

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2824–2832 | 2824

Implementation of Reconfigurable Modified Advanced Encryption

Algorithm with Area Optimization

1Priyank Patel, 2Nitin Bathani, 3Ketu Patel, 4Nirav Patel, 5Sameer Mansuri, 6 Bhavik Brahmbhatt

Submitted: 07/02/2024 Revised: 15/03/2024 Accepted: 21/03/2024

Abstract: With the rise of computer technology and the Internet in the era of IoT and Industry 4.0, ensuring information security has

become paramount. The Advanced Encryption Standard (AES) has emerged as a leading cryptography standard, garnering significant

attention from hardware designers. IOT end devices requires low power and fast processing hence modification in AES is needed. This

paper presents a novel implementation of AES, focusing on minimizing hardware area. Utilizing Vivado 2015.4, we conduct simulations

and compare results, exploring coding methodologies. Our design demonstrates superior resource efficiency compared to others,

addressing the critical need for secure communication in modern interconnected systems. The papers also showcases the various methods

that can further increase the effectiveness and minimizes the area utilization.

Keywords: Advanced Encryption System, Galois field, Mix column, key expansion, Area Optimization, IOT application

I. INTRODUCTION

The Internet and communication technology have rapidly

advanced in recent years, leading to the widespread

integration of intelligent gadgets into all aspects of

human existence [1]. The Internet of Things (IoT)

enables the connectivity of things located in various

places by utilizing high-speed computer network

processing and wireless data communication. This

further promotes the widespread adoption and

advancement of the information age. Currently, the

Internet of Things (IoT) is extensively employed in

industrial monitoring, urban management, smart home

systems, and intelligent transportation [2,3,4]. Moreover,

it is projected that by 2020, the number of devices

connected by IoT would range from 2 to 5 billion [5,6].

Ensuring information security has been a prominent

subject for researchers and technical firms due to the

need to prevent information leakage in intricate and

dynamic application environments. Cryptographic

methods are widely recognized as the most effective

method for ensuring data security during the transmission

of IoT data [7,8,9]. The increasing data volumes and the

commoditization of the Internet of Things (IoT)

necessitate computer technology to meet increased

demands in terms of speed, power consumption, and

cost. Furthermore, in order to augment the level of

difficulty in breaking cryptographic algorithms, the

complexity of these algorithms surely places a greater

strain on the limited resources of hardware

implementation. When comparing the Field

Programmable Gate Array (FPGA) with the Application

Specific Integrated Circuit (ASIC) and the digital signal

processor (DSP), the FPGA, which is a semi-custom

circuit in the ASIC field, not only shortens the

development time for custom circuits, but also addresses

the limitations of the original programmable device's

gate capacity. It offers the benefits of rapid processing

speed, extensive functionality, great adaptability, and

extremely low power consumption. Recently, FPGA has

emerged as a suitable platform for Internet of Things

(IoT) applications to handle large amounts of data and

perform cloud computing [9].

Data encryption in the Internet of Things (IoT) primarily

involves the encryption of information and the

authentication of messages. This serves to safeguard the

security of information and identify any attempts to

tamper with it [10]. Various cryptographic algorithms

fulfil distinct encryption criteria as a result of their

individual characteristics. Thus, the encryption and

decryption system must possess a diverse range of

algorithms to enable users to use them in a flexible

manner. Nevertheless, the encryption and decryption

system implemented on the FPGA encounters three

challenges: Initially, the incorporation of several

algorithms will also augment the utilization of hardware

logic resources, potentially surpassing the aggregate

quantity of on-chip resources. Furthermore, just a single

algorithm is employed for data processing concurrently,

although other algorithms continue to consume a

significant portion of logical resources, hence

diminishing resource utilization. Furthermore, in order to

modify and update the cryptographic method, the system

is required to halt all ongoing work processes and carry

out maintenance activities, resulting in a reduction in

1,2,3,4,5,6 Electronics and Communication Engineering Department,

Government Engineering College, Modasa, Arvalli, Modasa 383315, India
1Pvp.fetr@gmailcom;2nitinbathani@gmail.com,3ketu.patel@gecmodasa.a

