

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3073–3079 | 3073

Strengthening Web Application Security: A Penetration Regression Test

Selection Algorithm for Early Detection of Buffer Overflow

Vulnerability

Shilpa R. G.*1, Jhilmil Basu2, T. P. Pushphavathi 3, P. V. R. Murthy 4

Submitted: 04/02/2024 Revised: 11/03/2024 Accepted: 18/03/2024

Abstract: Web applications are prime targets for security breaches, making rigorous regression testing essential to prevent adverse impacts

from modifications or enhancements. The aim of regression testing is to ensure that improvements or modifications to a program's

functionality do not adversely affect its current operations. Regression testing is essential as it reduces the size of the test suite, thus reducing

the time and effort for testing as a system or application is modified. Regression test selection methods are used widely in functional testing

but not addressed in context with penetration or security testing. The traditional regression testing techniques and code coverage (branch

coverage) based test adequacy measurements, are found to be inadequate. This paper proposes a novel algorithm for penetration regression

test selection along with extended branch coverage criteria predominantly focusing on buffer overflow vulnerability. The algorithm is

based on the control-flow structure of the program. Additionally this approach provides a systematic method to detect buffer overflow

vulnerability in the unit testing phase of early software development life cycle for the practitioners.

Keywords: Branch coverage, Buffer overflow, Code coverage, Penetration testing, Regression testing, Regression test selection, Security

testing, Vulnerability

1. Introduction

Web applications are susceptible to a surplus of security

vulnerabilities, which malicious hackers can exploit to

compromise their availability, integrity, or confidentiality.

Insufficient input validation outlooks out as a significant security

apprehension for the web applications [1]. Organizations are now

concentrating more on strengthening the security posture of their

web applications or software applications in view of these issues.

This includes setting strong authentication procedures in practice,

encrypting sensitive data, patching software components on a

regular basis to eliminate known vulnerabilities, and performing

comprehensive security assessments that encompass vulnerability

scanning and penetration testing.

Penetration testing is employed to discover security weaknesses in

web applications. Safeguarding sensitive data from hackers who

might gain unauthorized access to the application is the primary

objective of penetration testing. To identify flaws, penetration

testers might simulate attacks on an intended web-based

application through penetration testing [2].

Since decades, one of the most well-known safety risks is the

buffer overflow vulnerability [3]. It is a kind of software

vulnerability which occurs when a program attempts to write

additional data than it was designed to hold to a buffer, which is a

temporary storage section in computer memory. Data overflow

into neighbouring memory locations might occur when the extent

of data being written is higher than the buffer allocated for it.

Buffer overflow vulnerabilities can be the basis for major glitches,

such as corrupting data, crashing the impacted program, or even

giving attackers access to run arbitrary code on the system with the

privileges of the compromised program. Illegal access, privilege

escalation, or the execution of malicious commands are likely

consequences of buffer overflow [4].

Software developers frequently employ regression testing, which

is one of the most common approaches for ensuring the efficacy of

software products during development cycles [5] [6]. The

implementation time of the testing process can be significantly

reduced by employing regression testing techniques [7].

Regression testing ensures that recent changes to code haven't

affected the application's already-existing functionalities. In

software applications, there is always the possibility that adding,

modifying, or removing code might result in the emergence of

novel issues or unexpected behavior even in the parts of the

program that were functioning properly before. Regression testing

ensures that these modifications do not result in the failure of

previously developed and evaluated software features.

Regression testing ensures that when new functionality is added to

a program or a set of programs, the overall workability of the

product remains unaffected. Regression testing has been applied

largely in the context of functional testing but not much attention

is paid in the context of security testing. Many classes of

vulnerabilities may exist in a program or a set of programs.

According to OWASP's most current report on top ten

vulnerabilities, buffer overflow is listed as the third most exploited

vulnerability. Regression testing is sensitive to buffer overflow

vulnerability.

In the process of penetration testing of a web application,

information gathered pertains to vulnerabilities, from all relevant

sources, in the application that is being developed or released.

