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Abstract: To investigate, a numerical model is suggested to analyse the effect of pliability on the peristaltic flow of a 

couple- stress fluid with nanoparticles in a cylindrical tube. The expressions for velocity and flux flow rate are determined 

by using Homotopic Perturbation method, in the process of long wave length and low Reynold’s number approximations. 

The variation of flux is calculated by Rubinow and Keller, Muzumdar methods. The effects of different criterias on velocity 

and flux have been discussed. The trapping phenomena is depicted for various parameters.  The flux appears to be increasing 

with elasticity parameters, couple-stress fluid parameter. The flux also falls as Brownian motion parameter and the 

Thermophoresis parameter are increased. The obtained results are same when we apply Rubinow and Keller, Muzumdar 

methods. 
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Introduction 

The mechanism by which fluid is carried through a 

distensible tube when contraction or expansion 

waves propagate gradually throughout its length is 

referred to as peristalsis. From a fluid mechanics 

approach, peristaltic pumping is defined by the 

dynamical interplay of fluid flow with the 

movement of flexible boundaries. Peristalsis 

appears to be the primary mechanism for fluid 

transport in many physiological situations, which 

includes urine transport through the ureter, 

Intestinal chyme movement and food mixing, 

spermatozoa trafficking in the efferent ducts of 

male reproductive organs, Egg migration in the 

female fallopian tubes and bile duct transportation. 

Peristalsis is used by roller and finger pumps to 

push corrosive materials so that the fluid does not 

come into direct contact with the pump's interior 

surfaces. Peristalsis has been the subject of both 

experimental and theoretical studies. Peristalsis was 

first studied by Latham [1] in 1965. Unstable 

peristaltic transport in curved channels was 

explored by Ramanamurthy et al.  [2]. Srinivas et 

al. [3] looked at the peristaltic motion of 

nanoparticles in a micropolar fluid in an inclined 

tube, as well as the effects of heat and mass 

transfer. Divya et al. [4] deliberated the influence 

of different liquid physiognomies on the peristaltic 

process of a convectively heated Jeffrey fluid in a 

greased elastic tube. Ravikumar et al. [5] analysed 

heat transmission and slip properties on MHD 

peristaltic movement of viscous fluid in a tapered 

microvessels. The effects of slip on the peristaltic 

transport of casson fluid in an inclined flexible tube 

with porous walls were studied by Gudekote & 

Choudhari [6]. 

Nanofluid is a colloidal solution of nanoparticles 

formed when nanometer-sized particles suspended 

in a base fluid clash. Nanofluids often contain 

metals, oxides, carbides, and carbon nanotubes as 

nanoparticles, with water, ethylene glycol, and oil 

as base fluids. Microelectronics, fuel cells, 

pharmaceutical processes, hybrid-powered engines, 

engine cooling/vehicle thermal management, 

chiller, domestic refrigerator, and heat exchanger, 

as well as grinding, machining, and boiler flue gas 

temperature reduction, all have distinctive 

properties that could make nanofluids useful in a 

diversity of heat transfer applications. In the field 

of nanofluids, several studies have been undertaken 

and papers have been published. Choi [7] was the 

first to investigate nanofluid technology. Nadeem 

and Noreen Sher Akbar [8] investigated the flow of 

a micropolar fluid containing nanoparticles in small 

intestine. Maruthi Prasad et al. [9] investigated the 

peristaltic transport of a nanofluid in an inclined 

tube. The impact of elasticity on nanofluid 

peristaltic flow in a tube was investigated by 

Haseena et al. [10]. A computational solution for 

MHD peristaltic transport in an inclined nanofluid 

symmetric channel with porous material was 

provided by Abd-Alla et al. [11]. 

Couple-stress fluid model has been extensively 

used by researchers as compared to other models 

because of its relative mathematical intelligibility. 

Couple stress and spin of molecules are present in 

lubricants, blood with minor amounts of high 
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polymer additions, synthetic fluids, and electro-

rheological fluids, which are not current in 

Newtonian fluids. As a result, for these fluids, the 

couple-stress fluid is a preferable model. In this 

field, a number of researchers have contributed. 

