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Abstract: This paper introduces a novel method that uses a multi-input LSTM model to precisely predict the charging loads of electric 

vehicles (EVs), which is essential for efficient energy management at charging stations. By utilizing particular characteristics such as 

temperature, humidity, and wind speed from the UCI database, the model analyzes this data to produce accurate forecasts. The integration 

of diverse inputs through the incorporation of a Bayesian network for data fusion improves the predictions given by LSTM. Comparative 

assessments of various input factors demonstrate differing levels of accuracy in predicting energy consumption patterns, highlighting the 

crucial importance of certain inputs in improving predictive performance. The study assesses the accuracy of LSTM predictions by 

comparing them to real energy consumption data within a 24-hour timeframe, offering useful information to enhance future forecasting 

techniques. This study highlights the significance of selecting suitable input variables to maximize the performance of LSTM models and 

their crucial role in effectively controlling energy requirements at electric vehicle charging stations. 
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1.Introduction 

Recently, there has been a growing demand for electric 

vehicles as a more environmentally friendly and 

sustainable option compared to conventional combustion 

engine automobiles. Consequently, there has been a 

proliferation and enlargement of EV charging networks to 

accommodate the growing population of electric vehicles 

on the streets. Various studies have investigated various 

aspects of improving EV charging networks, such as 

employing advanced fusion algorithms that integrate 

knowledge from LSTM, Bayesian networks, and deep 

learning. These advanced fusion approaches have the 

ability to enhance charge scheduling, optimize charging 

station allocations, and minimize both charging prices and 

waiting times. [1] 

With the escalating urgency of environmental issues on a 

global scale, it has become absolutely necessary to 

address climate change by swiftly reducing greenhouse 

gas (GHG) emissions. In response to these difficulties, 

novel approaches utilizing the incorporation of renewable 

energy and the advancement of transportation systems 

have arisen. The increasing number of electric vehicles 

(EVs) and the integration of renewable energy sources 

have become important factors in contemporary transportation 

and electrical networks. 

In the midst of worldwide endeavors to reduce greenhouse gas 

emissions, renewable energy has become increasingly popular 

in modern power systems. Concurrently, the progressive 

elimination of vehicles powered by internal combustion engines 

in different areas has stimulated an increase in the adoption of 

electric vehicles. The spike in this phenomenon can be 

attributed to factors like cost-effectiveness, rising oil prices, and 

the promotion of sustainable development. Additionally, the 

dramatic decrease in battery costs over the last decade has 

further facilitated this trend. According to research conducted 

by the International Energy Agency (IEA), it is projected that 

electric vehicles (EVs) might effectively reduce carbon dioxide 

(CO2) emissions in the transportation industry by around 21% 

by the year 2050 [2]. Consumer Reports' survey highlights an 

increasing desire for electric vehicles (EVs) that have the ability 

to travel longer distances, indicating a preference among the 

public for vehicles with ranges above 250 miles. Nevertheless, 

significant obstacles to wider acceptance of electric vehicles 

persist, including apprehensions around EV travel habits and 

range anxiety. These problems exacerbate the unpredictability 

of electric vehicle (EV) electrical consumption, which deviates 

greatly from patterns of household energy usage. The extensive 

use of connected charging stations magnifies the effects of 

electric vehicles' (EVs') growing popularity and unpredictable 

behavior on the electrical system. 

The charging and discharging of electric vehicles have the 

potential to disturb the quality and stability of electricity, which 

can have an impact on the flexibility of the power system. The 

convergence of peak demands and electric vehicle charging 

instances presents challenges, leading to unpredictable load 
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profiles. As a result, aggregators have emerged in the 

power market to efficiently handle these needs. 

Renewable energy technologies, when included in 

conventional power grids, facilitate the shift from 

centralized power systems to decentralized structures. 

Nevertheless, the unpredictable nature of renewable 

power generation systems presents difficulties during 

periods of high demand, occasionally surpassing the 

maximum capacity of the grid. [3] [4] Because these 

systems are naturally flexible and battery technology and 

electric vehicle capabilities are getting better, electric 

vehicles might be able to be used as temporary energy 

storage solutions, helping to handle times of high demand 

and keeping the power grid stable. Electric vehicles, when 

combined with energy storage systems (ESS), have the 

potential to stabilize power networks and assist in 

managing peak demand by utilizing renewable energy 

storage. 

