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Abstract: Telemedicine plays a pivotal role in extending healthcare reach through remote consultations, addressing gaps in underserved 

regions and offering convenience, especially during crises. Data mining techniques in telemedicine extract critical insights from complex 

medical data, enhancing early disease detection and personalized care. This study presents a novel approach that leverages two hybrid 

deep learning models (CNN-Bi-LSTM, CNN-GRU) and a stacking ensemble model to predict multiple diseases using telemedicine-

derived features. The stacking ensemble utilizes Support Vector Machine (SVM) as its meta-learner. The dataset is sourced from the YBI 

Foundation's repository, and extensive experimentation showcases the ensemble's superiority, achieving 99.52% accuracy, 99.54% 

precision, 99.57% recall, and 99.54% F1-score. These remarkable results highlight the potential of unified model architectures in 

enhancing disease prediction using telemedicine. Beyond advancing predictive healthcare, this research demonstrates ensemble learning's 

effectiveness in intricate medical datasets, ultimately aiding clinical decisions and patient outcomes. 

Keywords: Convolutional Neural network, Data mining, Gated Recurrent Unit, Long short-term memory, Support vector machine, 
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1. Introduction 

Telemedicine is a transformative healthcare approach that 

employs modern communication technologies to deliver 

medical services remotely. Without the requirement for in-

person visits, people are able to speak with medical experts 

via telemedicine and obtain medical advice, and diagnosis 

[1]. This approach leverages digital tools such as video 

conferencing, phone calls, emails, and mobile apps to 

bridge geographical gaps and enhance access to healthcare, 

making it particularly valuable for individuals in remote or 

underserved areas. Telemedicine encompasses a wide 

range of medical services, from primary care and specialty 

consultations to mental health support and chronic disease 

management [2]. It not only offers convenience and cost-

effectiveness but also plays a critical role in emergencies 

and situations where physical interactions are restrict. 

The benefits of telemedicine extend beyond convenience. 

Patients can access medical expertise that might not be 

available locally, facilitating consultations with specialists 

and experts from around the world. Additionally, 

telemedicine enables continuous monitoring of patients 

with chronic conditions through wearable devices and 

remote sensors, enhancing their quality of life [3]. Despite 

its advantages, challenges exist, including the need for 

reliable internet connectivity, ensuring patient data privacy 

and security, navigating regulatory frameworks, and 

addressing diagnostic limitations that require physical 

examinations [4]. As technology continues to advance, 

telemedicine's potential to reshape healthcare delivery and 

improve patient outcomes remains substantial, fostering a 

more connected and accessible healthcare ecosystem. 

Data mining techniques have a significant impact on the 

field of telemedicine by leveraging the abundant digital 

healthcare data generated through remote consultations, 

patient monitoring, and electronic health records [5]. These 

methods, including clustering [6], classification, and 

association rule mining, help telemedicine professionals 

identify patterns and correlations hidden within patient 

data. By grouping patients with similar profiles, 

categorizing based on symptoms, and uncovering 

relationships between medical parameters, practitioners 

can enhance patient care through targeted interventions and 

accurate diagnoses.  

Predictive modelling [7] is another crucial technique that 

uses historical patient data to anticipate health risks, 

disease progression, and treatment responses. This 

proactive approach enables healthcare providers to 

optimize treatment plans and resource allocation 

effectively, while sentiment analysis techniques applied to 

patient interactions aid in gauging satisfaction, detecting 

emotions, and tailoring communication strategies. 

In essence, data mining empowers telemedicine by 

extracting actionable insights from intricate healthcare 

data, resulting in improved diagnostic precision, predictive 

health outcomes, and personalized patient care. These 

techniques elevate the quality and accessibility of remote 
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medical services, fostering a data-driven approach that 

advances the field of telemedicine. 

1.1 Challenges in Traditional Models 

Accurate disease prediction through traditional methods 

encounters a host of obstacles that can compromise their 

efficacy. One of the foremost challenges lies in their 

reliance on predetermined features, which might not 

encapsulate the entirety of relevant data patterns. This can 

result in the omission of critical information, undermining 

the precision of predictions. Moreover, the intricacies of 

many diseases often entail nonlinear relationships between 

variables, a complexity that traditional linear models 

struggle to capture. Consequently, these models may fail to 

grasp the nuanced interactions within the data, leading to 

less accurate forecasts. 