c.in,4nirav2009ec@gmail.com,5mansurisameer@gmail.com,
6bhavik0072009@gmail.com

Corresponding author: Bhavik Brahmbhatt ; bhavik0072009@gmail.com

mailto:mansurisameer@gmail.com,%206bhavik0072009@gmail.com
mailto:mansurisameer@gmail.com,%206bhavik0072009@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2824–2832 | 2825

flexibility. A solution to improve the security of

information and the performance of hardware

implementation in IoT is offered by the encryption and

decryption system that relies on dynamically

reconfigurable technology. In our previous study [11],

we developed a dynamic reconfigurable control platform

that allows the host computer user to choose from

multiple cryptographic algorithms. This platform enables

dynamic switching of algorithms within the allocated

area, without occupying all the hardware resources with

all the cryptographic algorithms. Thus, this work

enhances the hardware implementation and finalizes the

architecture of the Dynamic Reconfigurable Encryption

and Decryption System (DREDSMoreover, this study

improves the use of AES and 3DES algorithms, as well

as the Static Encryption and Decryption System (SEDS),

while also enhancing the data on the usage of hardware

resources. Due to the rapid advancement of computer

technology and the widespread availability of the

internet, effortless communication among millions of

people has become the standard. The requirement for

strong information security has greatly increased,

especially in the areas of e-commerce, e-government, and

the burgeoning field of IoT and edge devices. The Data

Encryption Standard (DES) was previously considered

sufficient, but its key length of 56 bits became

inadequate. The Advanced Encryption Standard (AES)

was developed as a solution to provide heightened

security by utilising key lengths of either 128, 192, or

256 bits. AES, invented by Belgian cryptographers,

received significant recognition and popularity,

particularly after 2006, when it was officially recognised

by NIST in 2001. The performance of FPGA technology

has been enhanced through optimisation, making it

suitable for a wide range of applications, including

lower-end devices such as PDAs and embedded systems.

There is a strong need for AES solutions that are

specifically designed for IoT and edge devices. This has

led to the investigation of several architectural

approaches. It includes a discussion on an 8-bit AES

programme designed for less powerful devices.The

remaining content is structured in the following fashion.

After the introduction in Section 1.Section 2 introduces

the methodology of the advanced encryption standard.

Section 3 presents the test system that has been

implemented in a real-world setting to compare the

algorithms discussed. The simulation results are reported

in Section 4. Section 5 finishes by providing a concise

overview of the main discoveries and suggestions for

further research.

II. ADVANCE ENCRYPTION STANDARD

Typically, symmetric key methods are classified as either

block cyphers or stream cyphers. The AES (Advanced

Encryption Standard) has become increasingly popular

due to the widespread usage of the internet and the need

for strong security measures. The AES utilises the

"Rijndael" algorithm. The AES encryption method

utilises the Rijndael algorithm and functions as a block

cypher, processing data in 4x4 matrices as depicted in

Figure 1.

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

Figure.1 State matrix

In AES, the basic unit of processing is a byte. The state

matrix is formed by organising a 128-bit plaintext word.

The AES algorithm is largely composed of two primary

processes: key scheduling and round transformation. Key

scheduling is the process of transforming the original key

into an extended key, which produces a different number

of round keys based on the length of the input key. For

example, when using a 128-bit input key, the algorithm

generates 10 round keys to be used in 10 rounds. On the

other hand, if the input key is 192 or 256 bits, the

algorithm generates 12 or 14 round keys, respectively, to

be used in the corresponding number of rounds. The mix

column state is excluded in the final round. The AES

algorithm consists of four distinct operations: Sub-byte

transformation, Shift row, Mix columns, and Add round

key. These operations are sequentially applied to the state

matrix. All of these modifications are carried out on this

state matrix. The Sub-byte transform operation replaces

the input plaintext with corresponding elements from the

Galois field GF(28), with each byte as the unit of

operation. Byte rotation is the process of rotating

individual bytes inside a specific row, using a 32-bit

operational unit. The mix column operation involves

multiplying the columns of the state matrix by the

irreducible polynomial x8 + x4 + x3 + x + 1 in GF(28),

while also acting on 32 bits. The Add round key

operation consists of performing an XOR operation

between the round key that was initially calculated and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2824–2832 | 2826

the state matrix. In this operation, the basic unit used is a byte [2].

