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Abstract: Noise reduces the quality of medical images and raise the difficulties of diagnosis. Although the wavelet transform has already 
been used in medical noise removal applications extensively, there are many other multi-resolution analysis methods proposed in recent 
years for denoising. The main goal of this study is comparing the image denoising abilities of some of these methods with wavelet 
transform. In this paper, image denoising is implemented by a three-stage methodology. Effectiveness of the multiresolution analysis 
methodologies has been investigated for standard test images beside magnetic resonans, mammography and fundus images. Performances 
of the transforms are compared by using peak signal to noise ratio, mean square error, mean structural similarity index and feature similarity 
index. The best results are obtained by tetrolet transform for random and rician noises with the benchmark images. Medical image denoising 
performance of Tetrolet transform is compared to other multi resolution analysis methods for the first time in the literature with this study. 
It surpassed ridgelet and haar wavelet transforms while the noise ratio was low. On the other hand, it is seen that curvelet transforms are 
effectively produce the best results for all rates of noise on medical images. 
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1. Introduction 
The main argument of image processing, Fourier analysis, is 
inadequate to solve denoising problems because it is not able to 
determine the time of frequency changes. Wavelet transform (WT) 
was proposed to overcome this problem [1,2]. Although it is a 
popular method for processing medical images [3-6], it suffers 
from limited direction. 
Ridgelet transform (RT) uses angular windows instead of   
directional implementation of WT [7]. Although RT was used for 
denoising [8,9], it is not good enough for denoising medical images 
[10,11].  
Curvelet transform (CT) that uses curves instead of lines for 
windowing was improved [12-14]. Since CT is efficiently detects 
edge information of images, it is commonly used for denoising [15-
17]. Ma and Plonka [18], presented a review on CT including its 
evolution history, theory and its correlation to other multi-
resolution methods. CT is implemented on a variety of medical 
images for segmenting and denoising and had efficient results 
[19,20]. Raju and Kumar [21] also compared denoising 
performances of dual tree complex WT and CT on medical images 
and CT had better results.   
Tetrolet transform (TT) was came out as a new generation multi-
resolution method [22]. In this local analysis method, image 
regions are rearranged according to five different shapes called 
tetrominoes and haar WT is implemented on these regions. WT 
and TT are compared for denoising of benchmark images and 
realized that TT is superior than WT [23,24]. Ceylan and Öztürk 
[25], studied on optimizing the tetrominoe combinations in 
denoising algortihms and shortened the process time. There is no 
study which compares the denoising performance of TT with the 
other transforms (RT and CT) in the literature. 

Although the most frequent noise type of medical images is 
gaussian [26], MR images follow a rician distribution [27-28]. So, 
recent studies about medical image denoising focus on removing 
gaussian and rician noise [29-30].  
In this paper, we perform denoising on medical and standard test 
images. We removed the artificially implemented noise by using 
different multi-resolution analysis (MRA) methods and evaluated 
and compared the performance of each method.Thisis the first 
paper introducing Tetrolet transform into comparative medical 
image denoising systems. 

2. Materials and Methods 
MRA techniques in this study, are given in Section 2.1. Noise 
addition and thresholding methods are included in Section 2.2. 
Performance evaluation methods are given in Section 2.3. 

2.1. Multiresolution Analysis (MRA) Methods 

2.1.1. Wavelet Transform (WT) 

WT is the basis form of the MRA and has been implemented for 
many years. Generally, daubechies wavelets (especially db4) are 
preferred for denoising algorithms in literature [23, 31].  
 

a) 

 

 
b) 

Fig. 1. WT application to an image: (a) one level two-dimensional (2D) 
WT, (b) coefficient matrix of WT obtained by decomposition level. 
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We use db4 and also haar wavelet to the images to decide whether 
TT, as a haar WT based method, surpasses haar WT or not. WT 
coefficient matrix of an image is computed as implementing 
discrete form of WT to rows and columns as seen in Fig. 1(a). At 
the end of the WT decomposition level, an approximation and three 
detail components are obtained and located in the coefficient 
matrix as seen in Fig. 1(b). 
2.1.2. Tetrolet Transform (TT) 

