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Abstract: The retinal vascularization morphology can be an important cue for various eye pathologies. Past studies have focused on 

exploring complex image processing and enhancement methods to improve vessel segmentation and detection for screening eye diseases. 

This research explores the potential of the Particle Swarm Optimization (PSO) method for optimizing segmentation of vessel images 

without requiring expensive data or computing resources. This optimization framework searches for important hyperparameters for the 

efficient training of deep-convolutional U-Net and SegNet on a small fundus dataset. The comparison results showed that U-Net achieves 

better segmentation of fundus photographs with mean overlap measures of 0.74-0.83 than its competing model. A comparison with the 

state-of-the-art methods showed considerably high classification accuracy and sensitivity scores ranging from 0.93-0.98 were achieved by 

the proposed networks. This study identified the insufficiency of the employed data augmentation strategies as the main factor responsible 

for the poor segmentation sensitivity of 0.52-0.63. Future works include optimizing network parameters and adopting effective image 

preprocessing processes to improve the detection results. 
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1. Introduction 

Recent progress in understanding vasculature-related diseases, 

known as the risk factors for many noncommunicable diseases 

(NCDs), such as cancer, diabetes, hypertension, congestive heart 

failure, and stroke, is focused primarily on investigating 

microcirculation disturbance [1, 2]. Diabetic retinopathy (DR), 

hypertensive retinopathy, retinal vein and artery occlusions, and 

wet age-related macular degeneration (AMD) are among the NCD-

related vascular diseases affecting the eyes [2, 3]. These vascular-

related eye pathologies can result in total blindness if not properly 

managed. These diseases change vascular network morphology 

and physical features, which are used as key traits and markers for 

diagnosing and understanding disease progression [4]. These 

characteristics are also used in designing treatment and prevention 

interventions. 

The standard imaging modality uses fundus photographs to 

examine the optic disc, retinal vessels, and macula in the vitreous 

cavity to identify anatomic signs of abnormal vasculature within 

the inner retina when screening for vision-threatening diseases [5]. 

This physical examination is performed based on real-time video 

streaming or recorded photographs; the process is manual, time-

consuming, highly subjective, and depends on the skills and 

experience of the medical experts [3, 5]. General physical network 

characteristics of the vasculature, such as vessel shape, tortuosity, 

and size, are commonly associated with pathologic development in 

the study of disease processes. These investigations emphasized 

the need for in-situ microenvironment visualization to 

systematically reveal the underlying pathophysiological 

mechanism and uncover predictive biomarkers for disease 

progression [6]. Clinical suspect is confirmed using contrast dye 

injection to visualize functional microvascular networks [7]. 

Therefore, the procedure lacks patient acceptance. 

Many researchers in this domain have explored artificial 

intelligence (AI) techniques for instance classification or disease 

prediction based on the input image. Recent efforts have included 

identifying fundus vessel regions for understanding retinal disease 

progression using deep learning-based segmentation approaches 

[4, 8-11]. The studies in [4, 8, 10-12] employed convolutional-

based deep learning networks, the state-of-the-art methods, for 

fundus vessel segmentation. Unlike the one-stage detection model, 

i.e., YOLO and its variants and single-shot detector (SSD), 

convolutional-based segmentation networks can effectively detect 

sparse and small objects [13]. This research is important for 

assisting medical professionals in their diagnosis based on vascular 

morphology and changes, hence increasing their confidence in 

making decisions. To improve the detection accuracy of deep 

learning models, [8, 10-11] proposed using a complex image 

preprocessing process to enhance visualization contrast before 

extracting relevant image features for learning tasks. Image 

enhancement and filtering techniques can improve visual quality, 

but they also accentuate noise and introduce artifacts and 

distortions in the image [14], producing over/underenhanced 

results. In addition, these preprocessing operations can lead to high 

memory storage and computing resource demands. Therefore, it is 

challenging to obtain a large amount of high-quality data to 

guarantee the learning results of efficient deep-learning models. 