Figure.2 Overall flow encryption and decryption in communication

After calculating the risk-measuring parameters, the

aggregator assesses the risk aversion factor and renders a

judgement. In other words, the aggregator chooses the

best technique by considering the value of the OF. FPGA

implementation is not well-suited for classical AES.

Several approaches and diverse methodologies have been

utilised. AI-WEN LUO, QING-MING YI, and MIN SHI

have proposed a paper that utilises pipelining technology.

Their proposed structure involves partitioning the

plaintext into four 32-bit units. The initial key is also

distributed to two distinct components, Key Expansion

and Key Selection. The primary purpose of a round

transformation is to perform Sub Bytes and Mix

Columns operations on 32-bit columns. Each of these

four blocks is executed autonomously. The XOR

operation is used to combine the output and key source

with the 64-bit input port. The Sub Byte function is

implemented using a Look-Up Table (LUT). It signifies

that the Find and Replace process is finalised once all

replacement units have been put in memory. The ultimate

stage features a 128-bit CPU. After completing nine

rounds of operations, including Shift Rows, Sub Byte,

and Mix Columns, the 128-bit intermediate encrypted

data will be subjected to an XOR operation with the final

enlarged key. This expanded key is obtained via the key

expansion module [2].

Figure.3 The data flow diagram of Advanced Encryption Standard (AES) implementation. [4]

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2824–2832 | 2827

In 2003, Pawel Chodowiec and Kris Gaj released a study

that introduces a concise FPGA architecture designed for

the AES algorithm with a 128-bit key. The architecture is

specifically optimised for low-cost embedded

applications. The AES algorithm exhibits a significant

level of parallelism, which can be leveraged for

improved performance. The procedure can be

implemented using 4 sub bytes, 1 mix column, and 4 add

round keys instead of the original 16 sub bytes, 4 mix

columns, and 16 add round keys. This latest round is

referred to as the folded round. This study not only

discusses the fact, but also proposes the implementation

of the s-box, mix columns, and shift rows. Several

approaches for the implementation have also been

deliberated. For instance, the diagram below illustrates a

comprehensive configuration of a folded round,

excluding the shift row action, which has been directly

incorporated into the circuit.

Figure.4 Arrangment exlude the shift row

This above mentioned structure can be implemented in

dual port RAM ,here as explained above the exlusion is

done with the shift row and inverse shift row. Two

LUT’s in the same slice can be configured as a 16x1 dual

port ram .8-bit wide dual port ram can be implemented

using the 8 consecutive CLB slices[3].

Figure.5 LUT configuration

Figure 5 illustrates the using the shift register have been

discussed. The fact that, all bytes from the output of

AddRoundKey are written into consecutive locations in

the output memory in consecutive clock cycles. A shift

register can be, taken considered & the fact that the

CLB’s can be configured as shift registers[3]. We know

that, for mix columns and inverse mix columns,

 c(x) = {03}x 3+ {01}x2 + {01}x + {02} (1)

 d(x) = c-1(x) = {0b} x 3 + {0d} x 2 + {09} x +

{0e}

(2)

It is evident from above two equations that,

 c(x) • d2(x) = d(x) (3)

The above discussion can be implemented and to

compact the architecture. This shared logic

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2824–2832 | 2828

implementation can minimize the area and better

utilization of the resources. It shows that same resources

can be used for both mix-columns as well as for Inv-

Mix-Columns.

