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Abstract: Identifying a speaker is a task of classification that aims at recognizing an individual based on sequential data over time. 

Given that a speech signal manifests as a one-dimensional, continuous time series, most contemporary studies rely on either 

convolutional neural networks (CNN) or recurrent neural networks (RNN). These techniques have shown effectiveness across various 

applications, yet efforts to merge these two models for investigating speaker recognition tasks remain unexplored. A spectrogram 

integrated into a speech signal reveals the voiceprint's spatial attributes, reflecting the voice spectrum. This makes CNN highly suitable 

for drawing out spatial characteristics, essentially capturing the spectral correlations present in acoustic signatures. Concurrently, with the 

speech signal being time-sequential, deep RNNs are superior in depicting extended speech compared to more superficial networks. The 

study introduces a new model named Dual-Tier Feature Extraction with Whale Optimization Algorithm for Automated Speaker 

Identification (DTFWOA-ASI), designed to address the shortcomings found in earlier models. The DTFWOA-ASI approach is a cutting-

edge method designed specifically for the identification of speaker identities. It employs the method of average median filtering (AMF) 

to remove background noise from sound recordings. Subsequently, the strategy utilizes both MFCC and spectrogram data as inputs into 

the VGGish model, an advanced deep-learning convolutional network engineered for extracting crucial features. For the fine-tuning of 

the LSTM-RNN model's hyperparameters, the technique makes use of the Whale Optimization Algorithm (WOA). The approach 

integrates a long short-term memory network with a recurrent neural network (LSTM-RNN) to enable the automatic identification and 

classification of speakers. The performance and accuracy of the DTFWOA-ASI framework were thoroughly assessed through several 

experimental procedures. A comparative analysis highlights the model’s superior performance in comparison to the latest methodologies. 

Keywords: Speaker identification, Deep Learning, Whale optimization algorithm, VGGish, Spectrograms. 

1. Introduction 

Identifying a person through their voice is what speaker 

recognition is all about. The uniqueness of every voice 

comes from variables such as the larynx size, How the 

vocal tract is shaped, and various components involved in 

creating voice sounds [1]. This method poses challenges 

because individuals being tested do not reveal their 

identities, necessitating a comparison between one and N, 

wherein N symbolizes the aggregate count of people who 

have been enrolled. In contrast, speaker verification 

concerns itself with confirming if a person is indeed who 

they profess to be. Given that any false identities are 

considered unknown, this procedure is often referred to as 

open-set recognition [2]. Conversely, when it's determined 

that a voice belongs to a registered individual, this scenario 

is termed closed-set recognition. Speech carries a wealth of 

information, including emotional nuances, accent, and 

gender among other traits, making it a potent medium for 

communication [3]. These distinguishing characteristics 

allow for the pinpointing of individuals through their 

voiceprints. The deep learning networks are then trained 

using these unique vocal samples. In the identification 

phase, the voice's features are compared against a database 

of models [4]. The speaker who most likely made the 

utterance is then pinpointed as the intended target [5].  

Techniques for recognizing speakers automatically are 

proficient in determining an individual's identity through 

their vocal signals. Recognition technologies are widely 

used for a variety of purposes, including but not limited to 

- Securely granting access to different services such as 

voice mail and telephone banking, Facilitating voice-

activated dialing for data networks, accessing databases 

and computers remotely, making use of information and 

shopping services via phone, enhancing security for web 

services and confidential data sectors, aiding law 

enforcement in surveillance activities, crime investigation, 

logging activities from remote locations, and monitoring 

phone calls within prisons [6]. For these systems to verify 

a speaker accurately, it's crucial to extract significant 

features from each speech segment, focusing on pivotal 

aspects of the vocal signal [7]. The MFCC, in particular, is 

widely adopted for its effectiveness in clean environments, 

marking a high rate of efficiency [8]. Nonetheless, the 

performance of the MFCC technique diminishes 

significantly in environments plagued by echo and 

background noise [9]. A challenge with contemporary 
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methods is the necessity for input samples to be large 

enough for effective training and speaker recognition, 

which, in turn, hikes up the demand for computing 

resources [10]. Moreover, these methods struggle to 

deliver their best in noisy settings. Recent research 

presented a robust method for speaker identification, 

employing a hybrid approach to recognize speakers from 

their speech with high efficiency, despite background noise 

and other challenges [11]. 

