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Abstract: Mostly the industrial control for dynamic system is the challenge in recent research. The problem is too complex 

due to non-linear and dynamic nature. To tackle this problem popular model is chosen as Functional link Artificial Neural 

Network (FLANN). However, the training is performed with kernel based least mean square (K-LMS) algorithm. Further three 

different kernels are experienced for the proposed model. Finally, the mixed kernel is proposed for LMS based training to the 

FLANN model. It is capable of performing at a higher level for faster convergence while maintaining its robust characteristics. 

However, because of its useful function approximation properties, it has been selected as an alternate method for identifying 

nonlinear systems. The proposed ANNs model has been demonstrated to be applicable to the modelling of complicated 

dynamical systems. A comparison is made among different kernel approached as well as with the earlier methods. The results 

of various strategies, such as Sliding Mode, RBFN, and k-LMS-based FLANN, have been compared in a performance analysis. 

Keywords: Dynamic System, Control, Identification, RBF, FLANN, Artificial Neural Network. 

1. Introduction 

In the field of engineering, one of the major challenges is the 

identification of unknown complex systems [1]. Many 

different statistical and cutting-edge approaches have been 

developed to address the issue of system identification. As a 

result of its versatility, the adaptive filter has become a go-

to tool for addressing a wide range of statical system 

identification issues [2, 3, 4, and 5]. Kernel adaptive 

filtering, which emerged at the intersection of machine 

learning and statistical signal processing, has become one of 

the most popular areas of research in adaptive signal 

processing in recent years. The adaptive filter's coefficients 

are continuously and automatically adjusted to optimize the 

model's performance. Adaptive filters can improve accuracy 

by transforming raw data into a format with more, or perhaps 

infinitely more, dimensions. The least mean square (LMS) 

approach, developed by Windrow and Hoff, is widely used 

for identifying nonlinear systems since it produces a mean 

square error [6, 7]. The goal is to develop a kernel least-

squares model that acts as an adaptive filter to identify and 

control of nonlinear systems. Errors in estimates can be 

adjusted by adjusting filter coefficients according to the 

input vector and the desired output. Further more research is 

done on least mean M-estimate (LMM) algorithm and the 

hyperbolic secant LMS (HSLMS) algorithm and introduced 

by Zhou et al., applied in various contexts which are two 

examples of LMS algorithms with modifications that result 

in the M-estimation function [8, 9, 10, 11]. In the past 

decade, researchers have focused their attention on single-

kernel adaptive filters, testing and analyzing their 

effectiveness in both theoretical and experimental settings 

on a wide range of real-valued nonlinear system 

identification issues. Due to its ease of use and reliability, 

the KLMS algorithm developed in has gained a lot of 

popularity in recent years. Recently, adaptive techniques 

based on a complex kernel have been presented for 

identifying nonlinear systems whose inputs and outputs take 

on a complex value is presented in [12,13]. An MVC-based 

cost-function-driven sparsity-induced KAF algorithm for 

nonlinear sparse system identification (SSI) problem is 

presented in [14]. In this work a sliding mode control method 

is used to estimate the parameters of nonlinear dynamic 

system for control application. Sliding mode control is 

presented as a means of synthesizing an adaptive learning 

algorithm within a neuron whose weights are generated by 

first-order dynamical filters whose parameters may be 

altered, so allowing for the characterization of dynamical 

processes in terms of such neurons. It is demonstrated that 

the sliding mode control method has quick convergence and 

robustness qualities [15]. The well-known Widrow-Hoff 

delta rule [16] is a least-mean-square learning error 

reduction procedure that, under certain conditions, imposes 

a linear, asymptotically stable dynamics on the underlying 

discrete-time error dynamics. The authors analyzed that the 

Delta Rule may be revised using concepts from quasi-sliding 

mode control [17]. This work demonstrates that a weight-

switching adaptation method imposes a linear-learning error 

dynamics that is asymptotically stable over time. Recently, 

an alternative perspective on neuron-based adaptive learning 

has been given, which takes into account a distinct type of 

issues described on analogue adaptive neurons. Adaptive 

weight adjustment in a continuous time frame, as opposed to 

discrete time frames, is required in this context. Sliding 

mode control has been used to the problem of designing 

learning algorithms for adaptable analogue neurons in 

continuous time [15]. Time-varying neuron weight 
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adaptation using a continuous time sliding mode control 