Similarly, Singh et al. [4] suggested an elaborate preprocessing 

process to extract small patches randomly from the original images 

to enlarge the training dataset while preserving the image quality. 

Shi et al. [12] introduced image quality assessment and strict 

selection criteria to overcome varying image quality from 

combining different public datasets for generalization. 

Considering the importance of this practical issue, an innovative 
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solution is to use optimization algorithms, such as Particle Swarm 

Optimization (PSO), Genetic Algorithm (GA), and Bayesian 

Optimization (BO), to increase a deep learning model's 

generalization performance when trained on a limited and inferior-

quality data [15-16]. The ability of optimization to enhance fundus 

segmentation performance has yet to be extensively explored, 

especially given the practical, real-world issues of limited labelled 

imaging data such as fundus photographs. Such an important goal 

may be achieved by exploiting the effective convergence of PSO, 

whose superiority was proven in [15], in training different 

segmentation models from scratch to detect vessel pixels in a 

fundus image. The outcomes can be useful in understanding and 

predicting the clinical progression of vascular-related diseases 

without the expense of expensive medical data and computing 

resources. 

2. Materials and Methods 

The following subsections describe the dataset used for the study 

and preprocessing of the data, the segmentation models, and the 

strategy adopted to optimize the network learning efficiency. All 

the image processing and analysis procedures were implemented 

with program codes written in MATLAB R2023a and executed on 

a single GPU (Tesla K80, 256 GB RAM). 

2.1. Retinal Vessel Dataset and Image Preparation  

Unlike signal or image classification or prediction tasks, 

segmentation is a more complex and computationally expensive 

process that requires meticulously annotated ground truths to 

classify each image pixel. The annotated ground truth data, created 

through a human-annotated process, can be difficult to obtain. The 

fundus image quality can be compromised by different factors, 

including poor illumination, motion artifacts, and glare, so at least 

two trained professionals typically carry out the manual process to 

increase confidence in their decision. Changes in retinal blood 

vessels are among the most common characteristics for detecting 

vascular malignancies. Despite different resources of retinal 

photographs being available, these datasets usually comprise a 

small number of samples of different image qualities, which are 

insufficient for training deep learning models. For simplicity and 

reproducibility, this work used only the Retinal Images vessel Tree 

Extraction (RITE) dataset [17] downloaded from Kaggle 

repository to validate the proposed strategy. This public dataset 

contains one hundred original fundus images and their ground-

truth (GT) masks labeled with the location of blood vessels; some 

examples are shown in Fig. 1. 

Fig. 2 shows the overall data flow diagram. The original RITE 

dataset contained 80 training images, while the validation and 

testing sets contained 10 images each. The original data are color 

(RGB) PNG images with dimensions of 512 × 512 pixels, and their 

ground truth mask consists of 2D image pixels with grayscale 

intensities. Some of these images and their masks contain segments 

of recursive and repetitive pictures that appear at the corner of the 

photograph, as illustrated in the second image of Fig. 1. Thus, 

image cleansing was carried out, wherein each image and the 

corresponding mask were manually screened for their presence and 

blocked using manual manipulation (covering the regions with 

black pixels) in Fig. 3(a). The processed images were saved in 

PNG format. Since this is a two-class problem, binary masks were 

generated by setting the object pixels in the image with grayscale 

values smaller than a threshold of 0.01 as white with a value of “0” 

and the rest as black with a pixel value of “1”. 

For stricter testing, twenty images from the original training set 

were randomly chosen and moved to the test set, giving a 

training/validation/testing dataset split of 60/10/30 %. Since this 

dataset is small, image augmentation techniques have been 

adopted to improve the model generalization ability by enriching 

the training and validation datasets. The employed augmentation 

methods included horizontal (Hor.) and vertical flips and four 

angle rotations, ± 10° and ± 20°, respectively, which produced six 

additional images from the original fundus image, as shown in Fig. 

3(b). All images (original and augmentation) were resized to 128 

× 128 × 3 using an automatic program written in MATLAB. The 

same geometrical transformation is applied to their corresponding 

 
Fig. 1. Example of RITE training images (top) and the corresponding 

ground truth mask (bottom). 