This paper unveils a novel approach for Automated 

Speaker Identification, named Dual-Tier Feature 

Extraction enhanced by Whale Optimization Algorithm 

(DTFWOA-ASI). At the heart of the DTFWOA-ASI 

framework is the strategic use of the mean median filtering 

method, which effectively removes noise from audio 

signals. Once the audio has been cleared of disturbances, 

the approach proceeds by feeding both MFCC and 

spectrogram data into the VGGish model. This model is 

grounded in a deep convolutional neural network, serving 

as the cornerstone for extracting key features. Furthermore, 

the Whale Optimization (WOA) algorithm is instrumental 

in fine-tuning the hyperparameters of the VGGish model to 

enhance its performance. For precise automatic speech 

recognition classification, the framework cleverly 

combines a long short-term memory (LSTM) function with 

a recurrent neural network (RNN), ensuring a dynamic and 

powerful analysis tool. The performance and reliability of 

the DTFWOA-ASI model have been rigorously verified 

across a variety of experimental setups, demonstrating its 

effectiveness in achieving its objectives.  

2. Related Works 

In [12], the author scrutinized the effectiveness of 

incorporating the MFCC characteristic, derived either 

directly from the DWT framework or through feature 

warping, in enhancing the precision of speaker verification 

systems based on identity vectors (a-vectors), especially 

under conditions laden with reverberation and noise. This 

stratagem has been applied to heighten the performance of 

forensic speaker verification (FSR) and for the assembly of 

legal proofs in judicial settings. In a subsequent research 

endeavor, [13] unveiled an innovative approach known as 

MLHF-SVM, a tri-layer hybrid methodology incorporating 

fuzzy logic with support vector machine (SVM) tactics. 

This model is intricately designed across three distinct 

levels: The feature extraction phase, the Pre-classification 

stage, and the Classification level. The revolutionary 

MLHF-SVM approach addresses the previously 

highlighted challenges by integrating FCM-driven 

authentication details with a tiered arrangement of SVM 

classifiers. To surmount the FCM system's tendency 

towards being ensnared in local minimums, an enhanced 

strategy combining a novel approach of natural exponential 

inertia weight particle swarm optimization (IEPSO) with 

FCM has been initiated for optimal results.  

In [14] the author presents a method employing a deep 

neural network (DNN) that merges the capabilities of a 

two-dimensional convolutional neural network (2D-CNN) 

and a gated recurrent unit (GRU) with the aim of speaker 

identification. This network's design utilizes a 

convolutional layer for reducing the size across both 

frequency and time dimensions, simultaneously pulling out 

characteristics from the voiceprints to facilitate quick 

processing by the GRU layer. Additionally, the GRU 

layers, which are stacked in a recurrent network, are adept 

at acquiring a speaker's unique acoustic characteristics. In 

another study, the author [15] was able to distinguish a 

phone call recording from various unforeseen sound clips 

by employing a support vector machine (SVM) model. 

Saleem and his collaborators [16] unveiled an innovative 

feature set reduction (FSR) approach that relies on 

gleaning language and accent information from brief 

spoken segments. To automate these tasks, they 

implemented a variety of standard and deep learning (DL) 

techniques. Among the new CNN-based frameworks 

implemented were the GMM-CNN and VGGVox, both of 

which made use of speech spectrograms for processing. 