 

Fig. 1. Data mining technique in telemedicine 

Another hurdle arises from the high-dimensional nature of 

medical datasets [8]. The vast number of variables can 

overwhelm traditional methods, rendering them 

computationally taxing and susceptible to over fitting. The 

manual process of feature engineering demand substantial 

domain knowledge and time investment. This selection of 

pertinent features might introduce human biases or 

overlook important aspects of the data, further hindering 

the accuracy of disease predictions. Furthermore, the 

scalability of traditional methods is put to the test with the 

surge in dataset size, as the models can become sluggish in 

handling the increased volume, undermining their 

practicality in real-world healthcare settings [9]. 

Fig. 2. Usage of rural, urban, urgent care users in telemedicine 

The generalization capability of traditional models presents 

a challenge. Their simplicity can hinder their ability to 

adapt to variations in data distribution, making them less 

versatile in new patient populations or changing medical 

landscapes [10]. As the healthcare field continually 

evolves, the static nature of traditional methods becomes a 

limitation, as they might require constant updates or even 

replacement to remain relevant. Collectively, these 

challenges underscore the need for more advanced 

techniques, such as machine learning (ML) and deep 

learning (DL), which can surmount these limitations and 

offer more robust and accurate disease prediction 

frameworks [11]. 

The adoption of telemedicine is motivated by the desire to 

overcome geographical barriers, enhance healthcare 

accessibility, and improve patient experiences. By enabling 

remote consultations and medical services [12], 
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telemedicine offers convenient access to healthcare 

expertise, particularly for individuals in underserved or 

remote areas. This approach minimizes travel burdens, 

saves time, and fosters timely medical advice and 

treatment. Furthermore, telemedicine supports continuous 

care for chronic conditions, extends specialist consultations 

globally, and has the potential to reduce healthcare costs 

by optimizing resource allocation. The recent emphasis on 

pandemic preparedness has further highlighted its role in 

ensuring healthcare continuity during emergencies. 

Overall, telemedicine aligns with technological trends, 

advancing healthcare by making it more patient-centric, 

efficient, and widely accessible [13]. 

1.2 Applications of Telemedicine 

Telemedicine, a rapidly advancing field, enhances 

healthcare accessibility through remote consultations, 

benefiting underserved regions and reducing geographical 

constraints. It also improves healthcare delivery by 

enabling timely diagnosis, chronic disease management, 

and home health monitoring through remote assessments 

and specialist Access. 

1.2.1 Remote Consultations 

Remote consultations, a pivotal application of 

telemedicine, revolutionize the way patients access 

healthcare. Through digital platforms and video 

conferencing, individuals can securely connect with 

healthcare professionals from the comfort of their homes 

or workplaces. This approach not only eliminates the need 

for physical visits but also transcends geographical 

barriers, offering medical advice, diagnoses, treatment 

recommendations, and follow-up care regardless of 

location [14]. Remote consultations particularly benefit 

those in rural or underserved areas, individuals with 

mobility constraints, and patients seeking expert opinions 

from specialists outside their region. Furthermore, 

telemedicine's remote consultation services have proven 

invaluable during public health crises, enabling continuous 

medical support while minimizing the risk of viral 

transmission. This application encapsulates telemedicine's 

potential to enhance accessibility, patient-centered care, 

and healthcare delivery efficiency on a global scale.  

1.2.2 Chronic Disease Management 

Chronic Disease Management stands as a pivotal 

application of telemedicine, offering a transformative 

approach to caring for individuals with ongoing health 

conditions. Through remote monitoring and regular virtual 

interactions, telemedicine empowers patients to actively 

engage in their health management while healthcare 

providers remotely track and assess their progress. This 

application benefits patients with chronic diseases such as 

diabetes, heart disease, and respiratory conditions by 

facilitating personalized care plans, medication 

adjustments, and lifestyle guidance [15]. Continuous 

monitoring of vital signs, symptoms, and treatment 

responses enables early intervention, reducing the risk of 

complications and hospitalizations. Telemedicine's 

convenience and accessibility, coupled with the ability to 

transmit real-time health data, foster a proactive 

partnership between patients and healthcare professionals, 

ultimately improving the quality of life for those managing 

chronic condition. 