 

Fig. 2. The overall data workflow. 
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mask. This size was chosen because it can fit into the GPU used 

for training. The preprocessed data were fed into the chosen 

networks’ input layer for learning the segmentation features. 

 

2.2. Segmentation Models  

This study considered fully convolutional U-Net and SegNet 

models for vessel segmentation tasks. These networks use the 

encoder-decoder architecture shown in Figs. 4 and 5 to learn the 

pixel-level feature representations from scratch based on the input 

image. The encoder depth of the proposed network was arbitrarily 

chosen to be five, producing 70-layer and 73-layer networks for U-

net and SegNet, respectively.  

In the encoder stage, the input image of dimensions 128 × 128 × 3 

is reduced by maxpooling as it passes through five dense blocks 

(shown on the left of the figures) to extract various features; then, 

localization information is restored in the decoding stage. There is 

a difference in the image restoration technology used in these 

techniques. U-Net adopts skip connections to aggregate feature 

maps in the encoding stage with the decoding section using depth 

concatenation (DepCon) layers to recover spatial information, 

whereas SegNet uses maxpooling indices (or convolution 

processes) to upsample low-resolution feature maps during the 

decoding stage. Their encoder and decoder networks are connected 

through bridge blocks, as shown in Fig. 4, and pooling operations 

(pooling-unpooling), as shown in Fig. 5. The last convolutional 

layer in the decoder stage is fed into the Softmax layer for two-

class labeling. The output is a binary-class mask. Also indicated in 

the figures is the last ReLU layer with 64 channels output, whose 

activations are chosen for comparison and discussion in section 3. 

2.3. PSO-based Network Training   

The learning efficiency of convolutional networks depends on the 

appropriateness and combination of the chosen training 

hyperparameters. Several training hyperparameters can be 

adjusted, but the most significant parameters are the training 

optimizer, number of epochs, mini-batch number, and initial 

learning rate. The traditional means of determining these values are 

using a manual grid or random search method, which starts with a 

random initial point in the search space before each parameter 

value is manually adjusted based on the resulting model training 

and validation results. This method is tedious and time-consuming, 

and it requires knowledge of the search objective and its changes 

as the search moves toward the space where optimal 

hyperparameters may be located.  

 An efficient and more probable method is to incorporate 

optimization techniques in searching for these variables. PSO was 

shown in [15] to perform remarkably well with comparatively 

faster convergence for the same solution quality compared to other 

commonly used methods. This method improves deep learning 

networks’ learning efficiency with considerably lower computing 

time. This work focuses on the search for the optimizer type (χ), 

epoch number (α), mini-batch size (β), and initial learning rate (ξ). 

The process began with twenty particles (i.e., solution points) 

randomly launched into the four-dimensional search space, whose 

limits are defined as follows: the χ varies from 1 to 3 (value ‘1’ 

represents Adam, ‘2’ denotes Sgdm, and ‘3’ is RMSProp), the α 

value range is between 50 and 200,  the lower and upper limits of 

β and ξ are 32 and 1e-4, and 256 and 1e-1, respectively. Each particle 

is allowed to iterate five times around its position based on the 

results of the objective function defined in (1). This function is 

made up of the sum of errors in training (100-AT) and validation 

accuracies (100-Av) and training time (t). Different penalty weights 

are assigned to each factor, and the validation error with a weight 

factor of 103 dominates the penalty cost. The solution that yields 

the best-fitted value (i.e., lowest function value) among its 

previous performance, Pbest, and best global performance among 

its neighbor, Gbest, is chosen as the reference point for the 

subsequent iteration, where the position and velocity of the 

particles are stochastically updated toward the corresponding 

point. The termination criteria are either when there is no 

improvement in the evaluated validation accuracies for over 20 

iterations or when the maximum number of iterations is reached. 

This iterative optimization process is summarized in Fig. 6. 