Maruthi Prasad et al. [12] investigated the 

peristaltic transport of a couple-stress fluid with 

nanoparticles in an inclined tube. The peristaltic 

movement of Herschel-Bulkley fluid in an unequal 

flexible tube was investigated by Selvi and Srinivas 

[13]. Srinivas Jangili et al. [14] observed couple-

stress fluid flow with changeable properties: A 

second law analysis. Peristaltic mechanism of 

couple stress nanomaterial in a tapering channel 

has been discussed by Rafiq et al. [15]. 

Fluid flow in flexible tubes is fascinating because it 

resembles fluid movement in veins, arteries, and 

the urethra, among other places. Modeling elastic 

distortion of hollow tubes, mechanical assessment 

of elastic tubes used in physical therapy, 

cardiovascular systems to understand the evolution 

of pathology due to vessel contortion, and 

diagnostic and healing devices like pressurised 

smack and prosthetic heart devices are just a few of 

the elastic tubes applications. Because of its 

importance, many studies on elastic tubes have 

been undertaken. Selvi and Srinivas [16] discussed 

the outcome of elasticity on bingham fluid flow in 

a tube. Sumalatha and Sreenadh [17] investigated 

the poiseuille flow of a jeffrey fluid in an inclined 

pliable tube. The peristaltic transport of a power-

law fluid in a pliable tube was studied by Selvi et 

al. [18]. Haseena et al. [19] studied the effect of 

elasticity on nanofluid peristaltic flow in a tube. 

Previous research has shown that while researching 

blood rheology in physiological systems, it is vital 

to take into account the tube's elastic nature. The 

current obstacle is to investigate the effects of 

elasticity on peristalsis-inducing couple stress fluid 

flows through a tube. In this perspective, blood is 

seen as pair stress fluid containing nanoparticles. 

The Homotopy Perturbation technique is used to 

solve the temperature profile and nano particle 

phenomena. Graphs are used to analyse the results 

of analytic equations for flow quantities. 

 

Mathematical Formulation 

 

Consider the peristaltic transport of a nanoparticle-

containing incompressible couple stress fluid in a 

tube with a uniform cross section of radius 𝑎∗, 

amplitude 𝑏∗, wave length 𝜆∗, and a sinusoidal 

wave travelling along the tube's boundary at 𝑐∗. 

The physical model with cylindrical coordinate 

system (𝑅,   𝜃,   𝑍) is shown below. 

The deformation of the wall is written as 

𝑅 = 𝐻(𝑧, 𝑡) =  𝑎∗ + 𝑏∗ 𝑠𝑖𝑛
2𝜋

𝜆∗
(𝑍 − 𝑐∗𝑡) (1) 

In the absence of body couple and body moment, 

the required governing equations for this situation 

are as follows [12] 

𝑇𝑖𝑗.𝑗 =  𝜌
𝑑𝑤𝑖

𝑑𝑡
  (2) 
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𝑒𝑖𝑗𝑘𝑇𝑗𝑘
𝐴 +𝑀𝑗𝑖.𝑗 = 0          (3) 

𝑙𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜇𝑖𝑗𝑑𝑖𝑗           (4) 

𝜇𝑖𝑗 = 4𝜂⍵𝑗.𝑖 + 4𝜂′⍵𝑖𝑗           (5) 

(𝜌𝑐)𝑓
𝑑𝑇′

𝑑𝑡
= 𝑘∇2𝑇′ + (𝜌𝑐)𝑝 [𝐷𝐵∇𝐶

′. ∇𝑇′ +
𝐷𝑇

𝑇0
′ ∇𝑇

′. ∇𝑇′]      (6) 

𝑑𝑐′

𝑑𝑡
= 𝐷𝐵∇

2𝐶′ + [
𝐷𝑇
′

𝑇0
′] ∇

2𝑇′                             (7) 

Here 𝑤𝑖  is the velocity vector, 𝑇𝑖𝑗 and 𝑇𝑖𝑗
𝐴 are the 

symmetric and antisymmetric parts of the tensor 

𝑇𝑖𝑗 , 𝑀𝑖𝑗 is the couple-stress tensor, 𝜇𝑖𝑗 is the 

deviatoric part of 𝑀𝑖𝑗, ⍵𝑖𝑗  is the vorticity vector, 

𝑑𝑖𝑗  is the symmetric part of the velocity gradient, 

and 𝜂 and  𝜂′ are constants associated with the 

couple-stress.  The density of the fluid is 𝜌𝑓,  

particle density is 𝜌𝑝,  volumetric volume 

expansion coefficient is 𝐶,  body forces are 𝑓, 
𝑑

𝑑𝑡
 is 

material time derivative,  nano particle 

concentration is 𝐶̅,  Brownian diffusion coefficient 

is 𝐷𝐵, and  thermophoretic diffusion coefficient is 

𝐷𝑇 . �̅� and 𝐶̅  ambient values as �̅� tend to ℎ̅ are 

represented by 𝑇0̅  and 𝐶0̅̅ ̅, respectively. 