1.2.3 Specialist Access 

Specialist Access as an application of telemedicine refers 

to the capability of patients to remotely connect with 

medical specialists through digital platforms, enabling 

expert consultations and healthcare services regardless of 

geographical distances [16]. This innovative approach 

improves patients' access to specialized medical expertise, 

particularly beneficial for those in underserved areas or 

facing travel constraints. By leveraging telecommunication 

technologies, patients can receive timely diagnoses, 

treatment recommendations, and ongoing care from 

specialists, leading to more convenient and efficient 

healthcare delivery while minimizing the need for in-

person visits. 

1.2.4 Home Health Monitoring 

Home Health Monitoring, a key application of 

telemedicine, involves the use of remote monitoring 

technologies to track patients' health conditions from the 

comfort of their homes. Through devices like wearable 

sensors, smart medical devices, and mobile apps, patients 

can collect and transmit essential health data such as vital 

signs, glucose levels, or medication adherence to 

healthcare providers in real time [17]. This enables 

proactive healthcare management, early detection of health 

issues, and personalized interventions, reducing the need 

for frequent clinic visits and hospitalizations while 

enhancing patients' quality of life and overall health 

outcomes.  

In order to improve the precision of multi-disease 

prediction, this research introduces a stacking ensemble 

model that uses hybrid CNN-Bi-LSTM, CNN-GRU 

models coupled with a meta-learner -SVM [21]. The 

dataset is sourced from the YBI Foundation's repository. 

Patient data was collected, and the remedy for them was 

given according to the prediction of the ensemble model, 

ensuring personalized treatment plans. The combination of 

the two hybrid methods and the ensemble model together 

made accurate predictions, enhancing the precision of 

disease diagnosis and treatment recommendations. The 

model can predict multiple diseases using the data, 

allowing for early detection and proactive healthcare 

interventions to improve patient outcomes. The following 

sections provide an overview of the related works in 
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Section 2 and elaborate on the methods employed for 

disease prediction in Section 3. The findings and 

discussion are described in Section 4. Finally, Section 5 

brings the conclusion. 

2. Literature Review 

Ahmed and colleagues [22] presented a robust 

telemedicine infrastructure featuring an up-to-date 

topology, strengthened by the processing of the MooM 

dataset and the implementation of the specialized TelMED 

protocol for transmitting medical data remotely. The 

infrastructure prioritizes an application-centric approach to 

Electronic Health Records (EHR) management through 

edge computation. The primary aim is to surpass the 

Quality of Service and Quality of Data achieved by 

conventional communication channel algorithms in 

processing medical data. The study showcases the efficacy 

of the proposed technique through MooM dataset 

processing and TelMED channel optimization, 

demonstrating enhanced efficiency in medical data 

handling. The resulting improvement, substantiated by 

comparisons of MooM datasets during reverse processing 

for diagnosis, underscores the potential for elevated 

Quality of service in the proposed infrastructure. 

Salman et al [23]aimed to enhance telemedicine services 

by reducing waiting times for remote patients through a 

scalable model. The model, named Triaging and 

Prioritizing Model (TPM), focuses on real-time healthcare 

monitoring for chronic heart disease patients. By 

integrating hybrid algorithms that combine Evidence-

Theory with Fuzzy Cluster Means (FCM), TPM triages 

and prioritizes patients, considering both remote and 

Emergency Department (ED) patients. The approach 

significantly reduces waiting times by accommodating a 

larger patient volume efficiently. The simulation, involving 

580 chronic heart disease patients with varying emergency 

levels determined by vital data from sensors, showcases 

TPM's effectiveness in managing patient requests within 

1,185 minutes, outperforming benchmark studies. 