2.Related Works 

Qi et al. (2022) [5] proposed that EV charging 

requirements in urban distribution networks are 

expanding, so the authors addressed the crucial issue. The 

study suggested a two-stage charging scheduling method 

using deep reinforcement learning (DRL) to improve 

power quality and charge household EVs off-peak. Deep 

reinforcement learning optimizes charging patterns using 

different input data to generate a flexible and intelligent 

charging strategy. Meeting EV charging's changing needs 

requires adaptability. Power congestion and peak-valley 

disparities are reduced by regulating the active 

distribution network (ADN) power flow in the first stage. 

This boosts grid stability and power quality. Deep 

reinforcement learning for real-time charging scheduling 

is computationally demanding. DRL algorithm training 

and optimization demand a lot of computing power and 

time, which can hamper their application in large 

distribution networks. Liu et al. (2023) [6] explored DRL-

scheduled EV charging. They studied scheduling and 

distribution network voltage stability. A DRL framework 

and Deep Deterministic Policy Gradient (DDPG) were 

utilized to optimize distribution network electric vehicle 

(EV) charging and voltage control. The approach uses 

data rather than uncertain system models with Deep 

Reinforcement Learning (DRL). Continuous scheduling 

and discrete control signals can be created 

simultaneously. The use of power system data for training 

and testing boosts real-world relevance. DRL methods 

may involve extensive calculations and hyperparameter 

tuning. The paper proposes an innovative and effective 

distribution network electric vehicle charging and voltage 

control synchronization method. Hafeeze et al. (2023) [7] 

suggested utilizing deep learning to control EV charging 

station demand. The initiative addresses CO2 emissions 

and energy demand with data analysis and advanced 

machine learning. The authors developed a demand-side 

management system for a microgrid-connected solar-powered 

electric car charging station using real-time data from PV power 

stations, commercial loads, residential loads, and EV charging 

stations. Deep learning controls microgrid energy supplies and 

charges electric vehicles during low demand. Two machine 

learning algorithms for energy storage system charge estimation 

are compared. LSTM vs. VARIMA is the key comparison. 

Dual-stage control is used in the investigation. The control 

system addresses nonlinearities in the planned transportation 

network components. Data-driven component modeling is also 

stressed in the study. It may cut CO2 and optimize energy 

utilization. Current data and machine learning algorithm 

evaluations reveal a powerful sustainable energy system 

technique. In the World Electric Vehicle Journal, Kosuru et al. 

(2023) [8] extensively examined electric vehicle smart battery 

management systems (BMS). The study normalized sensor data 

using Z-scores. After feature extraction, the marine predator and 

incipient bat algorithms picked features. The study introduced 

bat-specific IB-DRN. This system scored well in accuracy, 

precision, recall, and F1. These data suggest that IB-DRN could 

increase BMS safety and reliability. Liu et al. (2021) thoroughly 

investigated EV charging infrastructure dependability. 

Consumer reviews and EV charging station ratings were 

analyzed using cross-lingual deep learning. The three-stage 

technique employs machine translation, multi-label 

classification, and econometric analysis to study electric car 

consumer behavior, public policy, and infrastructure 

management. BERT is optimized for multi-topic classification 

of electric vehicle user reviews in many languages and 

statistical correction utilizing econometric analysis. The 

research team uses machine learning and human-in-the-loop 

technologies to handle unstructured text data in several 

languages. This provides a good framework for EV charging 

infrastructure reliability evaluation. The approach may analyze 

consumer reviews in their native languages, overcome language 

barriers, and gather varied consumer perspectives. 

 

Fig 1: Proposed Model structure 

3.System Modeling 

Figure 1 provides an overview of how our model is structured. 

These scenarios serve as inputs for our LSTM model. The 

LSTM's output is then fed into the data fusion model, refining 

the initial predictions generated by the LSTM.There are two 
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main parts to the system model: the LSTM model, which 

uses deep learning to make initial predictions about EV 

loads, and the data fusion model, which uses data from 

both the LSTM and other sources to improve those 

predictions. There are two sections to this part. The deep 

learning model's associated equations are first given. In 

addition, we go into detail on how these equations relate 

to the prediction model. 