 
(a) Image cleansing and mask binarization 

(b) Augmented images 

Fig. 3. (a) RITE images cleansing and (b) the produced augmented images. 

vessels (class 1) 

background (class 0) 

 

 
 

Fig. 4. U-Net architecture and concatenation process for feature maps 

reconstruction. 

 

 
 

Fig. 5. SegNet architecture and transferred pool indices process for upsampling. 
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𝑓(𝐴𝑇 , 𝐴𝑉 , 𝑡) = (100 − 𝐴𝑇)102 + (100 − 𝐴𝑉)103 + 𝑡/100  (1) 

 

3. Results and Analysis 

The best hyperparameter solutions from the iterative process in 

Fig. 6 for U-Net and SegNet are χ = RMSProp, α = 166, β = 81, 

and ξ = 1e-4, and χ = Sgdm, α = 84, β = 52, and ξ = 0.1, respectively, 

using the RITE dataset. The networks in Figs. 4 and 5 optimized 

based on these settings were evaluated using an independent 

testing set that has no role in the training and validation process. 

The effectiveness of their detection is examined by measuring the 

area of overlap between the ground truth mask and their predicted 

mask. For this purpose, the intersection over union (IoU), also 

known as the Jaccard index, Dice similarity coefficient (DS), and 

pixel classification accuracy, precision, sensitivity, and specificity 

metrics shown in (2) - (7) are used to assess the performance of 

binary semantic segmentation networks. The correctness of the 

segmented background and object (i.e., vessel) pixels evaluated on 

all test images are shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GT ∩ Pred and GT ∪ Pred represent the intersection and union of 

the ground truth (GT) and predicted (Pred) masks, respectively. TP 

and TN represent the correct classification of vessel and 

background pixels, respectively. FN is an incorrect classification 

of vessel pixels as background, while FP is the opposite of FN. 

 The mean and standard deviation (SD) of the IoU, DS, and other 

metrics in (4)-(7) across all test images in Fig. 7 are calculated and 

tabulated in Table 1. The average inference time recorded during 

the testing stage for U-Net and SegNet is given by 0.01 and 0.013 

seconds, respectively. The best and worst-performing images 

identified based on the average highest and lowest IoU and DS 

performance (combining the background and object detection 

results) are plotted in Figs. 8 and 9, respectively. The boundaries 

of the GT mask and the mask predicted by the optimized models 

are also shown in the figures. The GT and predicted masks of the 

worst-performing image are compared for the strongest activations 

chosen from the output of the ReLU layer of the networks 

(indicated by an arrow in Figs. 4 and 5) in Fig. 10. The total search 

and training process involving 220 search iterations took 73 and 22 

hours to complete in optimizing the weights of U-Net and SegNet, 

which contained 124.3 million and 0.67 million parameters, 

respectively. Meanwhile, Table 2 compares the performance of our 

optimized networks against several other researchers using 

 

Fig. 6. PSO optimization flow diagram. 

 

 

 

 

Fig.7. IoU and DS scores for (a) UNet and (b) SegNet evaluated on the 
test set. 
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(b) SegNet 

𝐼𝑜𝑈 (𝐺𝑇, 𝑃𝑟𝑒𝑑) =  
|𝐺𝑇 ∩ 𝑃𝑟𝑒𝑑|

|𝐺𝑇 ∪ 𝑃𝑟𝑒𝑑|
 (2) 

𝐷𝑆𝐶 (𝐺𝑇, 𝑃𝑟𝑒𝑑) =  
2(𝐺𝑇 ∩ 𝑃𝑟𝑒𝑑)

𝐺𝑇 + 𝑃𝑟𝑒𝑑
 (3) 

𝐴𝐶𝐶 =
(𝑇𝑃 + 𝑇𝑁)

(𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁)
 (4) 

𝑆𝐸𝑁𝑆 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (5) 

𝑆𝑃𝐸𝐶 =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 (6) 

𝑃𝑅𝐸𝐶 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (7) 

 

Table 1. Detection performance of the optimized U-Net and SegNet 

Model 

Performance metrics (mean ± SD) 

IoU DS ACC SPEC SENS PREC 

U-Net 0.74±0.03 0.83±0.02 0.94±0.01 0.98±0.01 0.63±0.09 0.81±0.08 

SegNet 0.7±0.02 0.79±0.03 0.93±0.01 0.98±0.01 0.52±0.08 0.80±0.07 
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different strategies.   