Katarya et al [24] served as a guide for selecting suitable 

tools and algorithms for effective analysis. It offers 

benefits to a wide range of stakeholders including 

policymakers, hospitals, patients, and pharmaceutical 

companies. It suggests the allocation of increased funds to 

domain experts to enable comprehensive patient health 

analysis and monitoring from home. Although reluctance 

to adopt Big Data Analytics (BDA) techniques often stems 

from organizational changes required, this paper aims to 

inspire adoption by presenting a compelling case for 

incorporating BDA within healthcare organizations, 

ultimately driving motivation for its implementation. 

In their work Choi [25] introduced an extensive knowledge 

processing system for the healthcare industry, utilizing 

Hadoop's Map Reduce software to conduct association 

mining on big data. The approach efficiently manages 

health information by leveraging WebBot and a common 

data model to process heterogeneous data. By combining 

distributed processing and association mining, the 

proposed method utilizes MapReduce to extract and 

analyze chronic disease nomenclature from health big data. 

Through mapping and reducing processes, frequent item 

sets meeting support criteria are identified, generating 

association rules between datasets. This result in the 

creation of a knowledge base that support health 

management, offering real-time, semantically related 

insights into chronic diseases. Through the application of 

knowledge processing based on mining techniques, this 

approach elevates the technological worth and intelligent 

effectiveness within the healthcare domain, ultimately 

leading to advancements in health and overall well-being. 

Heart disease linked to diabetes is a condition that impacts 

individuals with diabetes due to problems with insulin 

production and utilization. Arumugam et al [26] pointed 

out that despite the availability of various data mining 

classification algorithms for heart disease prediction, 

there's a lack of data for forecasting heart disease 

accurately in individuals. Furthermore, the speaker 

highlighted that they fine-tuned the decision tree model 

because it outperformed the naive Bayes and SVM models, 

aiming to improve its ability to forecast heart disease 

likelihood in diabetes patients. 

Priyadharsan et al [27] employed ML algorithms to 

monitor human health conditions. Initial training and 

validation are conducted using the UCI dataset, while the 

testing phase utilizes an IoT setup to collect heart rate, 

blood pressure, and temperature data. This phase predicts 

health abnormalities based on sensor data through the IoT 

framework. Statistical analysis of cloud-stored IoT data 

determines prediction accuracy.  

Notably, the K-Nearest Neighbour algorithm outperforms 

traditional classifiers, establishing its effectiveness in 

health condition prediction.  
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Fig. 3. Resulting error rates from categorization algorithms 

Existing methods often rely on n-gram techniques and 

semantic models for clustering, but their efficacy can be 

limited. The model, developed based on Mesh ontology, 

addresses this by incorporating a term frequency and 

inverse gravity moment factor for improved class 

distinction. A modified n-gram technique is employed to 

enhance phrase identification by addressing substitution 

and deletion cases. The proposed approach boosts the 

efficiency of k-means and hierarchical clustering 

algorithm. Experiments conducted on PubMed documents 

using Mesh ontology and various measures validate the 

effectiveness of the approach in improving clustering 

accuracy. 

Thouheed Ahmed et al [29]introduced a novel approach 

for reducing recursive image in Cloud environments. The 

technique employs pixel value density matching coupled 

with edge extraction. Evaluated on 12,800 distinct UCL 

ML repository samples, the proposed technique achieves a 

97.8% accuracy rate. The study emphasizes evaluation and 

processing time as key factors. The approach is 

implemented and fine-tuned on the HADOOP platform to 

optimize big data infrastructure, showcasing its potential 

for efficient recursive image reduction in cloud-based 

settings. 

Ahmed et al [30] introduced a ML algorithm aimed at 

regenerating signals during transfer. The process involves 

decomposing signals into four layers using Discrete 

Wavelet Transform before transfer for improved 

optimization. The study employs the Real-Time Signal Re-

Generator and Validator Algorithm, based on neural 

network models. Results highlight a consistent 

performance score of 1.15 across 667 processed EEG 

samples, with an average regeneration and training 

processing time of 0.65 seconds. This approach showcases 

promising potential for enhancing signal quality during 

transmission through efficient regeneration and validation 

techniques. 