When discussing DNN applications, an x-vector model 

was chosen, relying on DNN embeddings for its 

operations. The criticality of choosing the right filter 

features has been emphasized in [17]. It was found that 

combining filter feature selection with methods such as 

logistic regression, random forests, and KNN allows for 

the identification of essential acoustic characteristics. Also, 

research in [18] demonstrates that the inclusion of artificial 

noise and reverberation into training data significantly 

boosts the performance of DNN embedding systems. The 

study was based on the Cantonese segment of the NIST 

SRE 2016 evaluation (SRE16) and utilized speakers from 

natural settings. This inspired our team to conduct speaker 

verification experiments utilizing a database spontaneously 

generated under unregulated conditions.  

In [20], the author introduced an innovative hybrid 

approach for ASR, leveraging an ANN model based on 

speech signals. They effectively made use of the Mel-

frequency cepstral coefficients (MFCC) to extract features. 

These extracted features are then utilized as the input 

sample, which the Self-Organizing Feature Map (SOFM) 

processes further to diminish its dimensions. Ultimately, 

the MLP model equipped with Bayesian regularization 

facilitates the recognition process with this dimensionally 

reduced input. In a related development, the researcher 

identified as [21] has shown that it's possible to pull 

speaker embeddings in a manner that not only keeps the 

speaker's identity intact but also upholds the secrecy of the 

model owned by the service provider, all this made 

achievable through Secure Multiparty Computation. 
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Additionally, we present the possibility of achieving a 

reasonable balance between computational and security 

expenses. Our research complements existing studies by 

demonstrating the private implementation of verification, 

marking progress towards completely private ASR 

systems. Unlike previous studies that were conducted 

under controlled conditions based on certain premises, our 

experiments utilized a database compiled in an 

uncontrolled setting, yet we were able to maintain 

commendable levels of accuracy. 

3. The Proposed DTFWOA-ASI model 

In this paper, we introduce the new DTFWOA-ASI 

framework, focusing on speaker identification. This 

innovative model incorporates a combined development 

set comprising 7500 instances collected from five different 

speakers, with the audio recorded at a 16 kHz sampling 

rate. The dataset is split into training and validation parts, 

with 70% dedicated to training and the remaining 30% for 

validation purposes. Speech segments within this dataset 

vary, lasting from 3 to 5 seconds each. Initially, the 

DTFWOA-ASI framework employs the AMF method to 

eliminate noise from the audio signals. Subsequently, the 

VGGish model leveraged both the MFCC and 

spectrograms as input. The Whale Optimization Algorithm 

(WOA) is then leveraged for fine-tuning the 

hyperparameters within the LSTM-RNN model. In the 

final phase, the LSTM-RNN model is used as a tool for 

classifying automatic speech recognition (ASR) tasks. Fig 

1 illustrates the comprehensive methodology adopted by 

the DTFWOA-ASI strategy. 

 

Fig. 1. Overall Architecture of the DTFWOA-ASI 

Approach 

3.1. Median filter-based noise removal 

The median filter (MF) is renowned for its ability to 

maintain an image's sharpness while effectively removing 

noise. It replaces each pixel with the median value from its 

adjacent pixels, employing a 3x3 window for this purpose 

[22]. Among the conventional filters, it stands out as the 

most efficient in eradicating speckle noises. The process 

for developing the AMF is delineated in Algorithm 1. A 

key aspect is spatial processing, which ensures edge details 

are preserved and non-impulsive noises are eliminated via 

the adaptive MF. The upgraded model, known as the AMF, 

protects the detailed structures and contours within an 

image by adjusting the window size uniquely for each 

pixel. 

Algorithm 1: Pseudocode of AMF 

(1) Start by taking matrix “A”, which contains N 

columns and M rows as input. 

(2) Enhance the input matrix by adding a zero on its 

peripheries, resulting in a new matrix with N + 2 

columns and M + 2 rows. 

(3) Utilize a 3 × 3 size mask. 

(4) Initially, position the mask over the upper left corner, 

specifically the first column and row of the “A” 

matrix. 

(5) For every element covered by the mask, organize 

them in order from lowest to highest. 

