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Abstract: With the rise of computer technology and the Internet in the era of IoT and Industry 4.0, ensuring information security has 

become paramount. The Advanced Encryption Standard (AES) has emerged as a leading cryptography standard, garnering significant 

attention from hardware designers. IOT end devices requires low power and fast processing hence modification in AES is needed. This 

paper presents a novel implementation of AES, focusing on minimizing hardware area. Utilizing Vivado 2015.4, we conduct simulations 

and compare results, exploring coding methodologies. Our design demonstrates superior resource efficiency compared to others, 

addressing the critical need for secure communication in modern interconnected systems. The papers also showcases the various methods 

that can further increase the effectiveness and minimizes the area utilization.  

Keywords: Advanced Encryption System, Galois field, Mix column, key expansion, Area Optimization, IOT application 

I. INTRODUCTION 

The Internet and communication technology have rapidly 

advanced in recent years, leading to the widespread 

integration of intelligent gadgets into all aspects of 

human existence [1]. The Internet of Things (IoT) 

enables the connectivity of things located in various 

places by utilizing high-speed computer network 

processing and wireless data communication. This 

further promotes the widespread adoption and 

advancement of the information age. Currently, the 

Internet of Things (IoT) is extensively employed in 

industrial monitoring, urban management, smart home 

systems, and intelligent transportation [2,3,4]. Moreover, 

it is projected that by 2020, the number of devices 

connected by IoT would range from 2 to 5 billion [5,6]. 

Ensuring information security has been a prominent 

subject for researchers and technical firms due to the 

need to prevent information leakage in intricate and 

dynamic application environments. Cryptographic 

methods are widely recognized as the most effective 

method for ensuring data security during the transmission 

of IoT data [7,8,9]. The increasing data volumes and the 

commoditization of the Internet of Things (IoT) 

necessitate computer technology to meet increased 

demands in terms of speed, power consumption, and 

cost. Furthermore, in order to augment the level of 

difficulty in breaking cryptographic algorithms, the 

complexity of these algorithms surely places a greater 

strain on the limited resources of hardware 

implementation. When comparing the Field 

Programmable Gate Array (FPGA) with the Application 

Specific Integrated Circuit (ASIC) and the digital signal 

processor (DSP), the FPGA, which is a semi-custom 

circuit in the ASIC field, not only shortens the 

development time for custom circuits, but also addresses 

the limitations of the original programmable device's 

gate capacity. It offers the benefits of rapid processing 

speed, extensive functionality, great adaptability, and 

extremely low power consumption. Recently, FPGA has 

emerged as a suitable platform for Internet of Things 

(IoT) applications to handle large amounts of data and 

perform cloud computing [9]. 

Data encryption in the Internet of Things (IoT) primarily 

involves the encryption of information and the 

authentication of messages. This serves to safeguard the 

security of information and identify any attempts to 

tamper with it [10]. Various cryptographic algorithms 

fulfil distinct encryption criteria as a result of their 

individual characteristics. Thus, the encryption and 

decryption system must possess a diverse range of 

algorithms to enable users to use them in a flexible 

manner. Nevertheless, the encryption and decryption 

system implemented on the FPGA encounters three 

challenges: Initially, the incorporation of several 

algorithms will also augment the utilization of hardware 

logic resources, potentially surpassing the aggregate 

quantity of on-chip resources. Furthermore, just a single 

algorithm is employed for data processing concurrently, 

although other algorithms continue to consume a 

significant portion of logical resources, hence 

diminishing resource utilization. Furthermore, in order to 

modify and update the cryptographic method, the system 

is required to halt all ongoing work processes and carry 

out maintenance activities, resulting in a reduction in 
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flexibility. A solution to improve the security of 