Tetrolet transform (TT) is an effective, local and scalable 
algorithm. In order to implement TT, image matrix is first 
separated into blocks each of which include 4x4 pixels. If the 
image size cannot be divided by four, zero-padding should be 
applied. There are five shapes called tetrominoes which of each 
contain four pixels, are used for TT (Fig. 2. (a)). Four of them are 
chosen and the selected tetrominoes should be located into a 4x4 
sized pixel blocks. 117 different combinations are possible and one 

of them is given in Fig. 2. (b). After locating the tetrominoes, pixels 
of the 4x4 sized blocks are rearranged according to TT rules with 
the selected combination of tetrominoes and haar WT is applied on 
the reformed part of the image locally. This procedure is applied 
on whole 4x4 blocks in the image. At the end of the decomposition 
level, a coefficient matrix whose size is the same as the original 
image is obtained (Fig. 3). 
 

a) b) 

Fig. 2. Tetrominoes: (a) shapes of the tetrominoes, (b) a combination of 
tetrominoes for a 4x4 pixel block. 

 

 

Fig. 3. Decomposition steps of TT 
 

2.1.3. Ridgelet Transform (RT) 

Poor directionality of WT is overcame with RT by using an angle 
parameter. This method is successful at catching one-dimensional 
(1D) line singularities in multi-dimensional signals like images. 
RT is based on radon transform (RAT). So, it is possible to 
comprehend RT by understanding RAT. Mathematical 
background of RAT is given in [9, 13]. The finite RAT of an image 

( , )x i j  is given as follows where ,k lL   represents the lines and  
0y  is the local mean: 

 
                       (1) 
 

Finite RT is defined by performing 1D WT to matrix  [ ]kr l , 
column by column [8]. As another way, RT can be achieved in 
Fourier domain by using 2D fast Fourier transform (FFT) [11]. 
Initially 2D FFT is applied, after that Fourier coefficients are 
interpolated along lines which pass through the frequency space 
and 1D reverse FFT is calculated. Finally, 1D WT is applied and 
RT coefficients matrix of the image is obtained (Fig. 4). 
 

Fig. 4. RT application to an image. 

2.1.4. Curvelet Transform (CT) 

Curvelet transform (CT) that combines MRA with parabolic 
scaling is enhanced by improving RT. It has the ability of catching 
quadratic curves on images. In order to apply CT, firstly the image 
is decomposed into different scaled subbands. Then, each subband 
is windowed into squares and each square is renormalized [15]. 
Lastly, discrete RT is applied on each square (Fig. 5).  
 

Fig. 5. CT application to an image. 

There are two generations of CT. First one is efficiently used on 
images for denoising but its process takes a long time compared to 
second generation [14]. First generation CT (FGCT) based on RT 
is limited in digital application because of the geometry of ridgelets 
[18]. On the other hand, second generation CT (SGCT- fast 
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discrete CT) uses unequally-spaced FFT and wrapping (Fig. 6). 
Thus, fast discrete CT can be implemented faster, less redundantly 
and simpler than FGCT [14]. 
 

Fig. 6.Second generation (fast discrete) CT (SGCT) scheme. 
 

2.2. Noise Addition and Thresholding Methods 

In this study, random, gaussian and rician noise are applied on all 
the medical and test images.  
We applied random noise ( )rN   to the images with Eq. (2). Here, 
sigma  is the noise ratio which is an important factor to specify the 
amount of noise. 