(6) The median value, or the middle value, from this 

ordered list, is then used to replace the element at 

position A (1, 1). 

(7) Proceed by moving the mask to the next element. 

(8) Repeat steps 4 through 7 until every element within 

matrix “A” has been updated with its corresponding 

median value. 

3.2. Spectrograms and MFCC 

In this study, we've employed Spectrograms alongside Mel 

Frequency Cepstral Coefficients (MFCC) as the core 

features for speech analysis. Renowned for its 

effectiveness in a myriad of speech-related applications, 

MFCC's base lies in the cepstral analysis of speech signals 

[23]. This process splits the speech signal into segments 

that lasts for 25 ms, with a shift of 10 ms between each. 

Afterward, these segments undergo application to a 

Hamming window, followed by a Fast Fourier Transform 

(FFT). The output from the FFT is then directed through a 

Mel-scale triangular filter bank. The outputs from this filter 

bank then undergo further processing via MFCC, leading 

to the derivation of Discrete Cosine Transform features. A 

critical step includes the normalization of MFCC by 

making adjustments for mean and variance, to standardize 

the spectrogram features to achieve zero mean and unit 

variance. This standardization is accomplished through the 

analysis of the speech signal in the frequency domain, 

utilizing a Hamming window that functions with a 10 m 

step size and a segment length of 25 ms. The spectrogram 

is then normalized for mean and variance, ensuring the 

features possess zero mean and unit variance. 
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3.3. VGGish-based Feature Extraction 

The approach introduced employs the MFCC spectrogram 

for the Convolutional Neural Network's (CNN) input; this 

spectrogram, a bi-dimensional signal, encapsulates the 

speaker's unique identity markers. Concurrently, CNN 

ensures temporal and spatial translation is invariant, 

allowing for the capture of voiceprint characteristics within 

the spectrogram domain without halting the temporal 

sequence [24]. Consequently, the research propounds the 

utilization of both MFCC and the spectrogram as inputs 

into the VGGish system. Extracting audio features from 

sounds, particularly for purposes such as sound 

classification, event detection in sounds, and identifying 

speakers, involves a technique that leverages a method 

based on VGGish. This approach employs a pre-developed 

deep learning model titled VGGish, rooted in the VGG 

architecture, which is prevalently applied in categorizing 

images. Tailored for the extraction of features from audio 

files, VGGish is a variant of the convolutional neural 

network (CNN) setup [25]. It includes multiple 

convolutional layers succeeded by max-pooling stages, 

mirroring the structure used for image classification. 

Through this structure, VGGish transforms audio inputs 

into concise, fixed-length embeddings. These embeddings 

encapsulate substantial audio characteristics like pitch, 

timbre, and spectral properties in a succinct form as shown 

in Fig 2. Originally trained on an extensive compilation of 

audio snippets, the VGGish model masters universal sound 

representations. These learned weights are then utilized in 

extracting attributes from unfamiliar audio files. Before the 

processing by VGGish, audio signals are converted into 

mel-spectrogram formats, which is a technique for 

depicting time-frequency information of sound, especially 

effective in highlighting spectral characteristics. 

The essence of audio signals is distilled into a 128-

dimensional feature vector by the VGGish model. Learned 

across convolutional and pooling layers specifically trained 

on a vast array of audio segments, this feature vector 

encases high-level attributes of the sound input. Each of 

the 128 dimensions within the vector captures a unique 

aspect of the sound, encompassing elements such as 

spectral attributes, timbre, and pitch, presenting a compact 

yet comprehensive snapshot of the audio. Although 

pinpointing the precise significance of each dimension in 

the feature vector might be challenging, this representation 

becomes a valuable asset for several sound analysis 

purposes, including but not limited to classification, 

detection, and speaker recognition. With a standardized 

length (128 dimensions), the feature vector ensures swift 

processing and uniform representation for auditory inputs 

of varying sizes. This consistency renders the VGGish-

based extraction method highly effective for numerous 

audio analytical activities, offering a condensed yet 

insightful portrayal of sound content for a multitude of 

analytical tasks. 