information and the performance of hardware 

implementation in IoT is offered by the encryption and 

decryption system that relies on dynamically 

reconfigurable technology. In our previous study [11], 

we developed a dynamic reconfigurable control platform 

that allows the host computer user to choose from 

multiple cryptographic algorithms. This platform enables 

dynamic switching of algorithms within the allocated 

area, without occupying all the hardware resources with 

all the cryptographic algorithms. Thus, this work 

enhances the hardware implementation and finalizes the 

architecture of the Dynamic Reconfigurable Encryption 

and Decryption System (DREDSMoreover, this study 

improves the use of AES and 3DES algorithms, as well 

as the Static Encryption and Decryption System (SEDS), 

while also enhancing the data on the usage of hardware 

resources. Due to the rapid advancement of computer 

technology and the widespread availability of the 

internet, effortless communication among millions of 

people has become the standard. The requirement for 

strong information security has greatly increased, 

especially in the areas of e-commerce, e-government, and 

the burgeoning field of IoT and edge devices. The Data 

Encryption Standard (DES) was previously considered 

sufficient, but its key length of 56 bits became 

inadequate. The Advanced Encryption Standard (AES) 

was developed as a solution to provide heightened 

security by utilising key lengths of either 128, 192, or 

256 bits. AES, invented by Belgian cryptographers, 

received significant recognition and popularity, 

particularly after 2006, when it was officially recognised 

by NIST in 2001. The performance of FPGA technology 

has been enhanced through optimisation, making it 

suitable for a wide range of applications, including 

lower-end devices such as PDAs and embedded systems. 

There is a strong need for AES solutions that are 

specifically designed for IoT and edge devices. This has 

led to the investigation of several architectural 

approaches. It includes a discussion on an 8-bit AES 

programme designed for less powerful devices.The 

remaining content is structured in the following fashion. 

After the introduction in Section 1.Section 2 introduces 

the methodology of the advanced encryption standard. 

Section 3 presents the test system that has been 

implemented in a real-world setting to compare the 

algorithms discussed. The simulation results are reported 

in Section 4. Section 5 finishes by providing a concise 

overview of the main discoveries and suggestions for 

further research. 

II.  ADVANCE ENCRYPTION STANDARD 

Typically, symmetric key methods are classified as either 

block cyphers or stream cyphers. The AES (Advanced 

Encryption Standard) has become increasingly popular 

due to the widespread usage of the internet and the need 

for strong security measures. The AES utilises the 

"Rijndael" algorithm. The AES encryption method 

utilises the Rijndael algorithm and functions as a block 

cypher, processing data in 4x4 matrices as depicted in 

Figure 1. 

 

S0,0  S0,1  S0,2  S0,3  

S1,0  S1,1  S1,2  S1,3  

S2,0  S2,1  S2,2  S2,3  

S3,0  S3,1  S3,2  S3,3  

Figure.1 State matrix  

In AES, the basic unit of processing is a byte. The state 

matrix is formed by organising a 128-bit plaintext word. 

The AES algorithm is largely composed of two primary 

processes: key scheduling and round transformation. Key 

scheduling is the process of transforming the original key 

into an extended key, which produces a different number 

of round keys based on the length of the input key. For 

example, when using a 128-bit input key, the algorithm 

generates 10 round keys to be used in 10 rounds. On the 

other hand, if the input key is 192 or 256 bits, the 

algorithm generates 12 or 14 round keys, respectively, to 

be used in the corresponding number of rounds. The mix 

column state is excluded in the final round. The AES 

algorithm consists of four distinct operations: Sub-byte 

transformation, Shift row, Mix columns, and Add round 

key. These operations are sequentially applied to the state 

matrix. All of these modifications are carried out on this 

state matrix. The Sub-byte transform operation replaces 

the input plaintext with corresponding elements from the 

Galois field GF(28), with each byte as the unit of 

operation. Byte rotation is the process of rotating 

individual bytes inside a specific row, using a 32-bit 

operational unit. The mix column operation involves 

multiplying the columns of the state matrix by the 

irreducible polynomial x8 + x4 + x3 + x + 1 in GF(28), 

while also acting on 32 bits. The Add round key 

operation consists of performing an XOR operation 

between the round key that was initially calculated and 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2824–2832 |  2826 

the state matrix. In this operation, the basic unit used is a byte [2]. 

