizing diffusion-like 

procedures or spreading guidelines. FAT's overall performance 

superiority is established through benchmark trying out on 

regular issues, showcasing its effectiveness in comparison to the 

unique AT algorithm and different heuristic tactics. This 

evaluation entails choosing appropriate benchmark troubles, 

running FAT, and comparing its performance throughout metrics 

together with solution exceptional and convergence velocity. 

Furthermore, parameter sensitivity analysis validates FAT's 

robustness by means of analysing how parameter variations affect 

its conduct and overall performance on various hassle times. 

These enhancements together increase FAT's performance, 

distinguishing it from both its predecessor and other heuristic 

algorithms. 

Henry's law, a gas law that describes the state of a gas that 

dissolved in a liquid at a stable temperature, was developed in the 

1800s. This law, which states that the volume of any gas that 

dissolved in any liquid with any volume is proportionate to the 

part pressure of the provided gas and liquid in an equilibrium 

condition, essentially characterizes the interaction between gas 

and fluid in terms of the ability to dissolve property of gas. As a 

result, one crucial factor on which Henry's law depends is 

temperature. Henry's law states that the following represents the 

link between a gas's solubility and partial pressure. 

 

         (8) 

where , , and H stand for Henry's constant, partial pressure, 

and gas solubility, respectively. Since Henry's constant is heavily 

reliant on temperature and must be taken into consideration, 

temperature differences in any gas-liquid system result in a 

change in the constant. Eqn. (8) can be used to characterize this 

change. 

 

           (9) 

The variables E, R, and T in Eqn. (9) stand for the 

temperature dependence, the constant of gas, and the dissolution 

enthalpy, respectively. Eqn. (10) can be achieved in the following  

ways. 

ways.  

       (10) 

where T's parameters are A and B. An alternative way to express 

298.15 K as a temperature is as follows. 

 

 

      (11) 
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The solubility of gases in liquid media can be evaluated using 

Eqns. (11) through (12), which highlight the significance of 

temperature and pressure as two key factors influencing 

solubility. The HGSO was inspired by the essential behaviour of 

Henry's law. Because it includes stages for exploration and 

exploitation, the HGSO is regarded as an algorithm for global 

optimization. Eight phases were reported for the HGSO 

mathematical model. The initialization procedure (stage 1) for the 

number and placements of gases is given by the following 

equation, where t is the iteration period and r is a random value 

between 0 and 1. 

 

     (12) 

 

 Bounds of problems 

 

     (13) 

In Eqn. (13)  ,  are constants with values of 

5× , 100,  . Since identical gases form each particular 

cluster,  is the same for all of them. In the stage 3 of the 

evaluation process, each cluster's i best gas is identified by 

obtaining the highest equilibrium. This step also includes 

performing a ranking stage in the entire swarm to obtain the ideal 

gas. In the fourth stage, Eqn. (14) is used to update the Henry's 

coefficient: 

  (14) 

     (15) 

The following Eqn. (16) is used to update the solubility in 

stage 5. 

   (16) 

Eqn. (10) illustrates how the position update is completed in stage 

6. Then Eqn.18) and (19) represents 

 

      (17) 

   (18) 

In order to escape from the local optimum, the number of worst 

agents ( ) is ranked and chosen in stage 7 with the aid of Eqn. 

(19). 

   (19) 

and  

The position of the lowest agents is updated in the stage 8, which 

is as follows in Eqn. (20) 

  (20) 

Where,  represents the position of gas j in cluster I and r is 

random number, the bounds are and  

4.5 Integration of Game Theory Optimization for Improving 

Accuracy into DNFN  

 

Game theory is employed to strategically determine the weight 

assigned to local versus global performance in the diagnostic 

interpretation process, optimizing collaboration among 

decentralized institutions. Additionally, it is utilized to 

dynamically adjust weights based on strategic contributions, 

enhancing convergence speed and overall model performance. In 

ASD diagnostics, the combination of game proposition principle 

ideas into DNFN introduces a strategic layer that optimizes the 

collaboration amongst decentralized institutions all through the 

training system. The ideal is to align character pursuits with the 

collaborative aim of enhancing segmentation delicacy while 

considering sequestration constraints. The cooperative literacy 

technique is modelled as a cooperative game, where every taking 

part institution is considered a player. The mileage characteristic 

for party p is strategically designed to stability near performance 

enhancement with contributions to the worldwide diagnostic 

interpretation 

     (21) 

Here, the weight assigned to local versus global performance is a 

parameter  

Each group strategically makes a decision the significance and 

course of its model updates to maximize its utility. This strategic 

interplay fosters a cooperative environment, in which 

establishment’s goal to proportion precious facts without 

compromising their aggressive benefit. The model updates  

calculated through thinking about the gradients of the loss 

function with appreciate to the model parameters: 

    (22) 

Where, -Learning rate 

-Gradient 

-Local Loss Function at institution p 

Dynamic learning rate adjustment is added based totally on the 

strategic behaviour of institutions. Institutions dynamically 

modify their learning rates  primarily based on their 

strategic contributions, adapting to the collaborative gaining 

knowledge of environment. This dynamic adjustment guarantees 

responsiveness to strategic interactions given in Eqn. (23), 

optimizing the convergence speed and standard overall 

performance of the model. 