Existing methods such as multiple regression and artificial 

neural networks (ANN) possess limitations. They demand 

high-quality data for accurate results and suffer from data 

inaccuracies or noise. Scalability is hindered by time-

consuming computations for large datasets. Privacy 

concerns risk patient data exposure. Document 

modifications impact performance. Standardization, 

synchronization, unstructured data, and bias challenges 

emerge. Initial conditions' sensitivity and rendering 

methods influence outcomes. Addressing data quality, 

scalability, privacy, synchronization, unstructured data, 

bias, and rendering methods is imperative for the effective 

use of multiple regression and ANN techniques. 

3. Materials And Methods 

For the purpose of forecasting numerous diseases, we 

presented two hybrid DL models CNN-Bi-LSTM, CNN-

GRU. The model's structure is as follows:  

• CNN-Bi-LSTM is the first model. 

• CNN-GRU is the second model. 

• SVM performs the role of the meta learner in the 

ensemble model. 

In the proposed work, the first step involved collecting 

datasets, which were sourced from the YBI Foundation's 

repository, followed by data preprocessing. Subsequently, 

the prediction method was executed using the preprocessed 

data, employing an ensemble model as the chosen 

approach. To assess its effectiveness, the prediction 

performance was analyzed and compared with existing 

methods, offering insights into the model's capabilities. 

Figure 4 illustrates the fundamental framework of the 

suggested system, providing a visual representation of the 

proposed approach. 
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Fig. 4. Architecture of the Proposed model 

3.1 Dataset Description 

In a telemedicine framework, patient information can be 

gathered using diverse approaches to facilitate remote 

healthcare provision. By linking with electronic health 

record (EHR) systems [31], telemedicine platforms can 

access and retrieve pre-existing patient data from EHRs, 

encompassing historical medical records, test outcomes, 

prescription history, and other pertinent healthcare details. 

The data was collected from the YBI Foundation's 

repository. This dataset comprises 4920 rows and 133 

columns. The initial 132 columns in the dataset represent 

distinct symptoms associated with different diseases, such 

as itching, skin rashes, sneezing, etc. The final column in 

the dataset indicates the prognosis type. The example 

dataset values are illustrated in figure 5 and comprise 

binary values of 0 and 1. A set of 41 diverse diseases are 

given as the reference standard or ground truth in the 

dataset.  

Fig. 5. Dataset Sample 

3.2 Data Preprocessing 

The descriptive statistics for each numerical column in a 

Data Frame are provided in the figure 6. It provides 

information such as the mean, standard deviation, 

minimum, maximum, and quartile values for each numeric 

feature in the dataset. This summary is helpful for gaining 

insights into the distribution and basic statistical properties 

of the data, which can be valuable for data analysis and 

understanding the characteristics. 

Fig. 6. Dataset Description  
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The number of missing values for each column is 

calculated. This is a quick way to assess the completeness 

of the dataset and identify columns with missing data, 

which is important for data preprocessing and analysis. It 

is possible to generate a correlation matrix for each column 

in a dataset, which displays pair wise correlations between 

numerical columns and indicates the direction and strength 

of their linear interactions. “A strong negative correlation 

is represented by a correlation value of 1, a strong positive 

connection is represented by a correlation value of 0, and 

there is no correlation at all”. This analysis is useful for 

understanding how different features in the dataset are 

related to each other and can help in identifying potential 

patterns or dependencies between variables. The various 

class labels in the dataset are shown in Table 1. 

 

Table 1.Class Labels 

 

A hologram representation of a dataset [32]is represented 

in figure 7 which is an advanced visualization technique 

that aims to portray the complex relationships and 

multidimensional aspects of data.  

 

Fig. 7. Feature distribution of the data 

It leverages principles from holography to create a unified 

and intricate visual representation by combining multiple 

data attributes. Unlike traditional plots, hologram 

representations can encompass numerous dimensions, 

enabling the visualization of intricate patterns, correlations, 

and structures that might be obscured in simpler 

visualizations. Through hologram representations, analysts 
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can gain deeper insights into the underlying dynamics and complexities of their data. 

A heat map visualization is a graphical representation 

shown in figure 8that uses color to convey the intensity of 

values in a two- dimensional dataset. It's often applied to 

matrices or tables where 

each cell's color indicates the magnitude of the 

corresponding value.  Heat maps are particularly useful for 

identifying patterns, trends, and relationships within the 

data, making complex information more accessible and 

facilitating quick insights. 