 

Figure.2 Overall flow encryption and decryption in communication  

After calculating the risk-measuring parameters, the 

aggregator assesses the risk aversion factor and renders a 

judgement. In other words, the aggregator chooses the 

best technique by considering the value of the OF. FPGA 

implementation is not well-suited for classical AES. 

Several approaches and diverse methodologies have been 

utilised. AI-WEN LUO, QING-MING YI, and MIN SHI 

have proposed a paper that utilises pipelining technology. 

Their proposed structure involves partitioning the 

plaintext into four 32-bit units. The initial key is also 

distributed to two distinct components, Key Expansion 

and Key Selection. The primary purpose of a round 

transformation is to perform Sub Bytes and Mix 

Columns operations on 32-bit columns. Each of these 

four blocks is executed autonomously. The XOR 

operation is used to combine the output and key source 

with the 64-bit input port. The Sub Byte function is 

implemented using a Look-Up Table (LUT). It signifies 

that the Find and Replace process is finalised once all 

replacement units have been put in memory. The ultimate 

stage features a  128-bit CPU. After completing nine 

rounds of operations, including Shift Rows, Sub Byte, 

and Mix Columns, the 128-bit intermediate encrypted 

data will be subjected to an XOR operation with the final 

enlarged key. This expanded key is obtained via the key 

expansion module [2]. 

 

Figure.3 The data flow diagram of Advanced Encryption Standard (AES) implementation. [4] 
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In 2003, Pawel Chodowiec and Kris Gaj released a study 

that introduces a concise FPGA architecture designed for 

the AES algorithm with a 128-bit key. The architecture is 

specifically optimised for low-cost embedded 

applications. The AES algorithm exhibits a significant 

level of parallelism, which can be leveraged for 

improved performance. The procedure can be 

implemented using 4 sub bytes, 1 mix column, and 4 add 

round keys instead of the original 16 sub bytes, 4 mix 

columns, and 16 add round keys. This latest round is 

referred to as the folded round. This study not only 

discusses the fact, but also proposes the implementation 

of the s-box, mix columns, and shift rows. Several 

approaches for the implementation have also been 

deliberated. For instance, the diagram below illustrates a 

comprehensive configuration of a folded round, 

excluding the shift row action, which has been directly 

incorporated into the circuit. 

 

Figure.4 Arrangment exlude the shift row 

This above mentioned structure can be implemented in 

dual port RAM ,here as explained above the exlusion is 

done with the shift row and inverse shift row. Two 

LUT’s in the same slice can be configured as a 16x1 dual 

port ram .8-bit wide dual port ram can be implemented 

using the 8 consecutive CLB slices[3]. 

 

Figure.5 LUT configuration 

Figure 5 illustrates the using the shift register have been 

discussed. The fact that, all bytes from the output of 

AddRoundKey are written into consecutive locations in 

the output memory in consecutive clock cycles. A  shift 

register can be, taken considered & the fact that the 

CLB’s can be configured as shift registers[3]. We know 

that, for mix columns and inverse mix columns, 

   c(x) = {03}x 3+ {01}x2 + {01}x + {02}  (1) 

 

  d(x) = c-1(x)  = {0b} x 3 + {0d} x 2 + {09} x + 

{0e}  

 

(2) 

It is evident from above two equations that, 

                          c(x) • d2(x) = d(x) (3) 

 

The above discussion can be implemented and to 

compact the architecture. This shared logic 
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implementation can minimize the area and better 

utilization of the resources. It shows that same resources 

can be used for both mix-columns as well as for Inv-

Mix-Columns. 