3.1 LSTM Model 

Applications of deep learning include audio processing, 

pattern identification in video and picture data, time series 

forecasting, and other high-dimensional problems with 

complex interactions. Concepts in deep learning are very 

good at using historical data to infer the salient 

characteristics of a big phenomenon. When compared to 

other data-driven approaches, this one is far superior. 

Long Short-Term Memory (LSTM) is a specific sort of 

recurrent neural network (RNN) structure that is 

specifically developed to tackle the issue of the vanishing 

gradient problem that is commonly faced by standard 

RNNs. LSTMs provide the ability to acquire knowledge 

of long-term connections in sequential data by selectively 

preserving or discarding information across different time 

spans. LSTM units consist of different components 

known as gates, which control the flow of information 

within the network. These gates include: 

Forget Gate:The forget gate determines what information 

from the previous cell state Ct−1 needs to be discarded or 

forgotten. It takes the previous hidden state ht−1 and the 

current input xtas input and produces a forget vector 

ftbetween 0 and 1 for each element in the cell state Ct−1. 

This gate helps the LSTM decide what information is 

irrelevant for the current prediction. 

Input Gate:The input gate decides what new information 

to store in the cell state Ct. 

It consists of two sub-components: 

Update Gate (it): Determines which values need to be 

updated in the cell state. 

Candidate Values (C˜t): Compute a candidate vector of 

new values that could be added to the state. 

The input gate then combines these two components to 

compute the updates to the cell state. Cell State Update: 

The updates calculated by the input gate are used to 

update the cell state. 

Ct−1 to Ct. 

Output Gate:The output gate decides what information to 

output as the hidden state ht. 

Final Hidden State (ht): Multiplies the output of the LSTM 

cell with the tanh of the updated cell state. 

  

We sort and classify the data that we've collected. Specifically, 

we need to record the following: energy consumption, 

temperature, humidity, and wind speed. To get the relevant 

model features, the data is used to train the LSTM model. Input, 

output, and forget gates make up the block's three operating 

gates. Several LSTM blocks are stacked to form the networks. 

Long Short-Term Memory (LSTM) networks are a type of 

recurrent neural network (RNN) used for sequence prediction 

and processing. Here are some equations related to LSTM: 

Forget gate: Input gate: 

ft= σ(Wf  · [ht−1, xt] + bf) 

Input gate 

it= σ(Wi · [ht−1, xt] + bi) 

C˜t= tanh(WC · [ht−1, xt] + bC) 

updates = it × C˜t 

Cell state update: 

Ct= ft × Ct−1 + updates 

Output gate: 

ot= σ(Wo · [ht−1, xt] + bo) 

ht= ot × tanh(Ct) 

 

3.2 Algorithm 

Start Operation 

// Define clusters and corresponding forecasting networks 

clusters = Cluster Samples(Temperature, Humidity, Wind 

Speed) forecasting Networks = Assign Forecasting 

Networks(clusters) 

// Match input samples to clusters using LSTM network for each 

sample in Input Samples: 

    cluster = Find Nearest Cluster (sample, clusters) 

forecasting Network = forecasting Networks[cluster]     target = 

Calculate Centroid (cluster) predicted Output = Run LSTM 

Network(sample, forecasting Network) 

Compare Output With Target (predicted Output, target) End 

Operation 

Grouping data samples by environmental characteristics like 

temperature, humidity, and wind speed is the first step. 

Clustering samples with similar properties is necessary for 

predictive modeling. K-means or hierarchical clustering are 

used to efficiently cluster these samples. After clustering, the 

algorithm assigns forecasting networks or models to each 

cluster. Customizing forecasting models for each cluster 

improves accuracy because each cluster has unique qualities or 

trends. In this stage, one must choose or train models that 

accurately characterize cluster data to improve forecast 

accuracy. LSTM networks examine environmental data trends 
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and predict the most likely cluster for a new sample. This 

level helps organize new data within the cluster 

framework.The technique evaluates predictive efficacy by 

comparing the LSTM network's forecast to the cluster's 

expected centroid or goal. This comparison shows how 

well the predictive model matches data trends. It measures 

prediction model accuracy by assessing the agreement or 

disagreement between the expected outcome and the 

cluster center. Data-driven technologies, including 

clustering algorithms, tailored forecasting models, and 

LSTM networks, collect environmental data and make 

predictions based on clusters in this operational cycle. 