When a software application is modified, identification of relevant

1,2,3,4 Faculty of Engineering and Technology, M.S. Ramaiah

University of Applied Sciences, Bangalore, India

2ORCID ID: 0000-0001-9247-1843

3ORCID ID: 0000-0003-2322-1378

4ORCID ID: 0000-0001-6398-4762

* Corresponding Author Email: shilparg.ms.mc@msruas.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3073–3079 | 3074

old information pertaining to previous release and new information

acts as an input to certain activities (For example to guide

regression test selection activity).

Existing and new vulnerability information has an impact on

selecting which old penetration tests to be rerun and which new

penetration tests to be designed and run. Only the relevant subset

of old penetration tests and new penetration tests are to be run

based on modification to application. Testing requires less effort

and time as a result selecting regression tests is a significant

challenge for security testing in addition. Hence time and effort for

testing is also reduced. Regression test selection is a relevant

problem for security testing too.

This paper proposes a systematic method regression test selection

algorithm to detect buffer overflow vulnerability. The main

objective is to develop relevant and effective algorithms for

regression test selection. The proposed regression test selection

algorithm is recommended to developers, especially when using

unit testing. The algorithm aids the developer by mapping the

security tests to paths in the program. Regression test selection

methods are used widely in functional testing in practice, but not

addressed in context with penetration testing. In the context of

penetration testing regression test selection is not addressed

adequately. The paper also provides a systematic method to detect

buffer overflow vulnerabilities in the unit testing phase of early

software development life cycle for the practitioners.

1.1. Abbreviations and Acronyms

SUT: System Under Test

OWASP: The Open Web Application Security Project

RTM: Regression test minimization

RTS: Regression test selection

TCS: Test case prioritization

CFG: Control Flow Graph

TU: Test Suite

1.2. Organization of Paper

The following sections contributes remaining parts of this paper:

In Section 2, we investigate into the theoretical underpinnings of

the regression testing process and explore existing methods in the

field. Section 3 precisely outlines the systematic approach to

penetration regression test selection and a regression test selection

algorithm to detect Buffer Overflow Vulnerability. Following that,

concept of code coverage criteria and algorithm for extended

branch coverage algorithm is discussed. In Section 4, we analyze

the outcome of a Buffer Overflow Vulnerability attack on code and

also discuss the results. Finally, Section 5 offers concluding

observations and insights drawn from the study's findings.

Additional insights assembled from these sections provide an

inclusive appreciative of the role of penetration regression test

selection in augmenting the security posture of the software

applications.

Novel Contributions addressed in the paper are as below:

• An algorithm for penetration regression test selection

• Extended branch coverage criteria predominantly focusing on

 buffer overflow vulnerability

• Systematic method to detect buffer overflow vulnerability for

 practitioners

2. Related Work

Regression test minimization (RTM), regression test selection

(RTS), and test-case prioritization (TCP) are the three fundamental

techniques for performing regression [8]. Test cases considered

redundant or almost identical will be deleted or eliminated using

the RTM approach. Test cases that achieve a set of criteria will be

selected by RTS. Finally TCP will prioritize the test cases

employing the previously established criteria [9].

Regression testing techniques primarily specific to evaluating

modifications to existing software and its effected portions reduce

effort by identifying changes and their effects. At the code or

model level, the modification evaluation of impact can be carried

out [10].

Regression testing techniques are divided into three groups by test

case minimization, test case prioritization and test case selection

[11]. Regression testing methods are primarily reported with an

emphasis on test case selection. The challenge of selecting a subset

of test cases to be employed in the software's change detection tests

has been addressed by regression test selection (RTS) techniques.

It requires selecting a portion of the tests from the prior iteration

that are more probable to find faults using various approaches [12].

A regression test selection technique is proposed that that identifies

changed components in programs belonging to a web application

[13]. A technique introduced is a tool called SoRTEA that is

designed and developed using the method call trace based

approach. Regression tests are selected for web applications

written in java using this approach. Static analysis is performed on

the original and modified versions of the web application [14].