technique is briefly discussed in [ 17]. Since the resulting 

sliding mode control solution is inherently dynamic, it has 

inspired the introduction of a new type of neuron, the 

"dynamical filter weights neuron," in which the weights are 

all implemented as first-order, linear, time-varying 

dynamical systems. By allowing weight adjustment methods 

to be done on the time-varying 'gains and 'time constants' of 

the weights, the 'dynamical filter weights' simplify the 

expression of dynamical processes in terms of a set of 

dynamical-filter-weights neurons. The superior performance 

of NNs taught with different paradigms for approximating 

nonlinear functions [17] is due to their capacity to learn by 

optimizing an appropriate error function (multilayer 

perceptions, radial basis functions, etc.) have become 

increasingly popular in the past decade have proven to be an 

effective method for identifying and controlling systems in 

a learning environment. For the control of nonlinear plants, 

sliding mode control approach has proven to be superior in 

a variety of industrial applications. Sliding mode control 

method is used to control a servo motor as a nonlinear 

system control application is presented in [18]. This method 

is used to create dynamic equations that can be controlled in 

real-time. Sliding mode control (SMC) is a robust control 

mechanism, however it has problems due to chattering, 

which limits its practical uses. Authors have proposed 

different sliding mode control approaches for control 

problems. A Neural network based adaptive sliding mode 

control method with the combination of radial-basis-

function is presented in [19]. Similarly, another approach 

called as non-singular fast terminal sliding mode control 

approach is developed for a class of nonlinear systems with 

unknown uncertainty bounds is introduced in [20, 21]. 

 

Various Nonlinear system identification and control related 

models are presented in [22-27]. For the challenging 

problem space of identifying and controlling nonlinear, 

dynamic systems, a robust Fusion Kernel based Functional 

link Artificial Neural Network model (K-FLANN) is 

developed. The objective is to create a kernel least mean 

square model that can identify and control nonlinear systems 

by learning as an adaptive filter. A collection of filter 

coefficients that can be altered based on an input vector and 

the desired result controls estimation errors [28,29]. The 

proposed method has been demonstrated to accurately identify 

and control nonlinear systems. As a result, here are the most 

important contributions of this paper. 

 

[1] The construction of Least mean square learning algorithm in 

a neuron is first proposed using a sliding mode control 

method. 

[2]  The weights are made up of first-order dynamical filters 

with adjustable weights, this makes it possible to represent 

dynamical processes as a set of these neurons. 

[3] After parameterization, the model can be used in a control 

application. 

[4]  A fusion kernel based on (Gaussian kernel and a cosine 

kernel) is verified to identify the nonlinear dynamic model. 

[5] Furthermore, the fusion kernel method is applied to a 

Functional link neural Artificial network to form a Robust 

algorithm for nonlinear dynamic system identification and 

control model. 

The rest of the paper is organised as follows: 

The framework of the revised Sliding Mode Model is 

discussed in Section II. Radial basis function neural network 

is discussed in greater detail in Section III. In section IV, 

Procedure of kernel least square algorithm is discussed. The 

methodology of the Proposed Mixed Kernel based 

Functional –link Artificial neural network is presented in the 

section V. Results are discussed in the section VI. Section 

VII concludes the work. 

2. Architecture of the   Modified Sliding 

Mode Model 

First-order, linear, dynamic filters with tunable weights have 

been implemented using models of a single neuron [30]. It 

is defined as: 
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Fig.1 The Process of dynamic filter weight neural network 

Chattering is a known issue with sliding mode controls that 

can make it difficult to predict nonlinear signal parameters, 

to address this, the authors propose a new parameter 

adjustment technique that works in the following iterative 

fashion. 
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The trigonometric function as ))(tanh( ne  is considered as 

the function for the machine learning model to develop the 

FLANN. It is robust and sensitive to noise; 𝛽 is considered 

as the control parameter and smoothen the system input. 