Making use of the transformation 

𝑟 = 𝑅, 𝑧 = 𝑍 − 𝑐∗𝑡, 𝑢 = 𝑈,𝑤 = 𝑊 − 𝑐∗, 𝜃 = 𝜃 

Equations (2) to (7) are translated from a stationary to a moving frame of reference 

𝜇∇2 [1 −
1

�̅�2
∇2]𝑤′ =

𝑑𝑝′

𝑑𝑧′
+ 𝜌𝑔𝛽(𝑇′ − 𝑇0) + 𝜌𝑔𝛽(𝐶′ − 𝐶0)     (8) 

[𝑢′
𝜕𝑇′

𝜕𝑟′
+ 𝑤′

𝜕𝑇′

𝜕𝑧′
] = 𝛽 [

𝜕2𝑇′

𝜕𝑟′
2 +

1

𝑟′

𝜕𝑇′

𝜕𝑟′
+

𝜕2𝑇′

𝜕𝑧′
2] + 𝜏 {𝐷𝐵 [

𝜕𝐶′

𝜕𝑟′

𝜕𝑇′

𝜕𝑟′
+

𝜕𝐶′

𝜕𝑧′

𝜕𝑇′

𝜕𝑧′
] +

𝐷𝑇
′

𝑇0
′ [(

𝜕𝑇′

𝜕𝑟′
)
2

+ (
𝜕𝑇′

𝜕𝑧′
)
2

]} (9) 

[𝑢′
𝜕𝐶′

𝜕𝑟′
+ 𝑤′

𝜕𝑇′

𝜕𝑧′
] = 𝐷𝐵 [

𝜕2𝐶′

𝜕𝑟′
2 +

1

𝑟′

𝜕𝐶′

𝜕𝑟′
+

𝜕2𝐶′

𝜕𝑧′
2] +

𝐷𝑇
′

𝑇0
′ [
𝜕2𝑇′

𝜕𝑟′
2 +

1

𝑟′

𝜕𝑇′

𝜕𝑟′
+

𝜕2𝑇′

𝜕𝑧′
2]    (10) 

Where ∇2=
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) and 𝜏 =

(𝜌𝐶)𝑃

(𝜌𝐶)𝑓
  is the ratio of the nanoparticle material's effective heat capacity to the 

fluid's heat capacity. 

Introducing the non-dimensional quantities listed below:  

𝑟 =
𝑟′

𝑎∗
, 𝑧 =

𝑧′

𝜆∗
, 𝑤 =

𝑤′

𝑐∗
, 𝑝 =

𝑎∗
2
𝑝′

𝜆∗𝑐∗𝜇
, 𝑡 =

𝑐∗𝑡′

𝜆∗
, 𝑢 =

𝜆∗𝑢′

𝑎∗𝑐∗
, 𝜃𝑡 =

𝑇′ − 𝑇0
′

𝑇0
′ , 𝛿 =

𝑎∗

𝜆∗
, 𝑅𝑒 =

2𝜌𝑐∗𝑎∗

𝜇
,  

𝜎 =
𝐶′ − 𝐶0

′

𝐶0
′ , 𝛽 =

𝑘

(𝜌𝑐)𝑓
, 𝑁𝑏 =

(𝜌𝑐)𝑝𝐷𝐵𝐶0
′

(𝜌𝑐)𝑓
, 𝑁𝑡 =

(𝜌𝑐)𝑝𝐷𝑇𝑇0
′

(𝜌𝑐)𝑓𝛽
, 𝐺𝑟 =

𝑔𝛽𝑎3𝑇0
′

𝛾2
, 𝐵𝑟 =

𝑔𝛽𝑎3𝐶0
′

𝛾2
, 

 �̅� = 𝑎∗𝛼 = √
𝜇

𝜂
𝑎∗, ℎ′ =

ℎ

𝑎∗
 

Equations (8) – (10) are transformed to (11) – (13) 

by using long wavelength and low Reynolds 

number approximation, the dimensionless 

equations after removing bars can be written as 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
(1 −