However, the technique omits regression test selection especially

when it pertains to security.

The four categories of regression test selection techniques are as

follows: ad hoc random, safe, coverage-based, and minimization

[15]. Test cases are selected using techniques based on coverage,

which identify the modified portions of the System Under Test

(SUT) and the path and data dependence graph covered by tests

[10].

In accordance to related work, there are no security coverage

requirements to help developers and testers check whether security

tests have covered every application vulnerability location.

Moreover, little attention is accorded to a more systematic

investigation of regression test selection for security. (Specifically,

native code (C) is also used by web applications built on Java

technology. Such web applications' security may be compromised

by vulnerabilities in C code. Various techniques for the regression

test case selection applied for several programming paradigms are

discussed [16]. For the objective of choosing test cases in

regression testing, an approach integrating the class and state

diagrams is put forth [17]. When any changes are made to the code,

the class and the state diagram are modified. The components that

were modified are indicated. Cases suitable for the change

transitions are examined. Based on the code coverage of the test

cases, a novel algorithm for test case prioritization is proposed

[18]. Techniques for code-based regression testing are employed

to identify vulnerabilities. In connection with regression testing

techniques and security issues, it outlines how different methods

are commonly used for security regression testing.

Despite significant improvements in vulnerability detection

techniques that incorporate both static and dynamic analysis,

buffer overflow attacks continue to be common [19]. Although

buffer overflow vulnerabilities can be efficiently identified by

static analysis techniques, there are additionally false negatives

that may be reported [19]. Systematic testing of buffer overflows

is attempted by the tool STOBO, however, the coverage metric

used is termed interesting function coverage, subsumed by

statement coverage. The STOBO tool intends to execute

systematic testing of buffer overflows [20]. Coverage metric is

employed as a subset of statement coverage however.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3073–3079 | 3075

Due to limited budget and tester time constraints, the execution of

all generated test cases remains unnoticed [21]. The issue of

selecting which set of test cases to run becomes more and more

crucial.

This procedure minimizes the test case set's size while ensuring

that the test results' quality won't be affected. The test coverage on

the intended components to be tested for the applications under test

is significantly affected by the test case selection [21]. As an

instance, the traditional approach of test case selection selects

among the created test cases according to user preferences or pre-

established methods and formulas [22].

The research on the topic of regression testing has been drawing a

lot of attention recently. Regression testing in the context of

functional testing is widely studied. However, not much attention

is paid in the context of non-functional requirements like security.

In regard to penetration security testing no systematic method of

regression test selection is available as of our knowledge. One of

the concern with buffer overflow vulnerability testing which is not

consistently addressed is the technique for creating a sufficient

number of tests for a program that meet the adequate coverage

criteria for buffer overflow, taking into account how significant

and crucial the vulnerability is. All these gaps are addressed in this

work.

3. Proposed work

Regression testing assists to reduce the size of the test suite, which

makes it essential when modifying a system or application. Testing

takes less time and effort as a result. Choosing regression tests is a

significant problem for security testing as well. Regression test

selection mechanisms in the context of penetration testing are one

particular activity. When designing regression tests for a

penetration test, it is crucial to take into account the variations

between previously known vulnerabilities in the program and

recently discovered vulnerabilities, in addition to pertinent

application pathways.

The aim of this research is to develop relevant and effective

algorithms for such identified and chosen activities. It may be

noted that the activity of penetration regression testing is carried

out in test design as well as test automation/execution phases,

however, the activity regression test selection is triggered by

information gathered indicating the event that the application is

modified.

An application may be modified because functionality (features)

have changed or new ones introduced, or, only the code is changed

for fixing bugs with the functionality remaining the same.

Regression testing techniques can be employed to select a subset

of an existing program's test suite, which decreases testing costs.

Regression test selection methods are used widely in functional

testing but not addressed adequately in context of penetration

testing.