*n rX X sigma N= +  
The gaussian distribution of a random variable x , could be defined 
as follows [30]: 

 
 (2) 

 
 

where ( , )x = −∞ ∞ , μ is mean and σ  is standard deviation. 
Additionally, if m  is the pixel intensity of the noisy image and s  
is the pixel intensity of noiseless image, while 0Γ represents the 
modified order of the first kind of Bessel function, the rician 
probability distribution for m  is given by [28, 30] 

 
 (3) 

 
In our study, we used three sigma  values for random noise and 
three signal to noise ratios (snr) for gaussian and rician noise. The 
main difference between random, rician and gaussian noise, is that 
gaussian noise is inversely proportional with snr value. So, if snr 
increases, noise ratio decreases for gaussian. 
A thresholding process is implemented on detail coefficients 
obtained by transforms. We used universal and hard thresholding 
methods. The threshold value T  in universal thresholding is given 
by: 
 

 (4) 
 

where M is the size of the image and 2σ is the noise variance. In 
hard thresholding, if absolute value of a coefficient is greater than 
the specified threshold value, it remains unchanged. However, if 
the value is less than the threshold, it is supposed to be zero: 
 

ˆ ( )( .* ( ( ) ))X sign Y Y abs Y T= >           (5) 
 
where X̂ represents the calculated coefficients, Y  states the noisy 
coefficients and T  is the threshold. 

2.3. Performance Measurement 

Each implemented process causes corruptions on images. The 
purpose of denoising algorithms is reconstructing images with 
minimum decay. In order to compare performances of the MRA 
methods, we have calculated PSNR, MSE, MSSIM and FSIM 
values for each image. 
 
 

2.3.1. Mean Square Error (MSE) 

The square of the numeric difference between two images is 
calculated. Lower MSE means cleaner image. While R and C
state number of rows and columns of images x  and y , MSE is 
denoted as: 

 
(6) 

 
2.3.2. Peak Signal to Noise Ratio (PSNR) 

It is an objective performance test which ensures to score lost 
information in dB. Higher PSNR means less decay. Considering x 
is the original image and y is the obtained image, PSNR is denoted 
as: 

2
10( , ) 10.log (255 / ( , ))PSNR x y MSE x y=       (7) 

 
2.3.3. Mean Structural Similarity Index (MSSIM) 

Recently, MSSIM has begun to be used extensively in image/video 
processing applications through its simple process as an alternative 
of MSE [32].  
SSIM combines three components called luminance distortion 
term ( , )l x y , contrast distortion term ( , )c x y  and correlation term 

( , )s x y  [33]. SSIM of the two images are calculated as given in 
Eq. (9), where   and   are the similarity maps. It can take values 
between [-1, 1] and if ( , ) 1SSIM x y = , it means the given images 
are the same. It is applied on local regions using a sliding window 
[34]. This procedure is implemented from top-left to bottom-right 
corner of the images till all image is operated. MSSIM is denoted 
as Eq. (10) while   is the number of windows: 
 

 
(8) 

 
 

(9) 
 

2.3.4. Feature Similarity Index (FSIM) 

Another novel performance evaluation method is FSIM. It is 
calculated by using phase congruence ( ( ))mPC x and a specified 
similarity measure ( ( ))LS x  while Ω states the whole image (Eq. 
(11)). Mathematical background could be find in [35]. 
 

 
 (10) 

 

3. Experimental Results 
In this study, we use five test images and ninety biomedical images 
which of size is 256x256. Firstly, they are corrupted by noise 
artificially. Then coefficient matrices are obtained for each image, 
separately. A thresholding procedure is applied on high frequency 
components and then images are reconstructed. Finally, the 
reconstructed and the original images are compared by the 
performance evaluation criteria (Fig. 7). 
Singh [23] came up with the idea of decreasing numbers of 
tetrominoe orders used for denoising could be shorten the 
operation time of TT and proposed to use 65 combinations of 
tetrominoes instead of 117. We also research whether 65 is an 
optimal number or not for our images. TT is implemented to the 
noisy images by using an increasing number of tetrominoe 
combinations from 1 to 117 for each noise ratio and PSNR values 
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are calculated. It is seen that using all combinations is unnecessary, 
because the PSNR takes a constant value when number of 
combinations increases as similar to [25]. So, optimal numbers of 

combinations are specified for different noise rates and given in 
Table 1. 

  

Fig. 7.Scheme of denoising process. 
 
Table 1 Optimal number of tetrominoes for benchmark images. 