4. Discussion 

This study is motivated to overcome one of the common challenges 

in machine learning of scarce labeled data by enhancing the 

learning performance of deep learning networks using the PSO 

method. The method is included in training the employed U-Net 

and SegNet to improve the models' generalization ability in 

segmenting blood vessels from fundus images by optimizing the 

best hyperparameter settings. This strategy is less complex and 

offers a faster solution to the problem than state-of-the-art 

techniques, such as combining different image enhancing and 

preprocessing algorithms, and training set enlargement processes. 

The current experiment adopted a stricter data split ratio compared 

to the previous works in Table 2 to test the robustness of the 

proposed optimization framework and evaluate sufficiency of the 

augmentation methods. Table 1 shows consistent segmentation 

accuracy, precision, and specificity performance, ranging between 

0.8 and 0.98 for the networks used. The recognition of fundus 

background pixels is much greater than that of blood vessels, as 

shown in Fig. 7, giving an acceptable overlap area of IoU and DS 

>0.7 achieved by U-Net and SegNet. A comparison with the 

existing studies in Table 2 also shows that the PSO-incorporated 

training process produced good model generalization ability 

comparable to that of recent studies adopting different techniques, 

with segmentation accuracy and specificity scores reaching 0.98. 

However, sensitivity scores that evaluate correctness in detecting 

vessel location (TP) in these tables, ranging between 0.52 and 0.63, 

suggest room for improvement in the models' vessel detection 

performance. This study shows that the U-Net in Fig. 4, whose size 

is approximately 185 times larger than that of the employed 

SegNet, adopted depth concatenation technology that achieved 

noticeably better segmentation scores, especially with higher 

sensitivity, as shown in Table 1, than did the pooling technology.  

Both the proposed networks are shown in Fig. 8 to perform well 

on images with good contrast and detail. On the contrary, noisy 

fundus image with poor-quality details of thin and tiny vessels in 

Fig. 9 prevents the precise localization of vessels, rendering poor 

detection sensitivity. Based on the highly activated regions (white 

pixels) of the activation map of this input image in Fig. 10, it is 

possible that the encoder-decoder layers in U-Net in Fig. 4 learned 

color, contrast, and edge as among the important features. In 

 
Fig. 8. The best performing image (index 4), its GT, and mask 

predicted by U-Net and SegNet. 

 

 
 

Fig. 9. The worst performing image (index 5), its GT, and predicted 

masks by U-Net and SegNet. 

 
 

Fig. 10. (Left) Worst performing image (index 5) and the GT mask, 
(center) highest activation channel, (right) GT and predicted masks 

overlaid on the original image. 

 

Table 2. Comparison with the recent studies on fundus vessel segmentation performance 

Study Strategy 

Average performance metrics 

ACC SPEC SENS PREC 

Girard et al. [8] 

Contrast-wise global enhancement and local density 

normalization 
0.957 0.98 0.78 - 

Ma et al. [10] Spatial activation and Gaussian pixel enhancement 0.95 0.98 0.69 - 

Morano et al. [11] Global enhancement and Gaussian filtering 0.96  0.98 0.79 - 

Proposed PSO optimization in network training 0.93 -0.94 0.98 0.52-0.63 0.8-81 
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contrast, SegNet focuses more on vessel morphology, producing a 

grainy activation map in subplot (b) of the figure. While both 

models performed inferiorly on the poor contrast and low 

illumination images, SegNet was comparatively more effective 

than the U-Net in locating the vessels under these conditions. The 

employed SegNet has a comparatively smaller size (~0.67 million 

learnable), so the Sgdm technique was found to help the model 

generalize better by lowering the convergence speed to reduce the 

possibility of underfitting. Hence, prompting a larger initial 

learning rate of 0.1 being chosen during the optimization process 

to increase the model learning rate. Similarly, the same reasoning 

applies to U-Net. The RMSProp optimizer, which uses adaptive 

learning rates to update the network, is superior in model training 

speed. Therefore, a large mini-batch sizes of 81 and a small initial 

learning rates of 1e-4 were identified as the best combination for 

training the large U-Net model.  