Differential equations are used to compute the derivatives 

y1, y2, ......, ym, which are then used to build the filter. The 

n-th filtered output is then calculated as 
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3. Radial Basis Function Neural Network Model 

The RBF model's basic structure is depicted in Fig.1. It has 

three layers: input, hidden, and output. 

 

Fig.2 Architecture of basic RBF model 

Form Fig.2, input vector be  𝑃𝜖𝑅𝑀0  and process of   the 

mapping to RBF, 𝑇 = 𝑅𝑀0 → 𝑅1 is mentioned as:  

𝑦 = ∑ 𝑊𝑖

𝑚1

𝑖=1

𝑘𝑖(‖𝑋 − 𝑋𝑖‖)

+ 𝑏                                                         (8) 

where  𝑚1=4 neurons within the hidden layer, 𝑃𝑖𝜖𝑅𝑀0 𝑎𝑟𝑒  

denoted as RBF centers. 𝑊𝑖  is the weight connecting 

between the hidden layer and output neuron. 

3.1   Gaussian Kernel 

Because of its adaptability [16], the Gaussian kernel is 

chosen 

𝑘𝑖(‖𝑋 − 𝑋𝑖‖)

= exp (
−‖𝑋 − 𝑋𝑖‖2

ϔ2
)                                          (9) 

Here, the Gaussian kernel dispersion is denoted by the ϔ. In 

order to calculate distances, the kernels are employed. 

Where the Euclidean norm is considered. An effective 

distance matrix is employed in the procedure. 

 

3.2    Cosine Kernel  

The cosine kernel is represented as: 

𝑘𝑖(‖𝑋, 𝑋𝑖‖) = 𝛼1𝑘𝑖1(𝑋. 𝑋𝑖)

+ 𝛼2𝑘𝑖2(‖𝑋 − 𝑋𝑖‖)                      (10) 

4. Procedure of Mk-LMS Algorithm 

Using a kernel function, the input can be turned into a space 

with many more dimensions. The adaptive filtering 

technique known as Kernel Least Mean Square (KLMS) can 

be thought of as a feature space implementation of the Least 

Squares (LS) algorithm and is performed in real time online 

[28]. At instant k, the input data vector is assumed to be 

𝑥(𝑛) ∈, 𝑅 and the target response is represented by 𝑑(𝑛) ∈

𝑅. The algorithm's core idea is to use a Mercer's kernel to 

transform the input data set 𝑥(𝑛) into a high-dimensional 

feature space. Finally, least-squares methods are utilized to 

formulate  𝑑(𝑛). Mercer's kernel is defined as a positive-

definite function where k is a constant. 𝑘: 𝑥 × 𝑥 ⟶ 𝑅. 
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Fig.3 Block diagram representation of kernel identification 

process. 

The block diagram representation of the kernel learning 

process is depicted in Fig.3, To train a linear adaptive system 

to reduce mean square error, Widrow invented the LMS 

algorithm in 1960, which is both simple and elegant. For a 

given quadratic cost function 𝐽𝑊(𝑛). where n is the time 

index and w is the tap-weight vector. With accurate 

measurements of the gradient vector  ∇𝐽𝑊(𝑛)  and a suitably 

chosen step-size parameter 𝜂 , it is proven that the weight 

vector updated by the steepest-descent algorithm converges 

on the best Wiener solution on average. To update the weight 

vector, the LMS algorithm does not rely on the actual 

gradient, but rather on an instantaneous estimate calculated 

as ∇𝐽𝑊(𝑛) = −2𝑒(𝑛)𝑢(𝑛)  leading to the following 

stochastic gradient descent update rule. 