3.1 Penetration Regression Test Selection (When

Functionality/Code Changes)

Fig.1. Penetration Regression Test Selection when functionality/code

changes

Fig.1 illustrates the process of Penetration Regression Test

Selection when Functionality/Code changes.

We address the regression test selection problem in the case

wherein software is dynamically run during security testing to

show the presence of vulnerabilities. In white-box or structural

testing of a program P, with a set of test cases T, when the program

is modified to P’, with a corresponding set of test cases T’,

regression test selection is carried out essentially by considering

the difference between P’ and P in terms of new statements or

branches [23].

In structural testing, a code coverage criterion such as statement or

branch coverage is a major concern [23]. The idea is that the subset

of the old test cases that traverse the modified statements or

branches in the code (P’) shall be considered by the regression test

selection algorithms. Furthermore, new test cases may be required

either because requirements changed or the structure of the

program has undergone a change depending on whether test cases

are designed based on the functionality or the structure of the

program.

To motivate our contribution, in regression test selection in

security testing, we provide a simple example below. Consider

program P for which the pseudo code is given below in Fig.2.

/* allocate a buffer buf of size MAX */

buf = malloc(MAX*sizeof(char));

…

if (some condition)

… buf[i] … ------(1)

else

… buf[j]…; ------(2)

Fig.2. Pseudo Code for Program P

The potential vulnerability sites in the above program P with

respect to buffer overflow are (1) and (2). We need security tests

that cover both the vulnerability sites mentioned above. Let us

assume that there are two tests T1 and T2 to cover sites (1) and (2)

respectively. Say the program is modified to P’ as shown in Fig.3.

…

if (some condition)

… buf[i+1] … ------(1)

else

… buf[j]…; ------(2)

…

… buf[k]… ------(3)

Fig.3. Pseudo Code for Program P'

Now, the potential vulnerability sites in P’ with respect to buffer

overflow are (1), (2) and (3). New tests T3 (T4) may need to be

designed to cover the potential vulnerability site (3) that is newly

introduced. Of course, based on other factors such as the relative

value of k to (i+1) and j and exploiting the structural properties of

the program P’, it may be inferred that a test traversing through

vulnerability sites (1) or (2) in P’ may also traverse through (3) but

this may not be true in general, if an overflow occurred at (1) or

(2) before reaching (3). Thus, in general, a new test may need to be

designed to traverse through vulnerability site (3) in P’ (when

compared to the test suite for P). In addition, the old test T1 of P

may need to undergo a change, or, at least executed on P’ as there

is a modification in site (1), with the subscript of buf changing from

i to (i+1).

Thus, the algorithm for regression test selection in security testing

can be based on the potential vulnerability sites that need to be re-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3073–3079 | 3076

visited in a modified program P’ and the newly introduced

potential vulnerability sites in P. Buffer overflow errors can cause

denial of service attacks. For each class of errors that lead to

vulnerabilities in programs, the algorithm is supplied with the

knowledge to infer corresponding potential vulnerability sites (for

example, format string problem [24].

3.2 Systematic Procedure for Penetration Test Regression Test

Selection (When Code Changes)

An algorithm that guides regression test selection in security

testing is described below. The CFG (control flow graph) for each

program unit in program P is constructed. CFG’ for each program

unit in P’ is constructed. A CFG consists of basic blocks as nodes

along with nodes for controlling flow. Potential sites are statements

within a basic block. Relevant statements are annotated as potential

vulnerability sites for different classes of errors such as buffer

overflow and format string problem.

An operation called P’ – P or CFG’ – CFG is defined which is a

set of sequences of edges or paths capturing, essentially, modified

parts of the code (from P to P’). P’-P consists of newly introduced

vulnerability sites, or, modified but existing vulnerability sites in

P. The vulnerability sites may be modified, either directly or

indirectly, through different values or expressions flowing into the

existing site (data flow).

3.3 Algorithm for Regression Test Selection

The algorithm below is intra-procedural.