Bayesian networks require additional probabilistic 

reasoning or inference techniques to improve grouping 

and prediction tasks. 

4.Data Fusion Method 

Data fusion combines data from multiple sources to 

provide more valuable, accurate, and trustworthy 

outcomes. Animals and humans use multiple senses to 

survive, which inspired data fusion. Using sight, touch, 

smell, and taste can help assess if something is edible. The 

three main data fusion strategies are decision fusion, data 

association, and state estimation. Bayesian inference can 

change our views or probability when fresh evidence 

comes in. This method determines the posterior 

probability distribution by multiplying the prior 

distribution by the likelihood function based on additional 

evidence from many sources. Fusion, which updates 

probability using Bayesian principles, is a dependable 

way to combine data from several sources. 

Bayesian inference is better at estimating electric car 

charging station demand than Dempster-Shafer evidence 

theory (D-S theory) and handles uncertainty differently. 

Bayesian inference handles prediction uncertainty using 

probability distributions, while D-S theory employs 

interval estimates. This technique quantifies uncertainty 

by assigning probability to events or states by providing a 

structured framework to depict interactions between 

variables. Bayesian networks emphasize probability 

estimates above D-S theory's categorization of 

discriminating frames, BPA, belief functions, and 

plausibility functions. It records interdependencies and 

interactions between variables using probabilistic 

inference to explain ambiguous information in a flexible 

and scalable fashion. 

 D-S theory uses mutually exclusive and exhaustive sets, 

while Bayesian inference uses probabilities and 

conditional dependencies to express uncertainty. This 

graphical model shows probabilistic relationships 

between variables, using nodes for variables and edges for 

dependencies. Electric vehicle (EV) load prediction uses 

Bayesian inference to probabilistically incorporate input 

dependencies like temperature, humidity, and wind speed 

in a structured model. Bayesian inference can learn from fresh 

evidence and change predictions due to its probabilistic nature. 

Unlike D-S theory's mass functions, Bayesian inference directly 

estimates probabilities, providing a more precise representation 

of event likelihood. Bayesian inference assigns probability to 

situations instead of comparing actual and expected evidence to 

explicitly evaluate predictions. Unlike D-S theory, which 

emphasizes interval estimates and builds the framework around 

discernment frames and belief functions, Bayesian inference 

uses conditional  

probabilities and graphical structures to model EV charging 

demand forecasting uncertainties in a more direct and 

interpretable manner.Different variables that encapsulate the 

range of possible outcomes constitute the predicted load 

forecasts in our Bayesian inference framework. Our Bayesian 

model includes many possible load scenarios, which lets us 

fully analyze their chances and how they might affect each 

other. It does this by including a variety of possibilities and 

showing the different states that the electrical vehicle load could 

be in. 

Algorithm: Bayesian Inference 

Input: - Dataset D containing observed variables and outcomes 

- Prior probabilities P(H) for hypotheses 

Output:- Posterior probabilities P(H|E) for hypotheses after 

observing evidence E 

1: function CalculatePosterior(D, P(H)) 

2:    Initialize Prior Priors = P(H) 

3:    for each hypothesis H in P(H) do 

4:        Compute Likelihood P(E|H) using the dataset D and 

hypothesis H 

5:        Update Priors(H) = Priors(H) * P(E|H)   // Bayes' 

Theorem 

6:    end for 

7:    Normalize Priors to obtain Posterior P(H|E) using P(H|E) 

= P(H) * P(E|H) / P(E) 

8:    return Posterior P(H|E) 