Figure.6 Implementation of Sharedlogic

Another simple method for the implementation is to

employ folded architecture. The great deal of parallelism

shown by the traditional AES implementation is a key for

this method. This fact can be taken in considering the

architecture of AES on VHDL language in a way FPGA

implementation. Based on these two architectures can be

derived and are also shown in below figure 7a.

(a) (b)

 Figure.7 Folded architecture in two different flow

This architecture requires one 128-bit register, one 96-

bit register and one 32-bit wide 4-to-1 multiplexer on top

of the main cipher operations. The multiplexer becomes

even bigger when both Shift Rows and Inv Shift Rows

are implemented using same logic resources. The

execution of one round takes four clock cycles. Their

results show that the 4-cycle round takes 50% of the

resources required by the 1-cycle round, and yields four

times lower throughput. Another possible architecture is

shown in figure 7 b The 96-bit register is implemented as

three 32-bit registers inserted into round operations

creating a pipeline. In the case of FPGAs, those 32-bit

registers will most likely be placed in the same Slices as

logic operations yielding better resource utilization. The

critical path is also shortened which permits the

execution at a higher clock rate; however, the execution

of the entire round requires seven, instead of four, clock

cycles [4].

For the low end applications such as PDA’s , Chi-Jeng

Chang, Chi-Wu Huang , Hung-Yun Tai, Mao-Yuan Lin'

and Teng-Kuei Hu, proposed a paper of 8-bit data path

in 2007. Initially for the better utilization of the resources

and better throughput the pipelining had been

implemented. But with the advent of the small scale

instrument need arose for the compact AES

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2824–2832 | 2829

Figure.8 The data flow diagram of 8-bit Advanced Encryption Standard

Above shown idea multiplexes the 128-bit architecture to

8-bit data-path for saving resource area and uses BRAM

to decrease the multiplexer/de-multiplexer circuit

overhead of the Mix Column operation of AES. This

direct 8-bit AES hardware implementation has moved S

box, shift Row and most key Expansion circuit in

BRAM, a total of 6 BRAM are needed. Two for shift

Row (2x16x8) /Inv S box (2x256x8) in Mix Column one

for S box in Key expansion (256x8) [4].

III. TEST SYSTEM

For our simulation results, Vivado 2015.4 software was

utilized, a versatile tool allowing coding in both VHDL

and Verilog. AES VHDL coding follows a mixed-mode

modeling approach, incorporating component

initialization. Initially, we generated the necessary

rounds for AES, accommodating various key lengths:

128-bit, 192-bit, or 256-bit. An examination of the AES

algorithm reveals that round keys can either be pre-

generated or dynamically generated during runtime. In

our implementation, we opted for on-the-fly key

generation, along with the round transforms for each

AES round. Furthermore, multidimensional arrays are

employed for both AES plaintext and key generation to

facilitate state generation.

The design of code is reconfigurable. Pipelining is a CPU

optimization technique where the execution of

instructions is overlapped, breaking down the instruction

execution into several stages. This allows multiple

instructions to be processed simultaneously, improving

overall throughput and performance. Each stage in the

pipeline handles a different part of the instruction

execution process, such as fetching, decoding, executing,

and storing results. Loop unrolling is a loop optimization

technique aimed at reducing loop overhead by executing

multiple iterations of a loop in parallel or consecutive

sequence. Instead of executing the loop one iteration at a

time, loop unrolling processes multiple iterations at once,

reducing loop control overhead and improving

instruction-level parallelism. The code employes

pipelining concept as illustrated below. The concept of

loop unrolling is also to further achieve the degree of

optimization.

(a) encryption (b) Decryption

Figure .9 AES pipelined (a) encryption (b) Decryption

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2824–2832 | 2830

IV. SIMULATION RESULT ANALYSIS

Simulation for same is done and studied. Study shows

resource utilization for each stage and different

transforms. For AES code the generated synthesis report

shows how much resource utilization is of various stages

as well as of various transforms. It followed from this

that mix-columns and key expansion utilizes the higher

resources compared to add round key. Much of the area

utilization done by sub byte transforms. Any further

efficient and compactness in this region will reduce the

size of code considerably [14]. Below is a chart showing

encryption decryption with know plaintext and key and

utilization of resources stage wise.