 Noise Type and Ratio 

Type of the 
Images 

Random Gaussian Rician 

5 10 15 3 5 10 3 5 10 

Benchmark 30 30 30 65 65 65 37 37 40 

Liver MR 40 40 40 40 40 40 40 40 45 

Mammography 40 40 40 80 60 37 45 45 45 

Fundus 40 40 40 65 65 40 45 45 45 

 
Optimum decomposition level is determined as two for WT and 
one for TT. Optimal scale number is specified as four for both RT 
and CT. Sample denoised images for different kinds of noise, are 
given in Fig. 8. (a)-(d). 
Performance test results of benchmark images are given in Table 
2. The best results are in bold. Three different image sets are used 
to have an objective decision about medical image denoising 
performances of the MRA methods.  

a) 

b) 

 

c) 

d) 
Fig. 8.Sample images denoised by different methods. First column: WT 

with db4 wavelet, second column: WT with haar wavelet, third 
column:TT, fourth column: RT, fifth column: FGCT, sixth column: 

SGCT (a) Benchmark images for gaussian noise (snr=3); (b-d) Medical 
images (liver MR, mammography and retinal images, respctively). First 

row: for gaussian noise (snr=3), second row: for random noise 
(sigma=20), third row: rician noise (snr=15). 

 
Liver MR images were taken from Selcuk University Faculty of 
Medicine (Department of Radiology), mammography images  
were taken from MIAS database [36] and fundus images were 
taken from DRIVE database [37].The evaluation criteria are 
calculated for all noisy medical images to compare the 
performances of the methods. The averaged results of the image 
sets are given in Table 3-5 for each noise ratio, separately. The best 
results are in bold. 
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Table 2 Averaged PSNR, MSE, MSSIM, FSIM evaluation criteria values of five benchmark images. 

Type of Noise Noise Ratio Evaluation Criteria Ridgelet Tetrolet 
Wavelet Curvelet 