 

Figure.6 Implementation of Sharedlogic 

Another simple method for the implementation is to 

employ folded architecture. The great deal of parallelism 

shown by the traditional AES implementation is a key for 

this method. This fact can be taken in considering the 

architecture of AES on VHDL language in a way FPGA 

implementation. Based on these two architectures can be 

derived and are also shown in below figure 7a. 

 
 

(a) (b) 

                                             Figure.7 Folded architecture in two different flow  

 

This   architecture requires one 128-bit register, one 96-

bit register and one 32-bit wide 4-to-1 multiplexer on top 

of the main cipher operations. The multiplexer becomes 

even bigger when both Shift Rows and Inv Shift Rows 

are implemented using same logic resources. The 

execution of one round takes four clock cycles.  Their 

results show that the 4-cycle round takes 50% of the 

resources required by the 1-cycle round, and yields four 

times lower throughput. Another possible architecture is 

shown in figure 7 b The 96-bit register is implemented as 

three 32-bit registers inserted into round operations 

creating a pipeline. In the case of FPGAs, those 32-bit 

registers will most likely be placed in the same Slices as 

logic operations yielding better resource utilization. The 

critical path is also shortened which permits the 

execution at a higher clock rate; however, the execution 

of the entire round requires seven, instead of four, clock 

cycles [4]. 

For the low end applications such as PDA’s , Chi-Jeng 

Chang, Chi-Wu Huang , Hung-Yun Tai, Mao-Yuan Lin' 

and Teng-Kuei Hu, proposed a paper of 8-bit data path  

in 2007. Initially for the better utilization of the resources 

and better throughput the pipelining had been 

implemented. But with the advent of the small scale 

instrument need arose for the compact AES 
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Figure.8 The data flow diagram of 8-bit Advanced Encryption Standard  

Above shown idea multiplexes the 128-bit architecture to 

8-bit data-path for saving resource area and uses BRAM 

to decrease the multiplexer/de-multiplexer circuit   

overhead   of the Mix Column operation of AES. This 

direct 8-bit AES hardware implementation has moved S 

box, shift Row and most key Expansion circuit in 

BRAM, a total of 6 BRAM are needed. Two for shift 

Row (2x16x8)  /Inv S box (2x256x8) in Mix Column one 

for S box in Key expansion (256x8) [4]. 

III. TEST SYSTEM 

For our simulation results, Vivado 2015.4 software was 

utilized, a versatile tool allowing coding in both VHDL 

and Verilog. AES VHDL coding follows a mixed-mode 

modeling approach, incorporating component 

initialization. Initially, we generated the necessary 

rounds for AES, accommodating various key lengths: 

128-bit, 192-bit, or 256-bit. An examination of the AES 

algorithm reveals that round keys can either be pre-

generated or dynamically generated during runtime. In 

our implementation, we opted for on-the-fly key 

generation, along with the round transforms for each 

AES round. Furthermore, multidimensional arrays are 

employed for both AES plaintext and key generation to 

facilitate state generation.  

The design of code is reconfigurable. Pipelining is a CPU 

optimization technique where the execution of 

instructions is overlapped, breaking down the instruction 

execution into several stages. This allows multiple 

instructions to be processed simultaneously, improving 

overall throughput and performance. Each stage in the 

pipeline handles a different part of the instruction 

execution process, such as fetching, decoding, executing, 

and storing results. Loop unrolling is a loop optimization 

technique aimed at reducing loop overhead by executing 

multiple iterations of a loop in parallel or consecutive 

sequence. Instead of executing the loop one iteration at a 

time, loop unrolling processes multiple iterations at once, 

reducing loop control overhead and improving 

instruction-level parallelism. The code employes 

pipelining concept as illustrated below. The concept of 

loop unrolling is also to further achieve the degree of 

optimization.