 

Fig. 2. Extraction of Sample VGGish Features 

3.4. WOA-based Hyperparameter Tuning 

Developed by Seyedali Mirjalili and colleagues in the year 

2016, the Whale Optimization Algorithm draws its 

inspiration from the intricate social behaviors and hunting 

tactics employed by humpback whales [26]. This 

metaheuristic optimization algorithm is crafted to identify 

the most favorable solutions within continuous search 

spaces. Its application spans a wide array of optimization 

challenges.  

• Initialization Phase (Initialize Whales): 

Begin by setting up a group of candidate solutions, 

which act as potential answers to the optimization 

challenge. These solutions are similar to whales within 

the algorithm context. Every whale gets represented 

through a parameter vector within the search domain. 

• Exploration Phase: 

In the initial exploration phase, whales venture across 

the search area to identify areas full of potential. 

Whales adjust their locations by employing a strategy 

based on randomness. 

• Exploitation Phase: 

During the exploitation phase, whales become 

attracted to promising solutions identified in the 

exploration stage. They shift their positions in the 

direction of the globally best solution that has been 

discovered thus far. 

• Position Update: 

Designate the location of each whale in the sequence, 

known as Xi(t), at any given iteration t, with i 

representing the specific whale from a total count of N 

whales, and t marking the iteration as Xi(t), where 

i=1,2, ......, N (number of whales). For every whale, 

signified as i which ranges from 1 to N, symbolizing 

the total whales counted. The term t reflects the 

ongoing iteration. 
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The Eq. (1) is for updating positions within the Whale 

Optimization Algorithm are characterized as below: 

𝑋𝑖(t + 1)

= {
𝑋𝑖(𝑡) − 𝐴 .  𝐷                                              𝑖𝑓 𝑟1 < 0.5

𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝐴 . 𝑑𝑖𝑠𝑡(𝑋𝑖(𝑡), 𝑋𝑟𝑎𝑛𝑑(𝑡))   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (1) 

Where:  

A is the amplitude parameter controlling the search step 

size. 

D is the distance to the current best solution. 

𝑟1 is a random number in the range [0, 1]. 

𝑋𝑟𝑎𝑛𝑑(𝑡) is a randomly selected whale position. 

𝑑𝑖𝑠𝑡(𝑋𝑖(𝑡), 𝑋𝑟𝑎𝑛𝑑(𝑡)) is the Euclidean distance between 

𝑋𝑖(𝑡) and 𝑋𝑟𝑎𝑛𝑑(𝑡). 

• Boundary Constraints: 

Verify that the revised locations of the whales stay 

inside the acceptable searching area. 

• Termination Phase: 

The process of optimization comes to an end once it 

fulfills a specific criterion for termination. This could 

involve the process reaching its maximum allowed 

iterations or when the quality of the solution is 

deemed satisfactory. 

Within the Whale Optimization Algorithm (WOA), it's the 

role of the fitness function to assess the caliber of each 

possible solution, or "whale," within the searching arena. 

This fitness function varies based on the problem it's 

addressing and relies on the optimization task's goal. In the 

realm of speaker identification tasks, the fitness function is 

typically tasked with gauging the effectiveness of a 

specific hyperparameter combo for the classifier in 

accurately pinpointing speakers.  

Define f(X) as the evaluation metric, where in X 

symbolizes the array of hyperparameters (such as the 

structure of the classifier, the rates of learning, 

regularization parameters, and so forth). The evaluation 

metric, f(X), can be characterized by either accuracy or 

another appropriate measure that assesses how well the 

classifier, configured with a specific hyperparameters 

array, performs on a test dataset illustrated in Eq. (2). 

𝑓 (𝑋) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦                           (2) 

3.5. Classification using LSTM- RNN 

Utilizing the LSTM-RNN architecture, it serves as a 

classifier in the automated ASR system. This model 

comprises an input layer, followed by two hidden layers, 

and culminates with an output layer. Typically, one could 

describe a feedforward neural network (FFNN) in the 

following manner [27]. 