Haar Db4 First Generation Second Generation 

Random 

Sigma = 5 

PSNR 31,52 35,37 34,19 34,25 31,43 32,72 

MSE 45,91 17,79 22,95 22,73 67,5 35,84 

MSSIM 0,85 0,95 0,92 0,93 0,88 0,92 

FSIM 0,94 0,97 0,97 0,97 0,94 0,96 

Sigma = 10 

PSNR 26,75 30,53 29,1 29,32 28,5 28,21 

MSE 141,26 57,08 78,79 76,16 115,18 105,57 

MSSIM 0,71 0,87 0,83 0,84 0,82 0,84 

FSIM 0,88 0,94 0,92 0,92 0,9 0,92 

Sigma = 15 

PSNR 24,84 27,92 26,69 26,89 26,85 26,29 

MSE 223,67 107,78 154,09 145,61 161,24 169,7 

MSSIM 0,62 0,79 0,75 0,76 0,77 0,77 

FSIM 0,84 0,9 0,87 0,88 0,87 0,88 

Gaussian 

Snr = 3 

PSNR 20,32 21,01 21,13 21,28 21,73 21 

MSE 619,33 1177 805,62 709 454,02 536,45 

MSSIM 0,38 0,32 0,31 0,35 0,53 0,5 

FSIM 0,69 0,62 0,59 0,68 0,71 0,67 

Snr = 5 

PSNR 20,96 21,3 21,33 21,78 22,42 21,92 

MSE 537,78 673,84 641,62 553,74 392,06 442,04 

MSSIM 0,39 0,41 0,37 0,42 0,57 0,54 

FSIM 0,72 0,69 0,62 0,72 0,74 0,72 

Snr = 10 

PSNR 21,87 22,78 22,29 22,63 23,41 22,88 

MSE 441,47 432,63 495,54 428,4 320,38 362,97 

MSSIM 0,45 0,52 0,46 0,5 0,62 0,59 

FSIM 0,75 0,76 0,67 0,75 0,77 0,76 

Rician 

Snr = 3 

PSNR 32,59 37,12 38,28 38,26 33,54 33,28 

MSE 35,83 12,48 8,78 8,85 49,73 31,58 

MSSIM 0,88 0,97 0,99 0,99 0,91 0,93 

FSIM 0,96 0,98 0,96 0,96 0,95 0,96 

Snr = 5 

PSNR 31,51 34,94 34,19 34,26 31,42 32,68 

MSE 46,07 20,5 22,93 22,71 67,52 36,46 

MSSIM 0,85 0,95 0,97 0,97 0,88 0,92 

FSIM 0,94 0,97 0,92 0,93 0,94 0,95 

Snr = 10 

PSNR 26,67 29,74 29,07 29,25 28,41 28,03 

MSE 143,79 68,38 79,15 76,51 116,92 111,01 

MSSIM 0,71 0,88 0,92 0,92 0,82 0,83 

FSIM 0,88 0,94 0,83 0,84 0,9 0,91 
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Table 3 Averaged PSNR, MSE, MSSIM, FSIM evaluation criteria values of 30 liver MR images. 

   Evaluation Criteria Ridgelet Tetrolet 
Wavelet Curvelet 

 
Haar Db4 First Generation Second Generation 

R
A

N
D

O
M

 

Sigma=5 

PSNR 34,47 36,28 34,71 35,30 39,30 38,48 

MSE 24,64 8,79 12,91 11,22 8,14 10,09 

MSSIM 0,81 0,91 0,90 0,90 0,95 0,93 

FSIM 0,85 0,89 0,90 0,90 0,96 0,92 

Sigma=10 

PSNR 32,01 31,73 30,67 31,54 36,07 35,76 

MSE 44,88 25,49 33,98 27,84 17,53 19,45 

MSSIM 0,73 0,76 0,77 0,78 0,91 0,87 

FSIM 0,82 0,82 0,84 0,86 0,93 0,90 

Sigma=15 

PSNR 30,86 29,07 28,82 29,60 34,35 34,18 

MSE 58,72 47,69 55,08 44,47 25,73 27,56 

MSSIM 0,68 0,62 0,67 0,68 0,87 0,83 

FSIM 0,80 0,75 0,79 0,82 0,90 0,88 

G
A

U
SS

IA
N

 

Snr=3 

PSNR 27,16 26,88 27,42 28,26 33,14 29,08 

MSE 150,88 114,74 91,62 74,18 39,47 98,49 

MSSIM 0,56 0,52 0,58 0,60 0,82 0,68 

FSIM 0,78 0,69 0,74 0,78 0,88 0,81 

Snr=5 

PSNR 27,36 28,46 28,59 29,45 34,35 29,01 

MSE 134,68 73,12 69,33 55,27 31,03 91,78 

MSSIM 0,6 0,61 0,66 0,67 0,86 0,69 

FSIM 0,79 0,74 0,77 0,81 0,90 0,80 

Snr=10 

PSNR 28,29 30,54 30,13 31,06 35,66 30,08 

MSE 107,57 42,77 47,58 36,51 22,13 70,72 

MSSIM 0,65 0,72 0,75 0,76 0,89 0,74 

FSIM 0,79 0,80 0,88 0,85 0,92 0,83 

R
IC

IA
N

 

Snr=3 

PSNR 33,76 35,17 35,12 35,24 38,06 37,52 

MSE 28,06 12,46 11,41 11,13 10,42 16,7 

MSSIM 0,61 0,78 0,94 0,94 0,68 0,66 

FSIM 0,87 0,97 0,68 0,68 0,98 0,93 

Snr=5 

PSNR 31,83 32,09 30,94 31,16 34,08 36,08 

MSE 43,64 25,98 30,46 29,25 26,59 30,48 

MSSIM 0,52 0,71 0,91 0,91 0,58 0,57 

FSIM 0,86 0,97 0,56 0,57 0,96 0,93 

Snr=10 

PSNR 27,13 26,71 25,48 25,66 28,41 31,96 

MSE 131,08 95,13 113,67 108,68 100,24 107,22 

MSSIM 0,4 0,61 0,85 0,87 0,47 0,45 

FSIM 0,82 0,93 0,43 0,45 0,92 0,9 
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  Table 4 Averaged PSNR, MSE, MSSIM, FSIM evaluation criteria values of 30 mammography images. 