Step 1: Construct CFG for a program unit U; also construct the set

of vulnerability sites in U.

Step 2: Incrementally design test cases based on the specifications

of U (also considering security requirements) and form a test suite

TU. (Assume that TU is an adequate test suite with respect to the

set of vulnerabilities in program unit U).

Step 3: Program unit is modified to form U’ by developer (or CFG

is modified and is now CFG’).

Step4: Construct the modified set of vulnerability sites by

performing CFG’ – CFG for the program unit U.

Step 5: Design test cases to traverse the newly introduced

vulnerability sites which are a subset of CFG’-CFG. For the other

subset of CFG’-CFG which corresponds to existing vulnerability

sites in PU or CFG but are modified , either, pick existing old test

cases, if still relevant, or else design new tests.

To extend the algorithm to an inter-procedural one, once a call

node is encountered in CFG in step 1, the data flow information

pertaining to the state of variables at the time of call is maintained

and kept track of while computing the set of vulnerability sites

within the called program unit. This is repeated until the leaves or

program units that do not call others are encountered. Steps 4 and

5 also need to be modified accordingly.

Fig.4. CFG for Program P Fig.5. CFG’ for Program P'

Fig. 4. and Fig. 5 are the control-flow graphs (CFG and CFG’) of

the programs given in Fig. 2 and Fig. 3 respectively. Potential

vulnerability sites in Fig. 4 are at nodes B and C with respect to

possible buffer overflow error. Potential vulnerability sites in Fig.

5 are at nodes B, C and D, wherein C is unmodified from the

previous version of the program. (CFG’ – CFG) indicates changes

in the sub-path AB (index i changed to (i+1)) at node B in CFG’,

in path ABD wherein D is a new node with buf[k] and in path ACD

as well. Existing tests are used with or without modification and

new tests designed based on the difference (CFG’-CFG) and data

flow information at the modified vulnerability sites.

3.4 Code Coverage

In Traditional branch coverage, a set of tests may cover all the

branches in a program, but it doesn't necessarily cover all the sites

prone to buffer overflow vulnerability. A function

processFunction() has been considered to illustrate traditional

branch coverage.

void processFunction(int *buf1[10], int *buf2[5])

{

 int *i , *c1, *c2, *num1, *num2;

 int x1 = 9, x2 = 4, x3 = 5 , x4 = 0 ;

 i = (int *) malloc(sizeof(int));

 c1 = (int *)malloc(sizeof(int));

 c2 = (int *)malloc(sizeof(int));

 num1 = (int *)malloc(sizeof(int));

 num2 = (int *)malloc(sizeof(int));

 *num1 = 20;

 *num2 = 100;

 if (* c1 > *num1)

 {

 *i = x1;

 }

 else

 {

 *i = x2;

 }

 if (*c2 < *num2)

 {

 *buf[i] = x3;

 }

 else

 {

 *buf2[i] = x4;

 }

}
Fig.6. Function processFunction()

The program unit processFunction() takes two pointer references

of integer type. Throughout the program there are several pointer

declarations and initializations. There are two if constructs in the

program. A pointer variable i is considered that has multiple

definitions across the decision constructs.

Fig.7. A Typical Control Flow Graph

Fig. 7 illustrates a control flow graph for a program unit. Two tests,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3073–3079 | 3077

say T1 and T2, are chosen to achieve complete traditional branch

coverage for the control flow graph. On applying traditional branch

coverage, the following inferences can be derived.

• The test case T1 is chosen in such a way that it takes the path

N0->N1->N2->N4->N5->N7. The path taken doesn't overflow the

buffer at node N5.

• The test T2 is chosen in such a way that it takes the path N0-

>N1->N3->N4->N6->N7. The path taken doesn't overflow the

buffer at node N5.