𝑌 = 𝐹( 𝑋, 𝜃 )                                    (3) 

Where X = {x1, x2, …, xn} refers to an input set, 𝑌 = {y1, y2, 

…, ym} denote the output collection, while F signifies an 

FFNN unit, and θ is indicative of the unit's parameter 

compilation. Within a classification framework, Y 

symbolizes a classification group as illustrated in Eq. (3). 

A Convolutional Neural Network (CNN) forms a subset of 

FFNN and finds its use in semantic segmentation, 

classifying images, and identifying targets. The distinctive 

feature of the CNN approach lies in its engagement of 

convolution and pooling stages, distinguishing it from 

other NN frameworks. These convolution stages are tasked 

with the extraction of local attributes from the provided 

dataset.    

𝑌𝐹 = 𝐶𝑜𝑛𝑣 (𝑋 ,  𝜃𝐶𝑂𝑁𝑉  )                                         (4) 

A Conv represents a singular convolutional layer, and YF 

denotes the subset of features that the convolutional layer 

extracts from X. In this layer,  𝜃𝐶𝑂𝑁𝑉  comprises the set of 

parameters as shown in Eq. (4). The purpose of the pooling 

layer is to condense local features, thereby emphasizing the 

importance of the feature. 

𝑌𝐶𝐹 = 𝑃𝑜𝑜𝑙 (𝑌𝐹𝑟  ,  𝜃𝑃𝑜𝑜𝑙  )                                    (5) 

Poo1 signifies a pooling layer. YCF is the terminology 

used for a group of condensed features, and we 

demonstrate the blend between CNN and the pooling layer 

deriving from YF.  𝜃𝑃𝑜𝑜𝑙  is the collection of parameters in 

the pooling layer as illustrated in Eq. (5). 

𝑌

= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐹𝐶(𝑃𝑜𝑜𝑙(𝐶𝑜𝑛𝑣(𝑋 ,  𝜃𝐶𝑂𝑁𝑉  ) ,  𝜃𝑃𝑜𝑜𝑙  ),  𝜃𝐹𝐶  ))                 (6) 

Regarding a module for classification, it incorporates a 

CNN consisting of FC and Softmax layers, and coupled 

with the anterior part of an RNN, it establishes a CRNN 

framework. The equation Y = F (X, θ) serves the function 

of classifying the features as shown in Eq. (6). 

FC is an abbreviation for a fully connected layer, while 

SoftMax represents a Softmax layer. An RNN stands as a 

distinct type of FFNN, primarily utilized in datasets 

possessing a sequential structure, for instances like speech 

recognition and machine translation, to name a few. 

Among the RNN techniques, LSTM-RNN is particularly 

prevalent due to its capacity to tackle the vanishing 

gradient dilemma through the use of memory cells that 

retain long-duration data. As a tactic for classification, the 

LSTM-RNN comprises both Softmax and FC layers. The Y 

= F (X, θ) of LSTM – RNN is as shown in Eq. (7). 

𝑌

= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐹𝐶(𝐿𝑆𝑇𝑀(𝑋 ,  𝜃𝐿𝑆𝑇𝑀  ),  𝜃𝐹𝐶  ))                   (7) 

The methodology we embrace employs a singular-output 

LSTM-RNN for the process of decision-making as 

delineated in Fig 3. Our application involves fixed-length 

inputs despite LSTMs not being bound by such constraints. 
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The utterances transform feature sets, serving as input for 

the LSTM-RNN. A frame of 25 ms is utilized. The amount 

of input coefficients matches the input layer size of the 

LSTM-RNN. Contrary to functioning as a frame classifier, 

the network operates as a sequence classifier. 

Fig. 3. Architecture of LSTM – RNN 

The process of making decisions taps into the use of a loss 

function alongside the ultimate hidden state found within 

the LSTM architecture. This model features a dual-layer 

structure, each layer being equipped with 300 nodes. 