  Mammography 
Images 

Evaluation 
Criteria Ridgelet Tetrolet 

Wavelet Curvelet 

 
Haar Db4 First Generation Second Generation 

R
A

N
D

O
M

 

Sigma=5 

PSNR 37,06 39,30 37,79 39,14 40,64 39,31 

MSE 13,29 6,69 9,64 7,28 5,73 9,07 

MSSIM 0,87 0,91 0,90 0,91 0,95 0,93 

FSIM 0,90 0,90 0,91 0,92 0,97 0,94 

Sigma=10 

PSNR 34,56 34,98 34,95 36,02 37,78 36,36 

MSE 24,11 18,97 19,51 16,67 10,85 15,38 

MSSIM 0,79 0,76 0,80 0,81 0,91 0,87 

FSIM 0,86 0,82 0,85 0,88 0,95 0,92 

Sigma=15 

PSNR 33,06 31,5 33,38 33,63 36,06 33,13 

MSE 34,27 44,32 30,68 31,3 16,58 32,43 

MSSIM 0,74 0,65 0,7 0,71 0,89 0,82 

FSIM 0,84 0,83 0,8 0,84 0,94 0,89 

G
A

U
SS

IA
N

 

Snr=3 

PSNR 28 22,96 25,54 25,98 31,14 28,21 

MSE 111,94 436,47 270,46 235,53 54,1 105,06 

MSSIM 0,53 0,25 0,58 0,58 0,72 0,63 

FSIM 0,78 0,53 0,3 0,32 0,89 0,87 

Snr=5 

PSNR 29,1 24,75 27,21 27,73 32,24 28,95 

MSE 86,34 262,91 162,5 153,58 41,76 88,35 

MSSIM 0,6 0,32 0,39 0,4 0,77 0,67 

FSIM 0,81 0,6 0,63 0,65 0,9 0,87 

Snr=10 

PSNR 30,55 27,58 29,85 29,8 33,64 29,99 

MSE 62,83 135,75 81,47 86,89 29,90 69,35 

MSSIM 0,64 0,37 0,51 0,52 0,81 0,71 

FSIM 0,81 0,57 0,7 0,73 0,91 0,88 

R
IC

IA
N

 

Snr=3 

PSNR 35,44 36,78 36,82 37,03 37,95 38,04 

MSE 18,83 11,95 11,8 11,28 10,47 14,58 

MSSIM 0,63 0,71 0,95 0,96 0,67 0,66 

FSIM 0,92 0,98 0,66 0,67 0,98 0,95 

Snr=5 

PSNR 32,92 33,25 32,96 33,37 34,12 36,16 

MSE 33,47 27,42 29 27,16 25,35 28,28 

MSSIM 0,54 0,61 0,93 0,93 0,57 0,56 

FSIM 0,9 0,96 0,55 0,56 0,97 0,95 

Snr=10 

PSNR 27,74 27,65 27,8 28,15 28,42 31,35 

MSE 110,37 102,47 102,19 99,87 94,4 103 

MSSIM 0,45 0,51 0,86 0,89 0,48 0,47 

FSIM 0,87 0,91 0,44 0,46 0,95 0,92 
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Table 5 Averaged PSNR, MSE, MSSIM, FSIM evaluation criteria values of 30 retinal images. 

  Evaluation Criteria Ridgelet Tetrolet 
Wavelet Curvelet 

 Haar Db4 First Generation Second Generation 

R
A

N
D

O
M

 

Sigma=5 

PSNR 35,21 38,46 37,14 37,47 38,22 37,45 

MSE 19,69 9,9 13,46 12,49 9,9 11,96 

MSSIM 0,85 0,92 0,95 0,95 0,92 0,92 

FSIM 0,93 0,96 0,9 0,91 0,95 0,95 

Sigma=10 

PSNR 32,44 34,58 34,1 33,13 35,82 34,42 

MSE 37,29 25,69 28,49 26,4 17,27 23,63 

MSSIM 0,77 0,82 0,9 0,88 0,89 0,87 

FSIM 0,88 0,91 0,84 0,82 0,93 0,92 

Sigma=15 

PSNR 30,68 31,93 32,14 32,16 34,19 33,09 

MSE 55,96 49,32 47,4 46,1 24,73 33,01 

MSSIM 0,72 0,71 0,86 0,87 0,87 0,86 

FSIM 0,85 0,84 0,78 0,79 0,91 0,9 

G
A

U
SS

IA
N

 