As evident from the figure, two test cases T1 and T2 were

sufficient to achieve complete branch coverage. However,

consider the path N0->N1->N2->N4->N6->N7. The buffer at node

N6 can hold 5 elements. If this path is taken, a buffer overflow

happens at node N6 since the buffer tries to reference the ninth

element, which doesn't exist for the buffer at N6. Even though 100

percent branch coverage was achieved by traditional branch

coverage, it didn't necessarily cover all the branches that may have

led to buffer overflow. Therefore, extended branch coverage is

proposed that ensures that all the buffer overflow sites are

exercised with respect to their most recent buffer index definitions.

3.5 Extended code coverage criteria measurement

Extended branch coverage algorithm has been proposed as

traditional branch coverage doesn't necessarily cover all the

branches having potential vulnerability sites (buffer overflow

vulnerability). To define an extended branch coverage to address

coverage of vulnerabilities, it is not merely (structural) branch

coverage that is important but whether an edge containing a

subscript operation is preceded by an edge defining or modifying

the index in a test.

With the introduction of extended branch coverage, the regression

test selection tool not only determines all the possible paths from

decision points in a program, but also reports the branches that may

be possible vulnerability sites that may be exploited. Traditional

branch coverage cannot be exercised in security testing because

vulnerability sites may go unseen. Hence, the extended branch

coverage allows this additional improvement with confidence.

3.6 Extended Branch Coverage Algorithm

Algorithm 1: Algorithm ExtendedBranchCoverage

Begin

Step 1: Construct two control flow graphs CFG and CFG' for the

original and modified input programs respectively.

Step 2: Traverse each and every edge in a control flow graph of a

program

Step 3: For each control flow graph, collect all the subscript sites.

Step 4: For each collected subscript site, collect the most recent

definitions of the subscript variable index along different paths that

reach the subscript variable site as a use operation.

Step 5: Apply regression test selection algorithm only on paths

where the subscript site is reachable from the most recent

definition of its index variable.

End

The extended branch coverage algorithm begins by considering

two graphs CFG and CFG'. CFG is the control flow graph of the

original input program and CFG' is the control flow graph of the

modified input program. All the possible paths in the control flow

graph are recorded. For each control flow graph, all the subscript

sites are collected. Once the subscript sites have been collected, the

most recent definitions of the subscript index are mapped to the

subscript site.

4. Results and discussion

The selection of the buffer overflow vulnerability stems from the

predominant use of C code within web applications, frequently

alongside languages like C++ or Java. Proposed algorithms for

regression testing in security, precisely targeting buffer overflow

vulnerabilities, go beyond mere consideration of the program's

control-flow structure. They extend to encompass broader branch

coverage criteria, taking into account not only the control-flow

paths but also the definitions of index variables. This approach is

critical for detecting potential buffer overflow sites, where index

variables may accidentally trigger vulnerabilities. By

incorporating these subtle considerations, such algorithms improve

the robustness of security testing conventions, stimulating web

applications against potential exploitation.

Fig.8. Illustration of Extended Code Coverage and Regression Testing

 Traditional Branch Coverage: Two test cases are chosen that

satisfy hundred percent branch coverage. The paths traversed by

the two test cases are:-

• N0->N1->N2->N4->N5->N7 (1 test for *c1 > *num1 and *c2

< *num2)

• N0->N1->N3->N4->N6->N7 (1 test for *c1 < *num1 and *c2

> *num2)

However, buffer overflow occurs at *c1>*num1 and *c2 > *num2.

According to the extended branch coverage and regression test

selection algorithm the process is exercised.

(i) Subscript sites are present at nodes N5 and N6.

(ii) For node N5, two possibilities exist for mapping the most

recent definition of subscript index to the subscript site as shown

in Table 1.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3073–3079 | 3078

Table 1. Test cases for traditional branch coverage (a)

Condition
 Subscript Site

Node

Most Recent Subscript

Definition

*c1 >
*num1 and

*c2

<*num2

 N5 i = x1

*c1 <

*num1 and
*c2<*num2

 N5 i =x2

(iii) For node N6, two possibilities exist for mapping the most

recent definition of subscript index to the subscript site as shown

in Table 2.