1

�̅�2
∇2)𝑤) =

𝑑𝑝

𝑑𝑧
+ 𝐺𝑟𝜃 + 𝐵𝑟𝜎      (11) 

0 =
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜃

𝜕𝑟
) + 𝑁𝑏

𝜕𝜎

𝜕𝑟

𝜕𝜃

𝜕𝑟
+ 𝑁𝑡 (

𝜕𝜃

𝜕𝑟
)
2

      (12) 

0 =
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜎

𝜕𝑟
) +

𝑁𝑡

𝑁𝑏
(
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜃

𝜕𝑟
))      (13) 

Where 𝑁𝑏 , 𝑁𝑡 , 𝐺𝑟 , 𝐵𝑟 , 𝑤, 𝑟, �̅�, 𝜃 and 𝜎 are 

Brownian motion parameter, Thermophoresis 

parameter, Local temperature Grashof number,  

Local nanoparticle Grashof number,  axial velocity,  

radial coordinate, couple-stress fluid parameter, 
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temperature profile and  nanoparticle phenomenon respectively. 

The dimensionless boundary conditions are as follows: 

{
 
 

 
 
𝜕𝑤

𝜕𝑟
= 0,

𝜕𝜃

𝜕𝑟
= 0,

𝜕𝜎

𝜕𝑟
= 0                                                                                     𝑎𝑡 𝑟 = 0

𝑤 = −1, 𝜃 = 0, 𝜎 = 0                                                    𝑎𝑡𝑟 = ℎ(𝑧) = 1 + 𝜖𝑠𝑖𝑛2𝜋𝑧
𝜕2𝑤

𝜕𝑟2
−

�̅�

𝑟

𝜕𝑤

𝜕𝑟
= 0                                                                    𝑎𝑡𝑟 = ℎ(𝑧) = 1 + 𝜖𝑠𝑖𝑛2𝜋𝑧

𝜕2𝑤

𝜕𝑟2
−

�̅�

𝑟

𝜕𝑤

𝜕𝑟
   𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒                                                                                            𝑎𝑡 𝑟 = 0

  (14) 

The amplitude ratio is 𝜖 (=
𝑏∗

𝑎∗
) and 𝜂′ =

�̅�

𝜂
  is 

couple-stress fluid parameter  

Couple-stress vanishes in the tube wall and 

becomes finite at the tube axis, according to the last 

two boundary conditions (14) 

Solution of the problem 

The Homotopy Perturbation method (HPM) 

combines Homotopy and Perturbation methods. 

The HPM is a better choice than the other classic 

perturbation methods. We shall be able to 

overcome the disadvantages of classic perturbation 

methods by employing this strategy. 

The following are homotopy equations for (12) and 

(13) as (He JH, [20]) 

𝐻(𝑞, 𝜃) = 𝐿(𝜃) − 𝐿(𝜃10) + 𝑞𝐿(𝜃10) + 𝑞 [𝑁𝑏
𝜕𝜎

𝜕𝑟

𝜕𝜃

𝜕𝑟
+ 𝑁𝑡 (

𝜕𝜃

𝜕𝑟
)
2

]     (15) 

𝐻(𝑞, 𝜎) = 𝐿(𝜎) − 𝐿(𝜎10) + 𝑞𝐿(𝜎10) + 𝑞 [
𝑁𝑡

𝑁𝑏

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜃

𝜕𝑟
)]      (16) 

For convenience, 𝐿 =
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) is used as the linear operator 

𝜃10(𝑟, 𝑧) = (
𝑟2−ℎ2

4
) , 𝜎10(𝑟, 𝑧) = −(

𝑟2−ℎ2

4
)       (17) 

Equation(17) described as initial guesses which satisfy the boundary conditions. 

Define  

𝜃(𝑟, 𝑧) = 𝜃0 + 𝑞𝜃1 + 𝑞
2𝜃2 +.  .  .        (18) 

𝜎(𝑟, 𝑧) = 𝜎0 + 𝑞𝜎1 + 𝑞
2𝜎2 +.  .  .        (19) 

For the most part, the series (18) and (19) are 

convergent. The nonlinear part of the equation 

determines the convergence rate. 