   (23) 

Where, -Iteration 

-Parameter governing the rate of adjustment 

- Utility of player p 

Institutions incorporate privacy-preserving strategies into the 

game formulation. Differential privacy principles are introduced, 

where noise or perturbations (ϵ) are added to the model updates to 

prevent inference of sensitive patient information during the 

collaborative training process: 

+ ϵ      (24) 

The parameter ϵ controls the extent of privacy renovation, and its 

strategic tuning guarantees a stability among privacy and the 

application of contributions. In summary, integrating game theory 

principles right into a DNFN for advanced autism spectrum 
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disorder diagnosis entails formulating the collaborative learning 

process as a cooperative game, strategically updating models, 

dynamically adjusting mastering charges, and incorporating 

privacy-maintaining strategies. This strategic integration 

optimizes the collaboration among decentralized establishments, 

enhancing segmentation accuracy while keeping privacy in 

dermatological image analysis. 

5. Results and Discussion 
The results section gives a thorough review of the conclusions 

and findings from the experimental evaluation of ASD diagnosis. 

For diagnosing ASD combines deep learning, sophisticated 

neuroimaging, and game theory the novel framework proposed. 

Utilizing a Game theory optimized Deep Neuro Fuzzy Network 

through Feedback-Henry Gas Optimization and functional 

connectivity data, the study achieves significant improvements in 

the automated ASD diagnosis model's performance. The study is 

implemented in Windows 10 operating system, MATLAB and 

SPM programming language. 

 

 
Fig.3. Multi-Model Brain Tissue Segmentation and Bias 

corrected Images 

Figure 3 indicates the grey matter (GM) and white matter (WM) 

probability map. It shows the likelihood of each voxel being grey 

matter and white matter. Also represents the cerebrospinal fluid 

(CSF) probability map, indicating the likelihood of each voxel 

being CSF. It represent edge probabilities or other non-brain 

structures, depending on the specific segmentation process used. 

Edge probabilities typically indicate the likelihood or confidence 

of a pixel belonging to an edge or boundary between different 

regions in the image. Other tissues such as the skull or soft tissue 

outside of the brain. In modalities like MRI or CT in medical 

imaging, the captured images often encompass not only the 

specific organ or region of interest  and also the bias-corrected 

and modulated version of the original T1-weighted image are also 

presented in the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.Training and Testing Loss and Accuracy of the proposed 

Game Theory Optimized DNFN+FHGO 

 

Figure 4 presents the proposed Game Theory Optimized 

DNFN+FHGO model’s training and testing loss and accuracy, 

providing understandings into its convergence behaviour and 

generalization performance. The curve offers a visualization of 

the model's learning process and its ability to minimize loss while 

maximizing accuracy on both training and unseen testing data. 

 

 

 

 

 

 

 

 

 

 

Fig.5. Confusion Matric for ASD 

Figure 5 displays the confusion matrix for ASD offering a 

concise summary of the model's classification performance by 

depicting the true positive, true negative, false positive, and false 

negative predictions to precisely classify individuals with ASD 

and those without, emphasizing potential areas for improvement 

in classification accuracy or error analysis. 

Figure 6 illustrates the weights assigned to the classifiers in the 

proposed Game theory optimized DNFN combined with FHGO. 

These weights play a crucial role in the model's decision-making 

process, determining the significance of each classifier's 

contribution to the overall classification task. 
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The word “data” is plural, not singular. The subscript for the 

permeability of vacuum µ0 is zero, not a lowercase letter “o.” The 

term for residual magnetization is “remanence”; the adjective is 

“remanent”; do not write “remnance” or “remnant.” Use the word 

“micrometer” instead of “micron.” A graph within a graph is an 

“inset,” not an “insert.” The word “alternatively” is preferred to 

the word “alternately” (unless you really mean something that 

alternates). Use the word “whereas” instead of “while” (unless 

you are referring to simultaneous events). Do not use the word 

“essentially” to mean “approximately” or “effectively.” Do not 

use the word “issue” as a euphemism for “problem.” When 

compositions are not specified, separate chemical symbols by en-

dashes; for example, “NiMn” indicates the intermetallic 

compound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Weights of Classifiers of the Proposed Game Theory 

Optimized DNFN+FHGO Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Performance Metric by Class for Autistic and Non- 

Autistic 

Figure 7 provides a detailed understanding of the model's 

classification performance, offering insights into its ability to 

correctly identify individuals with autism and those without for 

each class, thus aiding in the evaluation of the model's 

discriminative skills 

 

Figure 7 provides a detailed understanding of the model's 

classification performance, offering insights into its ability to 

correctly identify individuals with autism and those without for 

each class, thus aiding in the evaluation of the model's 

discriminative skills. 