Following this, a SoftMax layer gets integrated, mirroring 

the number of classes available. Within the hidden layers 

of the LSTM, memory blocks serve the purpose of 

retaining the current condition of the network by acting as 

a storage device. Subsequently, a SoftMax layer, identical 

in class count, is appended. The probability that a specific 

frame is attributed to a certain speaker is determined by the 

SoftMax layer output, though this likelihood isn't solely 

based on the current frame but also considers every frame 

that preceded it in the sequence. The system is capable of 

making out each output by taking into account inputs from 

both past and present. Upon obtaining access to the full 

file, it proceeds to compute outcomes. 

4. Experimental Results 

4.1.  Implementation Setup and Evaluation Metrics 

Within this segment, the DTFWOA-ASI model underwent 

a series of experimental validations to identify speakers 

through audio file analysis, considering a variety of 

aspects. The testing phase leveraged Python 3.6.5 on a 

system configured with an i5-8600K CPU, a 250GB SSD, 

a GeForce 1050Ti 4GB graphics card, 16GB of memory, 

and a hard disk of 1TB capacity. For validation, a 

benchmark Kaggle dataset comprising audio files was 

utilized [28]. The total samples for the test files have been 

documented in Table 1. Evaluating the DTFWOA-ASI 

model's efficacy included essential metrics like Accuracy, 

Precision, Recall, F-score, and Error Rate as shown in Eq. 

(8-11). When the model accurately identifies the positive 

category, this is known as a True Positive (TP). 

Conversely, a True Negative (TN) is observed when the 

negative class is correctly identified by the model. 

Instances where the model inaccurately predicts the 

positive group are labeled as False Positives (FPs). 

Similarly, when the model incorrectly identifies the 

negative group, these are termed False Negatives (FNs). 

The description of these measures can be established as 

follows: 

                                           𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
TP + TN

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
  

× 100                               (8) 

                                                        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

𝑇𝑃+𝐹𝑃
                                            (9)    

      𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

𝑇𝑃+𝐹𝑁
                                                   (10)    

𝐹 − 𝑆𝑐𝑜𝑟𝑒

=
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                             (11)    

Error Rate: An error rate is defined as the fraction of 

wrong answers observed in a method, network, or 

evaluation. It is often represented as either a percentage or 

a ratio, which contrasts the count of mistakes with the 

overall amount of observations or trials conducted. 

Table 1. Dataset Details 

Class Number of Samples 

Speaker 1 1500 

Speaker 2 1500 

Speaker 3 1500 

Speaker 4 1500 

Speaker 5 1500 

Total 7500 

 

Fig. 4 reveals the performance outcomes of the DTFWOA-

ASI strategy with a 70:30 TR/TS dataset. From the data, 

it's evident that the DTFWOA-ASI method marked the 

highest training and validation accuracy figures. 

Remarkably, it should be noted that the accuracy obtained 

through testing seems to exceed what is achieved during 

the training phase. Additionally, the figures for training 

and validation loss produced by the DTFWOA-ASI 

approach, with the same 70:30 TR/TS division, are 

depicted in Fig. 4. The results suggest that the DTFWOA-

ASI algorithm has been successful in reaching the lowest 

scores for both training loss and validation loss. 

Interestingly, the validation loss was demonstrated to be 

smaller than the training loss. 
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Table 2. Analyzing the Outcomes of the DTFWOA-ASI 

Method Across Various Metrics a 70:30 Split of the TR/TS 

Data 

Labels 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Error 

Rate 

(%) 

F- 

Score 

(%) 

Training Phase (70%) 

 
Speaker – 

1 
94.64 85.19 86.79 05.36 85.98 

Speaker – 

2 
93.57 86.27 80.00 06.43 83.02 

Speaker – 

3 
96.43 93.48 86.00 03.57 89.58 

Speaker – 

4 
96.79 88.73 98.44 03.21 93.33 

Speaker – 

5 
95.71 89.66 89.66 04.29 89.66 

Average 95.43 88.67 88.18 04.57 88.31 

 
Testing Phase (30%) 