Analysis for temperature and nano particle 

phenomena is stated as for q = 1 using same 

technique as (He JH, [20]) 

𝜃(𝑟, 𝑧) = 𝑁𝑏(𝑁𝑏 − 𝑁𝑡) (
𝑟6−ℎ6

1152
) − 𝑁𝑡(𝑁𝑏 −𝑁𝑡) (

𝑟6−ℎ6

576
) − (𝑁𝑏 − 2𝑁𝑡) (

𝑟4−ℎ4

64
)   (20) 

𝜎(𝑟, 𝑧) = −
𝑁𝑡

𝑁𝑏
(𝑁𝑏 −𝑁𝑡) (

𝑟4−ℎ4

64
)        (21) 

Substituting equations (20) and (21) in equation (11), can be written as 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
(1 −

1

�̅�2
∇2)𝑤) =

𝑑𝑝

𝑑𝑧
+ 𝐺𝑟 {𝑁𝑏(𝑁𝑏 − 𝑁𝑡) (

𝑟6−ℎ6

1152
) − 𝑁𝑡(𝑁𝑏 −𝑁𝑡) (

𝑟6−ℎ6

576
) − (𝑁𝑏 − 2𝑁𝑡) (

𝑟4−ℎ4

64
)} +

𝐵𝑟 {−
𝑁𝑡

𝑁𝑏
(𝑁𝑏 −𝑁𝑡) (

𝑟4−ℎ4

64
)}       (22) 

The expression for velocity is found by solving Eq. (22) applied to the boundary conditions (14) 

𝑤 = −1 + 𝑆1[𝐼0(�̅�𝑟) − 𝐼0(�̅�ℎ)] +
𝑑𝑝

𝑑𝑧
[
𝑟2−ℎ2

4
−

(1−�̅�)

2𝐴
(𝐼0(�̅�𝑟) − 𝐼0(�̅�ℎ))] + 𝐺𝑟𝑁𝑏(𝑁𝑏 − 𝑁𝑡) [

𝑟6−ℎ6

1152(�̅�)2
+

𝑟4−ℎ4

32(�̅�)4
+

𝑟2−ℎ2

2(�̅�)6
−

𝑟2ℎ6

4608
+

𝑟8

73728
+

5ℎ8

24576
] + 𝐺𝑟𝑁𝑡(𝑁𝑏 −𝑁𝑡) [−

(𝑟6−ℎ6)

1152(�̅�)2
−

(𝑟4−ℎ4)

16(�̅�)4
−

(𝑟2−ℎ2)

(�̅�)6
+

𝑟2ℎ6

2304
−

𝑟8

36864
−

5ℎ8

12288
] +

𝐺𝑟(𝑁𝑏 − 2𝑁𝑡) [−
(𝑟4−ℎ4)

64(�̅�)2
−

(𝑟2−ℎ2)

4(�̅�)4
+

𝑟2ℎ4

256
−

𝑟6

2304
−

ℎ6

288
] + 𝐵𝑟

𝑁𝑡

𝑁𝑏
(𝑁𝑏 −𝑁𝑡) [−

(𝑟4−ℎ4)

64(�̅�)2
−

(𝑟2−ℎ2)

4(�̅�)4
+

𝑟2ℎ4

256
−

𝑟6

2304
−

ℎ6

288
] (23) 
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Where 𝐴 = �̅� [𝛼 ̅𝐼0(�̅�ℎ) −
(1+�̅�)

ℎ
 𝐼1(�̅�ℎ)] 

𝑆1 = {−𝐺𝑟𝑁𝑏(𝑁𝑏 − 𝑁𝑡) [
(1 + �̅�)ℎ6

3072
+
(1 − �̅�)

�̅�6
+
(3 − �̅�)ℎ2

8�̅�4
+
ℎ4

192
(5 −

�̅�

�̅�2
)]

− 𝐺𝑟𝑁𝑡(𝑁𝑏 − 𝑁𝑡) [−
(1 + �̅�)ℎ6

1536
+
(�̅� − 5)ℎ4

96�̅�2
+
(�̅� − 3)ℎ2

4�̅�4
+
2(�̅� − 1)