Table 2. Test cases for traditional branch coverage (b)

Condition
 Subscript Site

Node

Most Recent Subscript

Definition

*c1 >
*num1 and

*c2

>*num2

 N6 i = x1

*c1 <

*num1 and
*c2>*num2

 N6 i =x2

(iv) A total of four test cases is required to map each most recent

subscript index definition to its subscript site.

(v) The number of test cases required by extended branch coverage

may exceed the number of test cases required for traditional branch

coverage. The idea is to choose a minimal number of test cases

required to map all recent subscript index definitions to their

subscript sites.

(vi) Test cases need to be designed to make the most recent

subscript index definition reach its corresponding subscript site,

keeping in mind only feasible paths in the control flow graph.

(vii) In the modified version of the control flow graph CFG',

existing test cases may be used from the original program's control

flow graph CFG, existing test cases may be modified to cover paths

with newly added paths having potential vulnerability sites and

new test cases may have to be designed if existing tests no longer

apply to newly added paths in CFG'.

5. Conclusion

Regression testing algorithms have primarily focused on

functional testing, the advent of a tailored approach for addressing

buffer overflow vulnerabilities results a significant improvement

in security testing methodologies. This proposed work and

algorithms not only fills a critical gap in security testing but also

exhibits the adaptability of regression testing tools beyond

traditional functional domains. Furthermore, this methodology

offers practitioners a systematic way to identify buffer overflow

vulnerabilities within the unit testing stage of the early software

development life cycle. Furthermore, the algorithm's capability to

assess existing test cases for reuse, modification requirements, and

the need for new test cases represents a novel contribution to the

field. Providing developers with targeted feedback on applicable

test cases streamlines the testing process, easing concerns about

test case significance and considerably reducing testing time and

effort. By extending its applicability to areas such as concurrent

programs and multithreading, as well as potential expansion to

cover other vulnerabilities like cross-site scripting and SQL

injection, the proposed regression testing tool showcases its

versatility and robustness in enhancing software security.

Traditional branch coverage adequately addresses decision

branches within a program, it often falls short in identifying

vulnerability sites, particularly concerning buffer overflow

vulnerabilities. This inadequacy highlights the essential for

tailored methodologies in security testing. Extended branch

coverage emerges as a novel solution, surpassing the limitations of

traditional methods by not only encompassing all decision

branches but also explicitly targeting potential vulnerability sites.

The proposed extended branch coverage as a tailored approach for

security testing signifies a substantial step forward in mitigating

buffer overflow vulnerabilities and strengthening penetration

testing.

Author contributions

PVR Murthy, T P Pushphavathi: Conceptualization,

Methodology, Software, Jhilmil Basu, Shilpa R.G.: Data

curation, Writing-Original draft preparation, Software, Validation

Jhilmil Basu, Shilpa R.G, PVR Murthy, T P Pushphavathi:

Visualization, Investigation, Writing-Reviewing and Editing.

Conflicts of interest

The authors proclaim no conflicts of interest.

References

[1] Xiaowei Li and Yuan Xue. A Survey on Server-Side

Approaches to Securing Web Applications. ACM

Computing Surveys (CSUR), 46 (4), Article 54, 1-30,

2014

[2] Halfond, W., Choudhary, S. and Orso, A. Improving

penetration testing through static and dynamic analysis-

Software Testing, Verification and Reliability, 21(3),

pp.195-214, 2011. http://doi.org/ 10.1002/stvr.450

[3] Benjamin A.K., Carla E.B., Hilmi O., Vijaykumar T.N.,

Detection and Prevention of Stack Buffer Overflow

Attacks, Communications of the Association of

Computing Machinery, ACM, 48 (11), 2005, pp.50-56.

[4] H. Do, Chapter Three - Recent Advances in Regression

Testing Techniques, Editor(s): Atif M. Memon,

Advances in Computers, Elsevier, Volume 103, 2016,

Pages 53-77, ISSN 0065-2458, ISBN

9780128099414,https://doi.org/10.1016/bs.adcom.2016

.04.004.