9: end function 

4.1.System Implementation 

Utilizing Bayesian inference, our approach leverages 

predictions from the LSTM model based on various input 

features obtained from previous days. These LSTM-derived 

predictions guide the selection of the best strategy for producing 

accurate load forecasts for the upcoming 24-hour period. To 

validate the credibility of these predictions, we compare them 

against actual previous charging loads. By evaluating the 

accuracy of our LSTM-driven predictions in the last 5 hours, 5 

to 10 hours, and 10 to 15 hours against real charging loads, we 

assess the reliability of our forecasting model. The process 
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initiates with three input samples utilized by the LSTM 

model, which subsequently generates outputs. These 

outputs are inputs for the data fusion model, refining the 

initial LSTM predictions. Our methodology diverges 

from D-S theory by leveraging the Bayesian inference 

technique. The LSTM’s varied predictions derived from 

diverse historical data inputs aid Bayesian inference in 

selecting optimal strategies for load forecasting over the 

next 24 hours. 

 

Validating the credibility of V1, V2, and V3 predictions 

involves comparingthem against previous actual charging 

loads, specifically evaluating predictionswithin the last 5 

hours, between 5 and 10 hours ago, and 10 to 15 hours 

ago.These comparisons, categorized as events E1, E2, and 

E3, enable a comprehensive assessment of prediction 

accuracy against actual charging loads. 

Table1:Decision matrix for LSTM and Bayesian predictions 

  
LSTM-

V1 

LSTM-

V2 

LSTM-

V3 

Bayesian-

V1 

Bayesian-

V2 

Bayesian-

V3 

LSTM-V1 30% 26% 44% 12% 8% 20% 

LSTM-

V2LSTM-

V3 

31% - - - - - 

  35% - - - - - 

  V1 V2 V3 V1 V2 V3 

Bayesian-

V1 
9.30% 8.06% 13.64% 3.60% 2.50% 5.80% 

Bayesian-

V2 
10.20% - - - - - 

Bayesian-

V3 
10.50% - - - - - 

  V1 V2 V3 V1 V2 V3 

V1 - 8.84% 14.95% - 1.70% 3.50% 

V2 - - 15.40% - - 2.80% 

              

 

This table represents a decision matrix based on the 

predictions derived from LSTM (LSTM-V1, LSTM-V2, 

LSTM-V3) and Bayesian inference (Bayesian-V1, Bayesian-

V2, Bayesian-V3). The percentages indicate the combination 

or intersection between these predictions for various events. 

Table2:D e c i s i o n  m a t r i x  f o r  the degree of confidence or belief in the combined event 

  V1 V2 V3 V1V2 V1V3 V2V3 
V1V2 

V3 

V1 12.50% 5.30% 8.90% 6.20% 7.10% 9.80% 8.50% 

V2 8.40% 9.10% 6.70% 7.30% 6.80% 9.20% 7.90% 

V3 10.10% 6.20% 11.80% 8.30% 9.70% 10.40% 9.90% 

V1V2 7.60% 7.80% 8.00% 8.10% 7.90% 8.30% 8.20% 

V1V3 8.90% 7.10% 9.50% 8.20% 9.10% 9.40% 9.30% 

V2V3 9.70% 8.00% 9.30% 8.90% 9.20% 9.80% 9.60% 

V1V2 
8.30% 7.90% 9.10% 8.20% 8.70% 9.50% 9.00% 

V3 

E3V1 7.50% 6.50% 8.00% 7.60% 7.90% 8.50% 8.20% 

E3V2 9.00% 7.80% 9.30% 8.80% 9.10% 9.80% 9.60% 

E3V3 8.70% 8.20% 9.50% 9.00% 9.30% 9.80% 9.70% 
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The columns depict the various combinations of these 

occurrences or forecasts (V1V2, V1V3, V2V3, V1V2V3). 

Each cell in the table has a numerical number representing 

the degree of confidence or belief in the combined event. 

A matrix of this nature facilitates decision-making by 

consolidating data from several sources or projections to 

generate a more precise and dependable forecast or 

conclusion. The percentages indicate the level of certainty 

in the combined events, derived from the information 

gathered through the LSTM and Bayesian Inference 

techniques. 