�̅�6
]

− 𝐺𝑟(𝑁𝑏 − 𝑁𝑡) [−
(1 + �̅�)ℎ4

192
+
(�̅� − 1)

2�̅�4
+
ℎ2(�̅� − 3)

16�̅�2
]

− 𝐵𝑟
𝑁𝑡
𝑁𝑏
(𝑁𝑏 −𝑁𝑡) [−

(1 + �̅�)ℎ4

192
+
(�̅� − 1)

2�̅�4
+
ℎ2(�̅� − 3)

16�̅�2
]} /𝐴 

In the moving frame, the dimension less flux is given as 

𝑄 = ∫ 𝑟𝑤 𝑑𝑟
ℎ

0
           (24) 

Substituting equation (23) in equation (24) and solving, the flux is  

𝑄 = 𝑃𝑆0 + 𝐹           (25) 

Where 

𝐹 = −ℎ2 + 2𝑆1𝑆 + 𝐺𝑟𝑁𝑏(𝑁𝑏 − 𝑁𝑡) [
ℎ10

10240
−

ℎ8

1536�̅�2
−

ℎ6

48�̅�4
−

ℎ4

4�̅�6
] + 𝐺𝑟𝑁𝑡(𝑁𝑏 − 𝑁𝑡) [−

ℎ10

5120
+

ℎ8

1536�̅�2
+

ℎ6

24�̅�4
+

ℎ4

2�̅�6
] + 𝐺𝑟(𝑁𝑏 − 2𝑁𝑡) [−

5ℎ8

3072
+

ℎ6

96�̅�2
+

ℎ4

8�̅�4
] + 𝐵𝑟

𝑁𝑡

𝑁𝑏
(𝑁𝑏 −𝑁𝑡) [−

5ℎ8

3072
+

ℎ6

96�̅�2
+

ℎ4

8�̅�4
]   

  

𝑆 = ℎ 𝐼1(�̅�ℎ) −
ℎ2

2
𝐼0(�̅�ℎ)  

 𝑆0 = −
(�̅�−1)

𝐴
𝑆 +

ℎ4

8
  and 𝑃 = −

𝑑𝑝

𝑑𝑧
 

Theoretical Determination of Flux 

To find the flux of couple-stress fluid through an 

elastic tube, Rubinow and Keller method was 

applied [22]. Let 𝑝0 represent the external pressure 

and 𝑝1 and 𝑝2 represent the fluid pressures at the 

entrance and exit, respectively. The pressure at the 

entrance, 𝑝1, is expected to be higher than the 

pressure at the exit, 𝑝2. The tube wall can expand 

or shrink as the pressure within and outside the 

tube changes. Pressure variance affects the 

conductivity of the tube at 𝑧. As a result, the 

conductivity function 𝜎 = 𝜎[𝑝(𝑧) − 𝑝0] is equal to 

(𝑝(𝑧) − 𝑝0). The expression also relates the flow 𝑄 

and the pressure gradient. 

𝑄 = 𝜎(𝑝 − 𝑝0)(𝑃 + 𝐹)          (26) 

Where 𝜎(𝑝 − 𝑝0) = 𝑆0 

Using the inlet condition and from  𝑧 = 0, integrating equation (26) with respect to 𝑧  

𝑝(0) = 𝑝1, we obtain 

𝑄𝑧 = ∫ 𝜎(𝑝′)
𝑝1−𝑝0
𝑝(𝑧)−𝑝0

𝑑𝑝′ + ∫ 𝑆0 𝑑𝑧
𝑧

0
        (27) 

𝑝′ = 𝑝(𝑧) − 𝑝0 in this case. Equation (21) gives  𝑝(𝑧) , in terms of 𝑄 and 𝑧. By substituting z=1 and 𝑝(1) = 𝑝2 

into the equation (27), we get Q. 

𝑄𝑧 = ∫ 𝜎(𝑝′)
𝑝1−𝑝0
𝑝(1)−𝑝0

𝑑𝑝′ + ∫ 𝑆0 𝑑𝑧
𝑧

0
        (28) 

In this instance, where ℎ = ℎ(𝑝 − 𝑝0) 

On the other hand, Equation (28) can be written as 

𝑄 = ∫ 𝑆0 
𝑝1−𝑝0
𝑝2−𝑝0

𝑑𝑝′ + 𝐹𝑆0          (29) 
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The equilibrium condition determines ℎ(𝑝 − 𝑝0), If 

the tension or stress 𝑇(ℎ) in the tube wall is also 

called a function of ℎ. 