[5] Emelie Engström, Per Runeson, Mats Skoglund, A

systematic review on regression test selection techniques

[6] Information and Software Technology, Volume 52,

Issue 1, Pages 14-30, 2010, ISSN 0950-5849,

https://doi.org/10.1016/j.infsof.2009.07.001.

[7] Rahmani, Ani & Min, J & Maspupah, Asri. An empirical

study of regression testing techniques. Journal of

Physics: Conference Series. 2021. 1869. 012080.

10.1088/1742-6596/1869/1/012080.

[8] J.Bhandari P and Singh A 2017 Review of object-

oriented coupling based test case selection in model

based testing Proc. 2017Int. Conf. Intell. Comput.

Control Syst. ICICCS 2017 2018- Janua 1161–5

[9] Banias O Test case selection-prioritization approach

based on memoization dynamic programming algorithm

Inf. Softw. Technol. 2019,115 119–30

[10] Felderer, Michael & Fourneret, Elizabeta. A systematic

classification of security regression testing approaches.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 3073–3079 | 3079

International Journal on Software Tools for Technology

Transfer. 2015.10.1007/s10009-015-0365-2.

[11] Yoo, S., Harman, M.: Regression testing minimisation,

selection and prioritisation: a survey. Softw. Test. Verif.

Reliab. 1(1), 121–141 2010

[12] Tarhini, Abbas, Zahi Ismail, and Nashat Mansour.

"Regression Testing Web Applications". International

Conference On Advanced Computer Theory And

Engineering. New York: IEEE, 2008. 902-906. Print

[13] Allahbaksh Asadullah, Richa Mishra, M. Basavaraju,

and Nikita Jain. “A call trace based technique for

regression test selection of enterprise web applications

(SoRTEA)”. Proceedings of the 7th India Software

Engineering Conference on ISEC '14.2014.

DOI:http://dx.doi.org/10.1145/2590748.2590770

[14] Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A.,

Rothermel, G.:An empirical study of regression test

selection techniques. ACM Trans. Softw. Eng.

Methodol. 10, 184–208 2001

[15] Sunidhi Puri, Abhishek Singhal, Abhay Bansal. “Study

and Analysis of Regression Test Case Selection

Techniques”. International Journal of Computer

Applications. 101, 3 September 2014, 45-50.

DOI=10.5120/17671-8504

[16] Qurat Farooq. “Model-Based Regression Testing”.

Emerging Technologies for the Evolution and

Maintenance of Software Models. 2012. 10.4018/978-1-

61350-438-3

[17] Shahid, Dr Muhammad. “Code Coverage Information to

Support Regression Testing”. The International

Conference on Informatics and Applications

(ICIA.2012). 233-239

[18] Tao Y., Lingmin Z., Linzhang W., Xuandong L., An

Empirical Study on Detecting and Fixing Buffer

Overflow Bugs, IEEE International Conference on

Software Testing, Verification and Validation (ICST),

2016. Chicago, IL, pp.91-101

[19] Paul E.B., Irena B. Defeating Buffer Overflow: A Trivial

but Dangerous Bug, IEEE IT Professional, 2016.Vol.18,

Issue 6, pp.58-61

[20] Khan, S.U.R., et al., A Systematic Review on Test Suite

Reduction: Approaches, Experiment’s Quality

Evaluation, and Guidelines. IEEE Access, 2018. 10

[21] Bokil, P., P. Krishnan, and R. Venkatesh, Achieving

Effective Test Suites for Reactive Systems using

Specification Mining and Test Suite Reduction

Techniques. ACM SIGSOFT Software Engineering

Notes, 2015. 40(1): p.1-8

[22] Beizer, B. “Software Testing Techniques”, Itp-Media,

2nd edition, 1990

[23] Shahriar, H. and Zulkernine, M. “Mitigating Program

Security Vulnerabilities: Approaches and Challenges”,

Journal ACM Computing Surveys. 2012