𝑤(𝑛 + 1)

= 𝑤(𝑛) + 2 𝜂𝑒(𝑛)𝑢(𝑛)                                           (11) 

 

Implementing the linear LMS algorithm given by (2) in the 

kernel feature space is the main notion. For this let us assume 

that map the point x(n) in input space to ∅(𝑥(𝑛))  in the 

kernel feature space with < ∅(𝑥(𝑛)), ∅(𝑥(𝑚)) ≥=

𝑘(𝑥(𝑛)), (𝑥(𝑚)), where {<.,. >} in kernel Hilbert space 

stands for the inner product. For the most popular kernels, 

this feature space transformation is nonlinear, and the 

resulting feature space may have unlimited dimensions, 

depending on the kernel utilised. Using this space, we may 

define the weight vector ϒ such that y(n) = (ϒ (n), ∅ (x (n))). 

ϒ (n) is ϒ at time n, desired response is represented as d(n). 

Input vector for the nonlinear filtering technique is depicted 

in Fig.3. When u(n) is changed into u(n), it becomes a feature 

vector with an endless number of elements. whose 

constituent parts are added together by the infinite 

equivalent weight vector in different dimensions. This 

nonlinear filter has only a single weight layer, but it is a 

universal approximator [32] due to the theoretically 

unlimited size of the feature space. Now, due to the linear 

structure for cost function 𝐽ϒ(𝑛) = 𝐸[𝑑(𝑛) − 𝑦(𝑛)]2  can be 

w.r.to ϒ. Using the stochastic instantaneous estimate of the 

gradient vector, this may be calculated in the same way as in 

(10), leading to 

ϒ(n + 1)

= ϒ(n) + 2 𝜂𝑒(𝑛)∅𝑥(𝑛)                                             (12) 

The convergence, speed, and amount of mis adjustment of 

the adaptation algorithm are all determined by a step-size 

parameter, 𝜂, which is the same as before [31,32]. The one 

exception here is that in (3), ϒ is in the infinite dimensional 

feature space, making direct updating for ϒ impossible. 

ϒ(n)

= ϒ(0) + 2𝜂 ∑ 𝑒(𝑖)∅(𝑥(𝑖))   

𝑛−1

𝑖=0

                                    (13) 

For simplicity, let's set ϒ (0) = 0 (therefore e (0) = d (0)). The 

ultimate form of ϒ (n) is as follows: 

ϒ(n)

= 2𝜂 ∑ 𝑒(𝑖)∅(𝑥(𝑖))   

𝑛−1

𝑖=0

                                                       (14) 

This is where we'll use the kernel technique. With the input 

∅ (u(n)), and the output ϒ (n) from (14), the solution at n is 

given as   

       

𝑦(𝑛) =< ϒ(n), ∅(𝑥(𝑛)) ≥  ∑ 𝑒(𝑖) < ∅(𝑥(𝑖)) ,

𝑛−1

𝑖=0

∅ (𝑥(𝑛))

>         

=   𝜂 ∑ 𝑒(𝑖)𝑘(𝑥(𝑖), 𝑥(𝑛))   

𝑛−1

𝑖=0

(15) 

The equation (15) is known as Kernel LMS algorithm. 

 

5. Methodology of the Proposed Algorithm  

 

Single layer neural networks can be thought of as an 

alternate strategy to deal with the difficulties posed by multi-

layer neural networks. However, due to its linear character, 

the single layer neural network frequently fails to map large 

nonlinear issues. Consequently, it is extremely difficult to 

use a single-layer feed-forward artificial neural network to 

solve such issues. In order to bridge the gap between the 

simplicity of a single-layer network and the complexity and 

computational demands of multi-layer networks, the 

FLANN design is developed. Fig.4 depicts the FLANN 

design, which uses functional expansion of the input vector 

to avoid linear mapping by employing a single-layer feed-

forward neural network. Pao proposes FLANN, a unique 

single-layer ANN structure that can produce arbitrary-

complex decision regions by producing nonlinear decision 

boundaries. The functional link performs an operation on a 

portion of the complete pattern, producing a family of 

linearly independent functions, and then evaluating those 

functions with the pattern as input. FLANN is used because 

it speeds up learning and requires less computing power. 
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Fig.4. Architecture of Functional link Artificial Neural 

Network (FLANN) 

5.1    Learning Algorithm 

 It is possible to describe the method for learning in [33]. For 

the sake of argument, let us say X is a 𝑁 × 1-dimensional 

input vector representing N data points, and k represents the 

kth data point is given by 

𝑋𝑘 = 𝑥𝑘 , 1 ≤ 𝑘 ≤ 𝑁                                      (16)   

 

Because of this nonlinear expansion, the final matrix has 

𝑁 × 𝑀 dimensions, with N being the number of entries. 