(a) encryption (b)Decryption Results

Figure.10 AES (a) encryption and b) Decryption simulation results

plaintext: X"2a179373117e3de9969f402ee2bec16b"

key: X"3c4fcf098815f7aba6d2ae2816157e2b"

cipher : X"97ef6624f3ca9ea860367a0db47bd73a"

a) AES encryption Utilization (b) AES decryption Utilization

(c) AES Encryption Stage wise utilization (d)AES Encryption Stage wise utilization

Figure.11 Utilization Chart of AES

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2824–2832 | 2831

Figure 11 chart confirms our analysis that key expansion

also utilizes the maximum resources. For the Decryption

part we can use the same generated key from encryption

part, instead of generating round keys from key input.

Inv-sub bytes and sub-bytes are directly inputted as a

ROM, so we only have to retrieve values from locations

hence utilizes least resources. The Shift-row and Inv-

Shift-row are only shifts in a position so not much

utilization is there.

For the Galois field multiplication, we have used a

method described federal information processing

standards publications 197 announced in November 26,

2001. It states that multiplication in GF corresponds to

with multiplication of polynomials modulo an irreducible

polynomial of degree 8. For the AES algorithm, this

irreducible polynomial is,

 M(x) = x8 + x4 + x3 + x + 1 (4)

Also a fact that multiplication by x (i.e.,{00000010} or

{02}) can be implemented at the byte level as a left shift

and a subsequent conditional bitwise XOR with {1b} is

used. This operation on bytes is denoted by xtime (). So

to multiply {57} ∙ {13} can be implemented in parts as,

 {57} · {02} = xtime ({57) = {ae}

{57} · {04} = xtime ({ae}) = {47}

{57} · {08} = xtime ({47}) = {8e}

{57} · {10} = xtime ({8e}) = {07}

And thus,{57} · {13} = {57} · ({01} xor {02} xor {10})

While using this algorithm the number of xor operations

will increase in mix columns states. To cope with it we

may implement a Galois field multiplier. This multiplier

can be implemented as per the flowchart shown below.

Figure. 12 flow chart for Galois Field multiplier

Here the loop is checked for 4 times for 4-bit multiplier.

Where each MSB is checked, if found ‘1’ xor-ing with

irreducible polynomial is performed. To generate 8-bit

multiplier we substitute 8 bits in entire flow diagram. So,

instead 4 loops will now run for 8 loops [8]. It is evident

from figure number 10 that key expansion utilizes the

maximum resources. Studying key expansion scheduler

reveals that, to generate a round key xor operations are

performed. To generate 10 round keys out of 128 bit key

we need to do 320 xor operations. If somehow usage of

these many xoring can be minimized, better area and

hence resource utilization can be achieved.

V. CONCLUSION

The structural style simplifies execution but consumes

more resources. Optimizing the key expansion

scheduler's code can significantly save resources. The

shift row transform, involving only cyclic shifts, can be

omitted if needed. The s-box is substitution of values but

traditional 2-D S-box and the prior 1-D S-box utilizes

more resources , a novel one-dimensional substitution

Box (S-box) can be used to make code even more

compact increasing the latency, throughput, transmission

time.[15] This analysis reveals clear areas for

improvement in the current approach.

REFERENCES

[1] Rady, Ahmed, Ehab EL Sehely, and AM EL

Hennawy. "Design and implementation of area

optimized AES algorithm on reconfigurable FPGA."

In 2007 Internatonal Conference on Microelectronics,

pp. 35-38. IEEE, 2007.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 2824–2832 | 2832

[2] Standaert, Francois-Xavier, Gaël Rouvroy, Jean-

Jacques Quisquater, and Jean-Didier Legat. "Efficient

implementation of Rijndael encryption in

reconfigurable hardware: Improvements and design

tradeoffs." In Cryptographic Hardware and

Embedded Systems-CHES 2003: 5th International

Workshop, Cologne, Germany, September 8–10,

2003. Proceedings 5, pp. 334-350. Springer Berlin

Heidelberg, 2003.