 

Fig. 8. Heat Map Visualization of data 

3.3 CNN-Bi-LSTM Model 

CNN-Bi-LSTM is a hybrid DL architecture that merges 

Convolutional Neural Network (CNN) and Bidirectional 

Long Short-Term Memory (Bi-LSTM) models. The CNN 

component specializes in capturing spatial features through 

convolutional layers, enabling effective feature extraction 

from structured data like images. On the other hand, the 

Bi-LSTM component excels at capturing sequential 

dependencies and context from data. By integrating these 

two architectures, CNN-Bi-LSTM leverages the strengths 

of both spatial and sequential analysis, making it 

particularly adept at tasks that involve both image-like data 

and sequential patterns, such as video analysis or 

spatiotemporal data processing. 

Fig. 9. CNN-Bi-LSTM model 

3.4 CNN-GRU model  

The CNN-GRU model is a hybrid DL architecture that 

combines CNN and Gated Recurrent Unit (GRU) 

components. CNN is utilized to capture spatial features in 

data through convolutional layers, making it effective for 

tasks like image analysis. On the other hand, GRU is a type 

of recurrent neural network that excels at modeling 

sequential dependencies in data. By fusing CNN and GRU, 

the CNN-GRU model leverages both spatial and sequential 
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analysis capabilities, making it well-suited for tasks that 

involve data with both image-like structures and sequential 

patterns. This architecture is particularly valuable in 

scenarios such as video processing, where frames require 

spatial understanding, and temporal patterns necessitate 

sequential modeling.  

Fig.10. CNN-GRU model 

3.5 Proposed Architecture 

The architecture of the proposed model consists of two 

hybrid DL models (CNN-Bi-LSTM and CNN-GRU) and a 

stacking ensemble model. The architecture combines CNN 

and Bi-LSTM layers for sequence classification. It starts 

with three layers of 1D convolutional filters with 

increasing depths, each followed by max pooling to 

capture spatial features. Subsequently, Bidirectional 

LSTMs with 64 units are used to capture temporal 

dependencies bidirectional, with a dropout layer to 

mitigate over fitting. Two dense layers with 50 units each 

process features before flattening. A third dense layer with 

softmax activation for multi-class classification among 41 

classes comes after the second dense layer with L2 

regularization promotes generalization. This architecture 

combines spatial feature extraction from CNNs and 

sequential understanding of LSTMs, facilitating complex 

pattern recognition and classification in sequential data. 

Regularization and dropout aid in preventing over fitting 

and enhancing generalization. 

The architecture of the "cnn_gru_model" integrates 

Convolutional Neural Network (CNN) with GRU layers to 

address sequence classification. The model's initiation 

includes three 1D convolutional layers, followed by max 

pooling for spatial feature extraction. Subsequently, GRU 

layers with 64 units are utilized to capture temporal 

dependencies. A dropout layer aids in preventing over 

fitting. Dense layers, with 50 units and "relu" activation, 

process features before flattening. Following this, a dense 

layer with L2 regularization encourages generalization, 

culminating in a final dense layer with softmax activation 

for multi-class classification within 41 categories. This 

design amalgamates CNNs' prowess in spatial feature 

extraction with GRUs' proficiency in sequence 

comprehension, rendering it effective for intricate patterns 

and sequential data tasks. The incorporation of 

regularization and dropout techniques bolsters the model's 

resilience. 

 

Fig. 11. Model Summary 
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The SVM model used here is trained on ensemble 

predictions and true labels to learn patterns and 

relationships, facilitating predictions on new instances 

through decision boundaries.  Final predictions are 

leveraged by the ensemble approach, amalgamating 

predictions from the above models to enhance overall 

predictive performance. 

Hyper parameters in a Convolutional Neural Network 

(CNN) model are critical variables that influence its 

architecture, training process, and overall performance. 

These parameters, set before training, encompass choices 

like loss function, optimizer, activation function, batch 

sizes, and number of epochs. Batch size determines the 

number of training examples processed in each iteration, 

affecting memory consumption and training efficiency. 