5.Simulation Results and Discussion 

This study presents a novel method for predicting the 

electric vehicle (EV) charging load, which is a crucial 

aspect of optimizing energy management at EV charging 

stations. The core of our approach is a multi-input LSTM 

model specifically crafted to forecast the charging load 

demanded by electric vehicles (EVs). By utilizing three 

specific forecast parameters—temperature, humidity, and 

wind speed—obtained from the UCI database [50], our 

model was customized to efficiently analyze this data in 

order to produce accurate forecasts.The evaluation of 

model performance was carried out using the widely 

recognized mean absolute error (MAE) performance 

metric, confirming the effectiveness of our approach. The 

LSTM model utilized the first input parameter (V1) to 

anticipate the energy demand and determine the necessary 

energy load for electric cars (EVs) within a specific 

timeframe. The model's predictions were evaluated by 

comparing the current energy demand with the projected 

numbers. 

The recorded energy demand values for a period of ten 

consecutive hours were compared to the anticipated 

values generated by the LSTM model utilizing V1 input. 

The projected energy consumption was assessed using 

historical data and weather-related information, which 

formed the V1 input parameter. The graph below depicts 

the comparison between the real energy demand and the 

predicted energy demand using V1 input over a span of 

10 hours. 

 

Fig 2: Prediction by taking into consideration the first 

parameter for LSTM model  

The graph (Figure 2) depicts the variation in energy use 

(measured in kilowatts) over a certain ten-hour period. The blue 

solid line represents the actual energy demand observed during 

this specific time period. In contrast, the red dashed line depicts 

the anticipated energy usage based on the LSTM model using 

the V1 input parameter. Over time, the expected energy demand 

closely matches the actual demand pattern, suggesting a reliable 

prediction aligned with the observed energy requirements. 

There are slight discrepancies between the observed and 

predicted figures, which show that the model can accurately 

represent changes in energy usage. 

The closeness of the red dashed line to the blue solid line 

demonstrates the efficacy of the LSTM model in utilizing V1 

input to precisely predict the energy demand for EV charging 

within the specified timeframe. The objective of the LSTM 

model is to forecast the energy consumption for electric cars 

(EVs) within a specific time period using the second input 

parameter (V2). A comparison was made between the current 

energy consumption and the projected numbers in order to 

assess the model's predictive precision. The graph illustrates the 

hourly energy use (in KW) over the specified ten-hour 

timeframe. The solid blue line depicts the real observed energy 

demand during this time period, while the red dashed line shows 

the predicted energy demand produced from the LSTM model 

using the V2 input parameter. Upon examining the graph, it is 

evident that the projected energy demand closely mirrors the 

actual demand pattern, suggesting a strong correlation between 

the predicted and observed energy needs. Small discrepancies 

between the actual and predicted values show that the model is 

able to capture variations in energy consumption. 

The close proximity between the red dashed line and the blue 

solid line illustrates the efficacy of the LSTM model in 

accurately forecasting the energy consumption for EV charging 

within the given time period using the V2 input parameter. 

 

Fig 3:Prediction by taking into consideration the second 

parameter for LSTM model  

The graph (Figure 3) presents a comparison examination of the 

actual energy consumption, shown by the blue line, and the 

anticipated energy demand based on the third input parameter 

(V3) of our LSTM model, represented by the red dashed line. 

The blue line represents the measured energy demand seen 

during a sequence of time intervals, including variations in real-
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time power usage. The peaks and troughs in this line 

illustrate the fluctuations in energy usage, demonstrating 

the inherent variability in energy demand. In contrast, the 

red dashed line indicates the projected energy 

consumption obtained from the LSTM model's 

examination of past patterns recorded in the third input 

parameter (V3). Differences between the expected and 

actual demand curves indicate discrepancies in cases 

where the model's projections deviate from observed 

values. A stronger correlation between the two lines 

indicates greater precision in the model's predictions, 

while substantial discrepancies suggest the need for 

potential modifications or enhancements to improve the 

model's ability to make accurate projections. This visual 

comparison offers vital insights into the model's 

performance, facilitating the evaluation of its usefulness 

in forecasting energy consumption using the third input 

parameter. 

 

Fig 4: Prediction by taking into consideration the third 

parameter for LSTM model 

 

The comparative examination between the actual energy 

demand and the anticipated need, utilizing different input 

parameters (V1, V2, and V3) from the LSTM model, 

provided valuable insights into the model's predictive 

ability. 