𝑇(ℎ)

ℎ
= 𝑝 − 𝑝0             (30) 

Method of Rubinow and Keller 

Static pressure-volume relationship of a 4cm 

section of human external artery is translated to a 

tension against length curve and applied to arterial 

flow. Using the least-squares method, Rubinow and 

Keller [22] developed the following equation. 

𝑇(ℎ) = 𝑡1(ℎ − 1)+𝑡2(ℎ − 1)
5         (31) 

When we use (31) in place of (30), we get  

d𝑝′ = [
𝑡1

ℎ2
+ 𝑡2 (4ℎ

3 − 15ℎ2 + 20ℎ − 10 +
1

ℎ2
)]  𝑑ℎ      (32) 

where 𝑡1 = 13   and 𝑡2 = 300  

Equation (29) can be written as, using equation (32) 

𝑄 = ∫ 𝑆0
𝑝1−𝑝0
𝑝2−𝑝0

[
𝑡1

ℎ2
+ 𝑡2 (4ℎ

3 − 15ℎ2 + 20ℎ − 10 +
1

ℎ2
)]  𝑑ℎ + 𝐹(ℎ(𝑝2 − 𝑝0)

4)   (33) 

Flux is simplified even further 

𝑄 = 𝑔(ℎ1) − 𝑔(ℎ2) + 𝐹ℎ2
4 

Where 𝑔(ℎ) = 𝑡1 (−
𝑆0

ℎ
) + 𝑡2 (ℎ

4 − 5ℎ3 + 10ℎ2 − 10ℎ −
1

ℎ
) 𝑆0 

ℎ1 = ℎ(𝑝1 − 𝑝0) 

ℎ2 = ℎ(𝑝2 − 𝑝0)          (34) 

Method of Mazumdar 

The tension relationship can be written as follows, according to Mazumdar [21] 

𝑇(ℎ) = 𝐴(𝑒𝑘ℎ − 𝑒𝑘)          (35) 

By substituting Eq. (35) in Eq. (30) for  𝐴 = 0.007435 and 𝑘 = 5.2625, we get  

𝑝 − 𝑝0 = 𝐴 [
𝑒𝐾ℎ

ℎ
−
𝑒𝐾

ℎ
] 

𝑑𝑝′ = 𝐴 [𝑒𝐾ℎ (
𝐾

ℎ
−

1

ℎ2
) +

𝑒𝐾

ℎ2
] 𝑑ℎ         (36) 

We get the flux by putting Eq. (36) into Eq. (29) 

𝑄 = ∫ 𝑆0
𝑝1−𝑝0
𝑝2−𝑝0

𝐴 [𝑒𝐾ℎ (
𝐾

ℎ
−

1

ℎ2
) +

𝑒𝐾

ℎ2
]  𝑑ℎ + 𝐹(ℎ(𝑝2 − 𝑝0)

4)  

Where ℎ = ℎ(𝑝 − 𝑝0) 

𝑄 =
1

8
[(𝑔(ℎ1) − 𝑔(ℎ2))] + 𝐹ℎ2

4        (37) 

Where 𝑔(ℎ) =
𝑒𝑘ℎ

𝑘3
(ℎ3𝑘3 − 4ℎ2𝑘2 + 8ℎ𝑘 − 8) + 𝑒𝑘

ℎ3

3
 

Results and Discussions 

The effect of elasticity on peristaltic pumping may 

have several biological applications in the design of 

artificial pumps. It is a natural phenomenon 

observed in every living system. In the present 

article we considered two types of phenomenon 

one is elasticity and other one is couple-stress fluid. 

The knowledge pertaining to elasticity with 

different Non–newtonian fluids have many 

industrial applications. 

The flow pattern of peristaltic blood transport in an 

elastic tube is examined in this work. Blood is used 

as a couple-stress fluid here. Change in fluid flux 

for various physiological parameters such as 
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couple-stress fluid parameters (�̅�, �̅�), Brownian 

motion parameter (𝑁𝑏), Thermophoresis parameter 

(𝑁𝑡), Local temperature Grashof number (𝐺𝑟), and 

local nanoparticle Grashof number (𝐵𝑟) was 

detailed and graphically represented in this paper. 