Snr=3 

PSNR 22,07 21,47 21,96 23,08 26,53 24,3 

MSE 518,24 1092 672,54 595,76 149,99 300,61 

MSSIM 0,3 0,13 0,54 0,51 0,68 0,57 

FSIM 0,59 0,39 0,24 0,26 0,81 0,73 

Snr=5 

PSNR 24,9 22,33 23,12 24,28 27,59 26,92 

MSE 228,45 625,81 454,17 385,96 117,19 138,71 

MSSIM 0,5 0,2 0,58 0,58 0,72 0,7 

FSIM 0,72 0,46 0,32 0,34 0,83 0,79 

Snr=10 

PSNR 26,38 24,46 25,51 26 28,92 28,35 

MSE 153,86 332,99 274,93 229,84 85,93 96,79 

MSSIM 0,65 0,3 0,66 0,66 0,76 0,75 

FSIM 0,79 0,56 0,44 0,46 0,85 0,8 

R
IC

IA
N

 

Snr=3 

PSNR 35,96 39,76 39,57 39,73 39,73 37,44 

MSE 16,54 7,03 7,53 7,24 7,02 11,96 

MSSIM 0,88 0,94 0,97 0,97 0,94 0,92 

FSIM 0,94 0,97 0,93 0,94 0,96 0,94 

Snr=5 

PSNR 34,94 38,05 36,82 37,09 37,7 36,88 

MSE 20,94 10,9 14,51 13,61 11,12 13,96 

MSSIM 0,85 0,92 0,95 0,95 0,92 0,92 

FSIM 0,93 0,96 0,9 0,91 0,95 0,94 

Snr=10 

PSNR 30,99 32,81 32,43 32,51 33,27 32,8 

MSE 51,88 37,49 41,78 40,57 30,7 39,56 

MSSIM 0,76 0,81 0,9 0,91 0,87 0,85 

FSIM 0,89 0,92 0,82 0,83 0,93 0,91 

4. Conclusion 
In this study, denoising ability of four MRA techniques are 
compared. Although the PSNR values are so close to each other 

for snr=3 for Gaussian noise in Table 2, it is quite obvious that 
FGCT and SGCT visually outperformed the other transforms in 
Fig. 5.(a). It means traditional procedures are not adequate enough 
for evaluation. Results are corroborated with new-generation 
criteria (MSSIM, FSIM). On the other hand, TT has 
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overwhelmingly better results than the other transforms for random 
and rician noisy test images. So, it is clear that TT and CT are 
suitable methods for denoising studies of benchmark images. 
The cleanest results are obtained by FGCT for medical images, 
visually (Fig.5.(b-d)). Moreover, the almost all best quantita-tive 
results are also achieved with FGCT.  So, the best method for 
denoising the medical images is FGCT. On the other hand, TT 
surpasses RT, Haar WT and SGCT for almost all rates of rician 
noise for both liver MR and fundus images (Table 3, 5). In addition 
to that, TT gets better results than db4 WT and FGCT as long as 
the noise rates of liver MR images reduce. Considering that MR 
images follow a rician distribution noise, TT is more efficient than 
the others. Lastly, although SGCT has a short process time, FGCT 
achieves better results than it for almost all types of noise and 
images.    
TT is applied on biomedical images for the first time in literature 
and it can be an alternative to haar considering the results. 
Although the performance of TT decreases in high noise rates and 
takes much more time to perform, generally it has the drop on haar 
WT. As a future study, different thresholding methods can be 
applied to improve the performances of the transforms. TT and 
FGCT have the longest-running processes, so a time-comparative 
study between these transforms could be realized. 
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