 

 

 

Fig. 8. Roc Curve and the Fitness Curve of the proposed Game 

Theory Optimized DNFN+FHGO 

 

Figure 8 curve is a graphical representation of the system’s 

performance in binary category obligations and the fitness curve 

of the proposed Game theory optimization, illustrating the 

change-off among its true positive rates and false positive rates 

across numerous threshold values. A higher AUC suggests better 

discriminative ability of the model. 

 

5.1 Performance Evaluation 

 

5.1.1 Accuracy 

Comparing the ground truth (actual) labels for your test dataset 

with the predicted class labels produced by the DNFN in order to 

determine the accuracy. If the projected label matches the actual 

label for an image in the test dataset, increase the "Number of 

Correct Predictions." then divide this count by the "Total Number 

of Predictions" after processing all the test photos to determine 

the accuracy. 

5.1.2 Precision 

Precision is a frequently measured parameter, mainly in machine 

learning and statistics. It evaluates the way a model predicts the 

future in the positive. Precision is defined as the ratio of accurate 

forecasts to all reliable forecasts. 

5.1.3 Recall 

Recall in effective object detection refers to the model's capacity 

to accurately identify each pertinent instance of a given class 

present in the dataset. Out of all real positive occurrences for a 

given class, it calculates the percentage of true positive 

predictions (properly detected instances of that class). 

5.1.4 F1-Score 

The F1 score is a commonly used statistic to estimate the 

performance of sorting models, especially those that are effective 

at object detection and tracking tasks. The F1 score is particularly 

useful in datasets that are unbalanced meaning that one class 

significantly outnumbers the other. 

 

Table 1: The Suggested Method's Performance Metrics are 

Compared to those of Existing Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Visual Representation of the Performance Measures of the 

Suggested Game Theory Optimized DNFN+FHGO Using 

Traditional Methods 

 

The suggested model's accuracy is displayed in Table 1 and the 

graphical representation is illustrated in Figure 9. It shows the 

Accuracy (98.63%), Recall (97.89%), Precision (98.44%) and F1-
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score (95.72%) of the proposed approach with traditional 

methods. The accuracy of the suggested method Game Theory 

Optimized DNFN+FHGO (98.63%) is greater than the traditional 

approaches DNN, SVM and DANN. 

 

 

5.2 Discussion 

 

The results demonstrate that the proposed framework, integrating 

deep learning with neuroimaging and Game theory optimized 

DNFN+ FHGO model, significantly outperforms conventional 

methods in ASD diagnosis. Achieving an accuracy of 98.63%, 

precision of 98.44%, consider of 97.89%, and an F1-score of 

95.72%, the model reveals remarkable efficacy in classification 

responsibilities. The figures illustrate the Game Theory 

Optimized DNFN+FHGO model's superior overall performance 

over conventional techniques, with high accuracy, sturdy gaining 

knowledge of dynamics, and effective class demonstrated through 

ROC curves and confusion matrices, indicating its capacity for 

reliable ASD analysis. These findings underscore the capability 

of leveraging advanced computational techniques for reinforcing 

diagnostic accuracy in ASD, highlighting the promise of 

integrating multiple modalities for complete assessments. 

Overall, these figures collectively provide a comprehensive 

understanding of the proposed Game Theory Optimized 

DNFN+FHGO model's performance, convergence behaviour, 

classification accuracy, and discriminative ability, crucial for 

evaluating its effectiveness in ASD diagnosis and neuroimaging 

applications. Further validation and integration of this method 

may want to significantly impact ASD diagnosis and intervention 

strategies, contributing to progressed results for individuals and 

families laid low with the disorder. 

 

6. Conclusion and Future Scope 

In conclusion, the proposed technique affords a holistic approach 

to enhancing Autism Spectrum Diagnosis (ASD) analysis by 

integrating superior strategies such as rs-fMRI data collection, 

Deep Neuro Fuzzy Network (DNFN), and hybrid optimization 

algorithms (FHGO). Through the synergistic combination of 

those methodologies, the studies ambitions to enhance the 

accuracy of ASD diagnosis even as fostering strategic 

collaboration amongst decentralized establishments concerned in 

ASD evaluation. The complete conceptual framework provided 

serves as a roadmap for enforcing the method successfully. In 

future, further validation and refinement of the technique using 

large datasets and medical trials should beautify its applicability 

and impact in ASD analysis and remedy. Additionally, exploring 

the ability integration of rising technologies inclusive of machine 

getting to know interpretability techniques and multi-modal 

records fusion should further develop the competencies and scope 

of ASD analysis methodologies. 
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