1. Forecast Using V1 Input Parameter: • The forecast 

generated using the first input parameter (V1) showed a 

reasonably accurate correlation with the actual energy 

demand. Nevertheless, there were discernible disparities 

between the projected and actual demand, especially 

during periods of high load. 

2. Forecast Utilizing V2 Input Parameter: • The forecast 

produced by utilizing the second input parameter (V2) 

demonstrated a rather robust association with the actual 

energy consumption, exhibiting less discrepancies in 

comparison to V1. The model demonstrated a higher level 

of accuracy in capturing the patterns, resulting in superior 

performance in predicting energy use. 

3. The utilization of the third input parameter (V3) for 

forecasting led to forecasts that nearly matched the actual 

energy demand, demonstrating a significant convergence 

between the anticipated and observed values. The inclusion of 

this input parameter clearly enhanced the model's capacity to 

reliably forecast energy consumption, demonstrating promising 

prospects for enhanced precision in forecasting. 

Overall, the model demonstrated different levels of accuracy 

and precision in predicting energy consumption, but all three 

input parameters contributed to its predictive capability. The 

third input parameter (V3) showed the highest accuracy in 

predicting energy consumption patterns, emphasizing its 

importance in improving the model's predictive ability. These 

findings emphasize the significance of choosing suitable input 

parameters to enhance the LSTM model's predictive 

performance when forecasting energy demand. 

 

Fig 5: Comparative analysis of LSTM outcomes, optimized 

outcomes, and actual energy consumption. 

Figure 5presents a detailed comparison of three separate data 

sets: the projected energy demands obtained from the Long 

Short-Term Memory (LSTM) model, the improved findings 

achieved through enhanced methodologies, and the real energy 

usage recorded over a 24-hour period. The x-axis represents a 

24-hour time period, with each hour displayed, while the y-axis 

measures the energy usage in kilowatts (KW). 

The dashed line in the LSTM Results represents the initial 

projections generated by the LSTM model. These projections 

are based on historical data and a variety of input elements, 

including meteorological conditions, with the goal of 

forecasting the anticipated energy needs. The Optimized 

Results (Solid Line) represent the improved energy demand 

predictions. This optimization procedure entails utilizing 

advanced approaches or models to improve the precision and 

dependability of the initial LSTM forecasts. 

The Actual Energy Demand (Dotted Line) represents the actual 

energy consumption recorded during the same 24-hour period, 

in contrast to the projected values. This dataset provides 

accurate information on energy consumption, which is used as 

a benchmark to assess and examine projected values. 

Key findings obtained from this Comparative Analysis: 

Examining the differences between the predicted values and the 

real energy demand yields useful information into the efficiency 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3363–3370 |  3370 

and dependability of the forecasting algorithms. It enables 

the detection of trends, patterns, and possible deviations 

in the forecasts, providing an opportunity to assess the 

accuracy of the models and make required adjustments or 

enhancements for future projections. 

The comparison graph serves as a crucial instrument for 

evaluating the efficacy and reliability of the forecasting 

models. It provides valuable analysis of the advantages 

and drawbacks of each method, offering guidance for 

prospective improvements to optimize future predictions 

and increase their precision in forecasting energy use. 

6.Conclusion 

This work presents a new method that utilizes a multi-

input LSTM model to estimate electric vehicle (EV) 

charging load with high accuracy. This prediction is 

crucial for optimizing energy management at charging 

stations. Our model efficiently utilized temperature, 

humidity, and wind speed forecast characteristics 

obtained from the UCI database to accurately provide 

forecasts. Applying DS-Theory to increase LSTM-

generated predictions by integrating inputs (1), (2), and 

(3). The comparative investigation of various input 

characteristics (V1, V2, V3) shown differing levels of 

accuracy in forecasting energy consumption patterns. 

Significantly, V3 exhibited the highest level of accuracy, 

emphasizing its crucial function in enhancing predictive 

performance. These findings highlight the importance of 

selecting the optimal input parameters to maximize the 

prediction capacity of the LSTM model. Moreover, the 

assessment of LSTM predictions against real energy use 

throughout a 24-hour timeframe enabled a thorough 

examination, highlighting patterns and discrepancies and 

offering valuable perspectives for improving future 

forecasting approaches. 
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