[3] Mulani, Altaf O., and Pradeep B. Mane. "High-Speed

area-efficient implementation of AES algorithm on

reconfigurable platform." Computer and Network

Security 119 (2019).

[4] Wang, Zhu, Yan Yao, Xiaojun Tong, Qinghua Luo,

and Xiangyu Chen. "Dynamically reconfigurable

encryption and decryption system design for the

internet of things information security." Sensors 19,

no. 1 (2019): 143.

[5] Zhang, Xinmiao, and Keshab K. Parhi.

"Implementation approaches for the advanced

encryption standard algorithm." IEEE Circuits and

systems Magazine 2, no. 4 (2002): 24-46.

[6] Gandh, D. Rahul, V. Kamalakannan, R.

Balamurugan, and S. Tamilselvan. "FPGA

implementation of enhanced key expansion algorithm

for Advanced Encryption Standard." In 2014

International Conference on Contemporary

Computing and Informatics (IC3I), pp. 409-413.

IEEE, 2014.

[7] Alkamil, Arkan, and Darshika G. Perera. "Towards

dynamic and partial reconfigurable hardware

architectures for cryptographic algorithms on

embedded devices." IEEE Access 8 (2020): 221720-

221742.

[8] Granado-Criado, Jose M., Miguel A. Vega-

Rodríguez, Juan M. Sánchez-Pérez, and Juan A.

Gómez-Pulido. "A new methodology to implement

the AES algorithm using partial and dynamic

reconfiguration." Integration 43, no. 1 (2010): 72-80.

[9] Masoumi, Massoud. "A highly efficient and secure

hardware implementation of the advanced encryption

standard." Journal of Information Security and

Applications 48 (2019): 102371.

[10] Jamuna, S., P. Dinesha, K. PShashikala, and Kumar

K. Kishore. "Design and Implementation of Runtime

Reconfigurable Encryption Algorithms using Custom

ICAP Processor." International Journal of Computer

Network and Information Security 11, no. 12 (2019):

10-16.

[11] Chowdhury, A.R., Mahmud, J., Kamal, A.R.M. and

Hamid, M.A., 2018, March. MAES: Modified

advanced encryption standard for resource constraint

environments. In 2018 IEEE Sensors Applications

Symposium (SAS) (pp. 1-6). IEEE.

[12] Mane, P. B., and A. O. Mulani. "High speed area

efficient FPGA implementation of AES

algorithm." International Journal of Reconfigurable

and Embedded Systems 7, no. 3 (2018): 157-165.

[13] Sireesha, K., and S. R. Madhava. "A novel approach

of area optimized and pipelined FPGA

implementation of AES encryption and

decryption." International Journal Scientific and

Research Publications 3, no. 9 (2013): 1-5.

[14] Fathy, Ahmed, Ibrahim F. Tarrad, Hesham FA

Hamed, and Ali Ismail Awad. "Advanced encryption

standard algorithm: Issues and implementation

aspects." In Advanced Machine Learning

Technologies and Applications: First International

Conference, AMLTA 2012, Cairo, Egypt, December

8-10, 2012. Proceedings 1, pp. 516-523. Springer

Berlin Heidelberg, 2012.

[15] Rajasekar, P., and H. Mangalam. "Design and

implementation of power and area optimized AES

architecture on FPGA for IoT application." Circuit

World 47, no. 2 (2020): 153-163.

[16] Standaert, François-Xavier, Gilles Piret, Gaël

Rouvroy, Jean-Jacques Quisquater, and Jean-Didier

Legat. "ICEBERG: An involutional cipher efficient

for block encryption in reconfigurable hardware."

In Fast Software Encryption: 11th International

Workshop, FSE 2004, Delhi, India, February 5-7,

2004. Revised Papers 11, pp. 279-298. Springer

Berlin Heidelberg, 2004.