Since each element is nonlinearly expanded into M new 

elements, the resulting matrix contains N by M rows and 

columns. The equation presented in [10, 14] is used to do the 

functional expansion of the element 𝑋𝑘 using power series 

expansion. 

 

𝑠𝑖

= {
𝑥𝑘𝑓𝑜𝑟𝑖 = 1

𝑥𝑘
𝑙 𝑓𝑜𝑟1 = 2,3, … 𝑚

                                                            (17) 

   

where l = 1,2,3, … M. For trigonometric expansion, the  

 

{

𝑥𝑘𝑓𝑜𝑟𝑖 = 1

tanh(𝑙𝜋𝑥𝑘) 𝑓𝑜𝑟𝑖 = 2,4, . . 𝑀

tanh(𝑙𝜋𝑥𝑘) 𝑓𝑜𝑟𝑖 = 3,5, . . 𝑀 + 1
                                             (18) 

 

If  𝑙 =1, 2, 3... M. The expanded components of the input 

vector E are denoted by the 𝑁 × (𝑀 + 1)  matrix S. There is 

no bias in the input Consequently, the S matrix has 

dimensions of 𝑁 × 𝑄, where Q = M+2, as the extra unity 

value is used to pad the matrix. Let's say that the elements of 

the weight vector, W having Q element. The results are 

displayed 

 

 Y

= ∑ 𝑠𝑖

𝑄

𝑖=1
wi                                                                       (19) 

In matrix notation the output can be, 

                                 

Y
= S. 𝑊𝑇                                                                                           (20) 

The e(n) error signal at the n-th iteration can be calculated as 

 

e ( n)  
= d( n) −  y(n)                                                           (21) 

 

The cost function at the kth iteration, denoted by n, is as 

follows: 

ξ(n) =
1 

2
∑ 𝑒𝑙

2

𝑝

𝑙=1

(n)                                                               (22) 

where P is the total number of nodes in the output stage. 

Least-squares methods can be used to revise the weight 

vector, as     

                                                                              

  w(n + 1)

=  w(n) −
µ

2
Δ(n)                                                      (23) 

where   Δ 𝑛 is an instantaneous estimate of the gradient 𝜉 (𝑛) 

of with respect to the weight vector 𝑤(𝑛). 

𝛥 𝑛 =  𝜕𝜉/𝜕𝑤 = −2𝑒 𝑛 𝑦 (𝑛)/ 𝜕𝑤   

=  −2𝑒𝑛𝜕 [𝑤 (𝑛) 𝑠(𝑛)]

/ 𝜕𝑤                   ( 24) 

Substituting the value of (21) in (22) we get  

w(n + 1)

= w(n) − μe( n) s(n)                                        (25) 

Where 𝜇  is the step-size parameter that can modify the 

convergence field. Each function in the functional expansion 

of a mean-square function is linearly independent and 

satisfies the orthogonality condition since trigonometric 

functions are used to describe mean-square functions. When 

studying a function with two variables, the outer product 

terms paired with the trigonometric polynomials produce 

superior outcomes. 