The loss function quantifies the discrepancy between 

predicted and actual values, guiding the optimization 

process. The number of epochs denotes the total iterations 

through the training dataset, impacting the model's 

convergence and potential over fitting. The thoughtful 

selection of these hyper parameters, often through 

experimentation and validation, is essential to crafting a 

CNN model that achieves optimal performance across 

various tasks and datasets. 

Table 2.Hyper parameters 

 

3.6 Performance Parameters 

Performance parameters serve as crucial benchmarks to 

evaluate its effectiveness in various tasks. These 

parameters encompass metrics such as precision, recall, 

accuracy, and F1-score, which collectively measure the 

model's ability to correctly classify and differentiate 

between different classes.  

 

Table 3.Performance parameters 

4. Result And Analysis 

4.1 Hardware and Software Setup 

For the sake of a dependable and stable computational 

setting, this study chooses Google Colaboratory [33] along 

with Microsoft Windows 10 as the favored platforms. 

Within this arrangement, the configuration comprises an 

Intel Core i7-6850K processor operating at 3.60 GHz with 

12 cores, in addition to an NVIDIA GeForce GTX 1080 Ti 

GPU with 2760 memory and 4MB capacity. 

4.2 Experimental Results 

Table 4. Classification Report of the Model 

 

The accuracy plot showcases how well the model's 

predictions match the actual labels in the training datasets 

as the training progresses through epochs. Increasing 

accuracy indicates improved learning and capability to 

classify data accurately. Conversely, the loss plot depicts 

the model's convergence over epochs by illustrating how 

the chosen loss function decreases as the model adjusts its 

parameters. Lower loss values signify better alignment 

between predictions and actual values. 

Fig. 12. Accuracy and loss plot of CNN-Bi LSTM model 
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Fig. 13. Accuracy and loss plot of CNN-GRU model 

The prediction results obtained are made readily available 

to healthcare providers, facilitating seamless access to 

critical diagnostic information. Through a real-time 

interactive system, patients and healthcare providers can 

engage effectively in discussions related to diagnosis and 

treatment planning. This system empowers patients to 

access high-quality healthcare services without the 

necessity of undertaking extensive travel, thus eliminating 

the time, financial, and logistical burdens typically 

associated with transportation. 

 

Table 5.Obtained Output 

Our novel ensemble learning based hybrid method 

outperforms existing techniques that rely solely on LSTM, 

CNN, or Bi-LSTM models. By combining the strengths of 

these individual methods, our approach achieves superior 

accuracy, precision, recall, and F1-score in comparison. 

While traditional methods struggle with certain 

complexities, our ensemble approach harnesses the 

complementary features of these models, resulting in a 

more comprehensive understanding of the data and 

improved performance metrics. This synergy allows us to 

make more accurate predictions, achieve higher precision 

in identifying relevant instances, capture a greater 

proportion of true positives through enhanced recall, and 

strike a better balance between precision and recall as 

indicated by the higher F1-score. 

 

 

Table 6.Comparison of some other existing methods 

 

5. CONCLUSION 

Telemedicine emerges as a vital tool in expanding 

healthcare accessibility, particularly in remote areas and 

during crises, offering unprecedented convenience. This 

study has demonstrated the power of data mining 

techniques in telemedicine, enabling the extraction of 

crucial insights from complex medical data, thus 

enhancing early disease detection and personalized 

care.Our approach, harnessing two hybrid DL models 

(CNN-Bi-LSTM, CNN-GRU) within a stacking ensemble 
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framework with SVM as the meta-learner, has showcased 

its efficacy in predicting multiple diseases using 

telemedicine-derived features. Leveraging a dataset 

sourced from the YBI Foundation's repository and 

conducting extensive experimentation, we have achieved 

remarkable results, including 99.52% accuracy, 99.54% 

precision, 99.57% recall, and a 99.54% F1-score.We have 

conducted a comparative analysis of our approach with 

other existing methods. These exceptional outcomes 

underscore the potential of unified model architectures in 

revolutionizing disease prediction through telemedicine. 

Beyond the realm of predictive healthcare, our research 

also highlights the effectiveness of ensemble learning in 

handling intricate medical datasets, ultimately contributing 

to more informed clinical decisions and improved patient 

outcomes. 
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