Although search optimization and augmentation strategies have 

been adopted here to improve model generalizability, the even 

better results of the previous studies in Table 2 in locating vessel 

regions is attributed to two main factors: (1) the use of image 

contrast enhancement techniques to improve vessel visualization, 

and (2) the use of rich datasets by combining images from other 

public sources, namely the AV-DRIVE, INSPIRE-AVR, and high-

resolution fundus (HRF) datasets. The improved image quality and 

quantity (i.e., rich variability in retinography) prevent network 

overfitting to the background, which is the dataset's most 

prominent class. 

In addition, due to the limitations of the computing memory and 

resources of our workstation, this study reduced the original image 

size by a scale of 4 during training to meet the memory 

requirements. Although it reached a fast inference speed (~0.01 s) 

during testing, this operation, compounded with augmentation 

processes, causes geometric distortion and loss of information in 

the transformed image shown in Fig. 3(b), where circular regions 

of interest are visibly reduced, and fine capillary vessels appear 

blurred or disappear, especially after rotational augmentation. 

These processes reduce image spatial resolution, and obscure 

image detail information, thus negatively impacting the detection 

task. Previously Ma et al. [10] overcame a similar problem using a 

novel patch-stitch method by segmenting the original image into 

several regions to retain the information in the original image 

without compromising the image quality to fit into the employed 

computing system. This operation also enriches the training 

dataset, producing promising accuracy using less computing 

memory. This strategy may be further explored in training to 

improve segmentation performance. 

The PSO optimization strategy proposed here is a simple, cost-

effective, and reproducible alternative to improve segmentation 

accuracy in fundus vessel detection for better understanding and 

prognosis of retinal diseases. This automatic process took 

approximately 1-3 days to complete using our workstation without 

manual human intervention, making it a potential solution for 

optimizing the model's learning efficiency. However, several 

limitations have been identified in the adopted approach. First, 

despite the larger training data size from physical transformations 

using image flipping and rotational techniques, the produced 

images are not loss-free, and most images are degraded in quality 

through the procedure. Second, even though some of the fundus 

images are noisy, low-quality in nature, and acquired under varied 

lighting conditions, this study did not include any image 

enhancement to exclude factors that could influence the outcome 

in validating the proposed framework. Third, the rigid ReLU used 

in the proposed networks hinders the passing of negative values, 

which, if preserved, could improve the expressiveness of the 

activation function. 

The future scope of this work is to extend this study by further 

exploring adaptive image enhancement and denoising algorithms 

and modifying the architecture of the employed networks or 

improving the network dynamics to enable the model to learn more 

complex patterns and distinct features in even a small amount of 

data. The presented results are promising, and the proposed system 

holds great potential in clinical decision support, especially in 

examining changes in fundus vessel morphology and physical 

traits with the progression of retinal vascular diseases 

5. Conclusion 

Unlike previous studies that focused on improving image 

segmentation performance using rich datasets and tedious and 

complex image preprocessing techniques, this study effectively 

improved the generalization of convolutional-based deep learning 

networks by using PSO to train the employed models. This cost-

effective strategy is practical in real applications when data and 

computing resources are limited. Its performance tested on the 

proposed U-Net and SegNet showed variability in their strongest 

activation maps in fundus vessel detection. This implies that they 

recognized different features in the image for classification. 

Although large U-Net has better overall segmentation performance 

than SegNet, and both models achieved favorable and comparable 

results to those of conventional methods, inadequate image 

handling and insufficient preprocessing have been recognized as 

areas that could be further addressed to improve their recognition 

accuracy. These future research directions include adopting 

adaptive image preprocessing and dynamic network representation 

learning approaches before the system can be deployed for clinical 

research. 
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