5.2 Mixed Kernel (Gaussian +Cosine) 

Algorithm 

The literature claims that the cosine distance matrix 

outperforms Euclidean distance measuring [15] as stated as: 

 

𝑘𝑖(𝑃. 𝑃𝑖) = 𝑎1𝑘𝑖1(𝑋. 𝑋𝑖)
+ 𝑎2𝑘𝑖2(‖𝑋. 𝑋𝑖‖)                           (26) 

 

Where 𝑘𝑖(𝑋. 𝑋𝑖) and 𝑘𝑖2(‖𝑋. 𝑋𝑖‖) are the cosine Euclidean 

distance for 𝑎1and𝑎2 .In equation (4) the values of 𝑎1and 𝑎2 

can be considered as a dynamic adaptive variable and given 

as: 

                𝑎1

≡
|𝑎1(𝑛)|

|𝑎1(𝑛)| + |𝑎2(𝑛)|
                                         (27) 
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  𝑎2

≡
|𝑎2(𝑛)|

|𝑎1(𝑛)| + |𝑎2(𝑛)|
                                                         (28) 

 

Were the mixing weight formulating as,  

𝑎1(𝑛)+𝑎2(𝑛)=1. Therefore, the new kernel formula is: 

 

 𝑘𝑖(𝑋. 𝑋𝑖)

=
|𝑎1(𝑛)|𝑘𝑖1(𝑋. 𝑋𝑖) + |𝑎2(𝑛)|𝑘𝑖2(‖𝑋. 𝑋𝑖‖)

|𝑎1(𝑛)| + |𝑎2(𝑛)|
       (29) 

 

The 𝑛𝑡ℎ iteration mapping for a specific epoch can be 
denoted as: 

   𝑦   = ∑ 𝑊𝐿(𝑛)

𝑚1

𝐿=1

𝑘𝐿(𝑋. 𝑋𝐿)

+ 𝑏(𝑛)𝑚                                        (30) 

Where  𝑊𝐿(n)= specific weights at each iteration and 

b(n)=bias, at each iteration adapted. The cost function ɛ(n) 

calculated as: 

ɛ(𝑛) = ɛ(𝑎1(𝑛), 𝑎2(𝑛))

=    
1

2
(𝑦̂(𝑛)

− 𝑦(𝑛))
2

                         (31) 

    New equation with updated weight and bias:   

  𝑊𝑖(𝑛 + 1)

= 𝑊𝑖(𝑛) + ἠℯ(𝑛)𝑘𝑖(𝑋. 𝑋𝑖)                                      (32) 

 

  𝑏𝑖(𝑛 + 1)

= 𝑏𝑖(𝑛) + ἠℯ(𝑛)                                                          (33) 

6. Result And Discussion 

Comparisons of results have been made between FLANN, 

RBF, and sliding mode are presented in this section.  A 

nonlinear sinusoidal signal is considered for example and its 

response is presented. 

 

Fig.5.Sinusoidal signal for nonlinear system identification 

 

From the Fig.5 the input response of the nonlinear signal is 

verified. The total number of samples taken is 600. The 

learning process of the system indentation includes training 

and testing. Initially 70% of the samples are used to train the 

model. After the model learn the system behavior then 

testing is implemented to verify the superiority of the 

system. 

 

Fig.6. Output response of the nonlinear plant 

The output response of the nonlinear signal is depieced in 

Fig.6. The idea is to design a perfect model that can track the 

nonlinear models output or in other words the parameters of 

the given nonlinear plants must be estimated. To verify, 

three nonlinear model has been developed. Initially sliding 

model control model is designed and the tracking output as 

actual verses estimated output depicted in Fig.7. From the 

figure sliding mode model learned perfectly and provided a 

good tracking result. The parameter of the nonlinear signal 

has been estimated by the sliding mode model. 

 

Fig.7. Identification of nonlinear plant with sinusoidal 

signal Using sliding mode 

 

Fig.8 Identification of RBF nonlinear plant with estimated 

output 
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After verifying the sliding mode model Radial basis function 

model is designed. The actual verses estimated output is seen 

from the Fig.8. from the figure the parameters of the 

nonlinear model are estimated properly. 

 

Fig.9 Sinusoidal signal-based FLANN for nonlinear system 

identification 

After verifying the RBF model Another model is designed 

as FLANN model. In Fig.9 the actual verses estimated result 

is depicted. The model has a perfect tracking ability as 

compare to the RBF model. The actual response is sheen in 

blue line and FLANN estimated response is seen from the 

red line. 