Mathematica is used to create the graphs. 

Figures 2 to 9 shows the variation in volume flow 

rate using Rubinow and Keller method for different 

parameters.  

The effect of elastic parameters 𝑡1 and 𝑡2 on flux 

variation is found from Figs. 2 and 3 respectively. 

That is with increasing values of elastic radius 

parameters promotes the flux in elastic tube i.e., 

when the radius of the tube increases then collision 

between the molecules also upsurges resulting in 

increase of the flux. 

Figures 4 and 5 illustrate the flux decreases with 

increasing values of Brownian motion 

parameter(𝑁𝑏) and Thermophoresis parameter(𝑁𝑡). 

It is interesting to note that in figure 4, values are 

constant for shorter period of time and further the 

flux decreases along the tube radius is more than 

6.5. 

Figures 6 and 7 shows the variation of flux rise 

with respect to radius. It is clear that the flux 

increased with increase of Local temperature 

Grashof number(𝐺𝑟) and local nanoparticle 

Grashof number(𝐵𝑟). It is observed from the fig.7 

shows a constant value upto radius 7 and it starts to 

decline later. 

The flux along tube radius for numerous values of 

couple-stress fluid is shown in figures 8 and 9. It is 

evident that the increasing values of couple-stress 

fluid increases the flux variation. 
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The similar behaviour is observed from Figures 10 

to 17 shows the variation in volume flow rate using 

Mazumdar method for different parameters. 

Figures 10 and 11 show that the flux increases as 

the elastic parameters 𝐾and 𝐴 increase. In 

particular the elastic parameter 𝐾 shows more 

effect on the flux when compared to 𝐴. 

Figures 12 and 13 illustrate the flux variation along 

tube radius for change in standards of Brownian 

motion parameter(𝑁𝑏) and Thermophoresis 

parameter(𝑁𝑡). With rising levels of 𝑁𝑏 and 𝑁𝑡, the 

volume flow rate clearly drops. It is also interesting 

to note that in figure 12 and 13, values are constant 

for shorter period of time and further the flux 

decreases along the tube radius is more than 2. 

Figures 14 and 15 show the flux fluctuation around 

the radius for various values of the local 

temperature Grashof number(𝐺𝑟) and local 

nanoparticle Grashof number(𝐵𝑟). It represents that 

the flux increases for increasing 𝐺𝑟  values whereas 

it increases with increasing 𝐵𝑟  values. It is noticed 

from figures 14 and 15 shows a constant value upto 

radius 2 and it starts to decline later. 

Figures 16 and 17 represents, flux variation along 

radius of the elastic tube for different couple-stress 

fluid numbers. From these graphs, one can see the 

increase in couple-stress fluid increase flux for 

different values. 
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Streamline patterns 

Trapping is a fascinating occurrence of fluid 

movement. In other cases, the wave frame's 

streamlines swell to capture a bolus that flows with 

the wave speed as an inlet. Trapping is the process 

of a closed streamline producing an internally 

flowing bolus. The wave pattern moves the bolus, 

which is defined as a capacity of fluid surrounded 

by closed streamlines in the wave frame. The 

streamlining patterns for various parameters are 

depicted in Figures 18-19. With increasing 𝐵𝑟  and 

𝐺𝑟  levels, the size of the trapped bolus grows. 
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Conclusions 

Rubinow and Keller & Mazumdar techniques are 

used to investigate flux variations caused by the 

tube's elastic nature. Graphically, the impacts of 

various physical factors on flux variation 

throughout the tube radius are examined. The 

following are some of the most important 

observations. 

1. When the elastic parameters 𝑡1, 𝑡2, 𝐾 & 𝐴 are 

increased, the flux increases. 

2. Flux grows as 𝐺𝑟 , 𝐵𝑟, and couple-stress fluids 

increase in value. 

3. As  𝑁𝑏 and  𝑁𝑡 increase, the flux of a couple-stress 

fluid in an elastic tube with peristalsis falls. 

4. The size of the confined bolus grows as 𝐺𝑟  and 𝐵𝑟  

increase. 
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