   
(a) encryption (b) Decryption 

 

Figure .9 AES pipelined (a) encryption (b) Decryption  
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IV. SIMULATION RESULT ANALYSIS 

Simulation for same is done and studied. Study shows 

resource utilization for each stage and different 

transforms. For AES code the generated synthesis report 

shows how much resource utilization is of various stages 

as well as of various transforms. It followed from this 

that mix-columns and key expansion utilizes the higher 

resources compared to add round key. Much of the area 

utilization done by sub byte transforms. Any further 

efficient and compactness in this region will reduce the 

size of code considerably [14]. Below is a chart showing 

encryption decryption with know plaintext and key and 

utilization of resources stage wise.  

 

  

(a) encryption (b)Decryption Results 

Figure.10 AES ( a) encryption and b) Decryption simulation results 

plaintext:  X"2a179373117e3de9969f402ee2bec16b" 

key:          X"3c4fcf098815f7aba6d2ae2816157e2b" 

cipher :     X"97ef6624f3ca9ea860367a0db47bd73a" 

  

a) AES encryption Utilization  (b) AES decryption Utilization 

  
(c) AES Encryption Stage wise utilization  (d)AES Encryption Stage wise utilization  

Figure.11 Utilization  Chart of AES 
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Figure 11 chart confirms our analysis that key expansion 

also utilizes the maximum resources. For the Decryption 

part we can use the same generated key from encryption 

part, instead of generating round keys from key input. 

Inv-sub bytes and sub-bytes are directly inputted as a 

ROM, so we only have to retrieve values from locations 

hence utilizes least resources. The Shift-row and Inv-

Shift-row are only shifts in a position so not much 

utilization is there. 

For the Galois field multiplication, we have used a 

method described federal information processing 

standards publications 197 announced in November 26, 

2001. It states that multiplication in GF corresponds to 

with multiplication of polynomials modulo an irreducible 

polynomial of degree 8. For the AES algorithm, this 

irreducible polynomial is, 

         M(x) = x8 + x4 + x3 + x + 1 (4) 

Also a fact that multiplication by x (i.e.,{00000010} or 

{02}) can be implemented at the byte level as a left shift 

and a subsequent conditional  bitwise XOR with {1b} is 

used. This operation on bytes is denoted by xtime (). So 

to multiply {57} ∙ {13} can be implemented in parts as,  

      {57} · {02} = xtime ({57) = {ae} 

{57} · {04} = xtime ({ae}) = {47} 

{57} · {08} = xtime ({47}) = {8e} 

{57} · {10} = xtime ({8e}) = {07} 

And thus,{57} · {13} = {57} · ({01} xor {02} xor {10}) 

 

While using this algorithm the number of xor operations 

will increase in mix columns states. To cope with it we 

may implement a Galois field multiplier. This multiplier 

can be implemented as per the flowchart shown below.  

 

 

Figure. 12 flow chart for Galois Field multiplier 

Here the loop is checked for 4 times for 4-bit multiplier. 

Where each MSB is checked, if found ‘1’ xor-ing with 

irreducible polynomial is performed. To generate 8-bit 

multiplier we substitute 8 bits in entire flow diagram. So, 

instead 4 loops will now run for 8 loops [8]. It is evident 

from figure number 10 that key expansion utilizes the 

maximum resources. Studying key expansion scheduler 

reveals that, to generate a round key xor operations are 

performed. To generate 10 round keys out of 128 bit key 

we need to do 320 xor operations. If somehow usage of 

these many xoring can be minimized, better area and 

hence resource utilization can be achieved.  

V. CONCLUSION 

The structural style simplifies execution but consumes 

more resources. Optimizing the key expansion 

scheduler's code can significantly save resources. The 

shift row transform, involving only cyclic shifts, can be 

omitted if needed. The s-box is substitution of values but 

traditional 2-D S-box and the prior 1-D S-box utilizes 

more resources , a novel one-dimensional substitution 

Box (S-box) can be used to make code even more 

compact increasing the latency, throughput, transmission 

time.[15] This analysis reveals clear areas for 

improvement in the current approach. 
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