 

Fig.10. Proposed K-LMS based FLANN model for 

nonlinear system identification 

 

Fig.11 Error between actual and estimated model. 

 

 

Fig.12.  Cost function between actual and predicted model 

 

Fig.13 Error plot between actual and estimated model 

Finally, a Kernel -Least Mean Square based FLANN model 

is designed to estimate the parameter of nonlinear signal. 

From figure Fig.9 it is visible that the model perfectly tracks 

the actual model’s output. As compare to the previous 

models the estimated output is closer to actual output, from 

figure 11 and 14 the error between actual estimated model is 

depicted. Mean spurred error is considered as a stranded 

parameter to verify the superiority of the proposed model. 

The MSE plot is seen from the Fig.12.From the plot the 

errors are gradually decease with time. Table 1 compiles the 

mean squared errors (MSE) of all the cases. Specifically, it 

demonstrates how well the proposed evaluation scheme 

works. 

Table 1: Performance of Nonlinear models  

Models  MSE 

SLIDING MODE 0.0127 

FLANN 0.1003 

RBFN 0.0201 

Proposed Method (k-

LMS_FLANN) 

0.0012 

 

From the Table 1 the comparison of different model is done 

based on MSE. The sliding mode model achieve 0.0127 of 

MSE and the FLANN model achieve 0.1003 MSE.As 

compare to sliding mode model FlANN model is less 

accurate. RBFn model achieves 0.0201 MSE. As compare to 

FLANN model RBF model has less MSE and more accurate 

model then FLANN for parameter estimation. Similarly, 
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from the comparison between Sliding mode control model 

and RBFn model, the Siding mode control model has less 

MSE error and it is best as compare to FLANN and RBF 

model in case of parameter estimation of nonlinear systems. 

Finally, after applying Kenel least mean as mixed kernel 

method to the FLANN, the model become robust and there 

is drastically improvement. In table 2 the performance of 

proposed kernel is compared against different kernel and the 

result is analyzed. 

Table :2 Performance different kernel methods 

Kernels Methods  MSE 

Cosine Kernel  0.035 

Gaussian Kerel  0.052 

      Proposed Mixed Kernel 0.0012 

 

Initial stage cosine kernel is applied to the proposed 

nonlinear model. Where the model achieves 0.035 MSE, 

then the gaussian kernel is applied to the model and archives 

0.52 MSE. From this observation it is clear that 

implementing a kernel can made a model robust and 

accurate. Finally, a fusion kernel is designed by combine 

cosine kernel with gaussian. The proposed kernel is named 

as Mixed kernel. So, a mixed kernel is proposed with 

FLANN as a nonlinear model for identification and control 

of nonlinear plants. The result achieve by the Proposed K-

LMS FLANN is better in compare to existing base models 

as well as different kernel models. The MSE of the model is 

0. 0012.From the comparison it is proved that the proposed 

model is efficient and has a good parameter estimation 

ability from other nonlinear models. 

7. Conclusion 

A significant challenge in modern control systems is the 

detection of nonlinear plants with complicated structures. 

For this a perfect model for estimating the parameter of the 

nonlinear plant has to be developed. In this work initially a 

sliding mode control model is taken to verify its ability tom 

estimate the parameters of a nonlinear sinusoidal signal. 

Later RBF and FLANN models are verified. Finally, a 

Kernel least mean square Functional Link Artificial Neural 

network model as a nonlinear model is proposed. A stranded 

parameter as MSE is taken for the comparison between 

different model. From the comparison it is proved that 

proposed K-LMS FLANN which archive 0.0012 MSE is 

better compare to the base models. This model is accurate 

and can be applicable in complex nonlinear system 

identification problems. In future more complex nonlinear 

systems, Practial nonlinear and dynamics plant shall be 

verified to the propose model. There is room for 

experimentation and refinement in the FLANN method. 

Additionally, a recurrent neural network model can be used 

to evaluate the ANN. 
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