 
Speaker – 

1 
98.95 95.67 97.30 02.25 97.73 

Speaker – 

2 
98.85 96.00 97.00 02.15 97.20 

Speaker – 

3 
98.75 95.10 97.00 02.58 97.53 

Speaker – 

4 
98.85 96.89 98.10 02.19 97.12 

Speaker – 

5 
98.75 96.44 97.27 02.00 97.40 

Average 98.83 96.02 97.33 01.05 97.39 

 

Fig. 5 showcases the confusion matrices, Precision-Recall, 

and ROC curves generated by the DTFWOA-ASI model 

across various sizes of Training (TR) and Testing (TS) 

data. It's illustrated that the DTFWOA-ASI model has 

outperformed in recognizing speakers. Table 2 depicts the 

overall performance in speaker identification of the 

DTFWOA-ASI model, utilizing 70% training data and 

30% testing data. The outcomes demonstrate the model's 

capability to accurately identify each category.  

 

Fig 4. Accuracy & Loss graph based on training and 

testing set 

 

Fig. 5. (a) Confusion Matrix based on TR set (b) 

Confusion Matrix based on TS set (c) Precision-Recall 

Curve (d) ROC Curve  

To showcase the enhanced performance of the DTFWOA-

ASI configuration, a comparative analysis was conducted. 

The outcomes of this study are depicted in Table.3 [11,27]. 

Additionally, Fig. 6 offers an accuracy comparison 

between the DTFWOA-ASI strategy and other 

contemporary frameworks. The examination shows that the 

framework combining MFCC-SOFM-MLP-GD recorded 

the lowest success rate, hitting a 96.92% mark. On the 

other hand, slightly improved performances were observed 

with the MFCC-SOFM-MLP-GDM, MFCC-SOFM-MLP-

BR, MFCC-FW, and the fusion methods, which 

respectively achieved accuracy scores of 97.05%, 97.62%, 

97.32%, and 97.81%. However, the proposed DTFWOA-

ASI approach that demonstrated the most impressive 

outcomes, achieving an elevated accuracy of 98.83%. 

Table. 3. Evaluating the Accuracy of the DTFWOA-ASI 

Method Versus Contemporary Techniques 

Models Accuracy (%) Error rate 

(%) 

MFCC-SOFM-MLP-GD 96.92 03.08 

MFCC-SOFM-MLP-GDM 97.05 02.95 

MFCC-SOFM-MLP-BR 97.62 02.38 

MFCC-FW 97.32 02.68 

FUSION 97.81 02.19 

Proposed DTFWOA-ASI 98.83 01.05 
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Fig. 6. Evaluation of an Accuracy of the DTFWOA-ASI 

Framework with existing methodologies 

5. Conclusion 

In the study documented here, a pioneering DTFWOA-ASI 

framework was constructed to authenticate speaker 

identification applications effectively. This cutting-edge 

DTFWOA-ASI mechanism initially applies the AMF 

approach for eradicating noise interferences in audio 

signals. Subsequently, it incorporates MFCC and 

spectrograms as input for the VGGish architecture. 

Following this, the Whale Optimization Algorithm (WOA) 

is deployed for refining the hyperparameters connected to 

the LSTM-RNN design. In the final stage, the LSTM-RNN 

architecture is harnessed as a classifier to facilitate 

automated speech recognition (ASR). The evaluation of 

the DTFWOA-ASI framework's efficacy was executed 

through a comprehensive series of tests. A comparative 

analysis underscored the superior performance of the 

DTFWOA-ASI framework over other contemporary 

methods, establishing its potential for robust ASR in real-

time Speaker Identification scenarios. Looking ahead, a 

combined approach employing fusion-based deep learning 

models might be explored to enhance the DTFWOA-ASI 

framework's performance further. 
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