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Abstract: A burden on global health, chronic kidney disease (CKD) affects about 10% of adult population worldwide. It is 

acknowledged as one among the top 20 global causes of death. Although there exists treatment for chronic kidney disease, early 

detection of the illness can help mitigate the damage and slow down the disease's progression. Consequently, to improve the accuracy 

and effectiveness of the conventional chronic kidney disease diagnosis system, contemporary computer-aided approaches must be used. 

In the suggested ensemble model, Support Vector Machine (SVM) used as the stacking ensemble model, which mixes two hybrid deep 

learning models.  The dataset of CSV files used to detect CKD was obtained from the Kaggle repository in order to validate our model. 

Convolutional neural network- Gated Recurrent Unit (CNN-GRU) and Convolutional neural network-Long short-term memory (CNN-

LSTM) are the two hybrid models employed in the model. With a high accuracy of 98.95%, the model produced generally accurate 

predictions. Recall and precision ratings of 98.56 and 100 respectively, show how accurate the classifications model can be.  The 

suggested stacking ensemble model was contrasted with both our own implementation and alternative methods for detecting CKD. The 

proposed approach outperforms other existing techniques in terms of performance, while utilizing the model to prevent overfitting. 

Keywords: Creatinine, Convolutional neural network, chronic kidney disease, long short-term memory, Cardiovascular disease, Gated 

Recurrent Unit. 

1. Introduction 

“Health is the greatest of all possessions; a pale cobbler is 

better than a sick king” is a proverb stated by Mr. Isaac 

Bickerstaff. Health is wealth; it is the most valuable thing. 

Various illnesses can have an impact on human health. 

Long-lasting illnesses known as chronic diseases are 

regarded as the primary global cause of disability and 

mortality. Globally, the prevalence of these illnesses is 

increasing, spreading to every area and impacting all 

socioeconomic groups. According to the World Health 

Report, chronic illnesses account for more than 79% of 

fatalities in poor nations. There is a strong correlation 

between cardiovascular disease [1] (CVD), diabetes 

mellitus [2], and CKD. Consequently, these three illnesses 

are increasingly prevalent risk factors among people in the 

modern period. The results of the study indicate that at 

least 50% of people with heart disease will eventually 

experience CKD [3]. The prognosis of these conditions 

will be negatively impacted by the diagnosis of CKD, 

which will also increase the morbidity of CVD. It is also 

evident that a patient has a very significant chance of 

getting CKD if their CDM remains undetected [4]. 

Figure 1 provides a visual representation of the internal 

structure of the kidney. The kidneys are two bean-shaped 

organs that are located behind the belly and beneath the 

ribs on either side of the spine [5]. They have a role in 

controlling blood pressure, maintaining electrolyte balance, 

and helping the body produce red blood cells. The two 

renal arteries supply blood to the kidney, which filters it 

before it leaves the kidney through the two renal veins. 

Urine excretion is transported to the bladder by the urethra, 

a tube. Because the liver is larger on the right side of the 

body, the left kidney is situated slightly higher than the 

right kidney [6]. 

 

Fig. 1. Internal Structure of Kidney 

Because of the insulin resistance in diabetic patient's 

bodies, they are more likely to develop high levels of bad 

cholesterol. Diabetes patients are prone to elevated levels 

of bad cholesterol due to insulin resistance in their body. 

As a result, there is a rise in bad cholesterol and a fall in 

good cholesterol, increasing the risk of cardiovascular 

disease [7]. If the CDM is not stopped right away, the 

blood's increased glucose concentration damages the 

kidney's blood vessels, ultimately leading to renal failure. 
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A substantial correlation has been seen between CVD and 

CKD [8]. Kidney failure is the end result of blockage and a 

reduced flow of oxygenated blood to the kidney [9]. 

Kidney may become more vulnerable to heart disease as a 

result of the heart having to work harder to pump blood to 

the damaged kidney. Figure 2 illustrates the increasing link 

that exists between CDM, CKD, and CVD. 

 

Fig. 2. Relation between Chronic Diseases 

Chronic kidney disease (CKD) is an asymptotic chronic 

illness in which the kidneys' capacity to operate steadily 

declines over time. For kidney to function properly, the 

blood must include a healthy balance of salts and minerals, 

including potassium, phosphorus, and sodium [10]. Large 

volumes of healthcare data are generated from healthcare 

applications through variable technologies like computers, 

smart health devices, and embedded systems in this digital 

age because of the quick advancements in science and 

technology. By 2025, the World Health Organization 

(WHO) predicts that 73% of deaths would be related to 

chronic illnesses. Thus, the conditions are referred to as the 

Global Burden of Disease [11]. 

One of the biggest issues facing the health sector is 

identifying chronic diseases and determining their severity. 

Even with the tremendous advancements in medical 

science, it is still difficult to identify illnesses early and 

treat them promptly. The complexity of diagnostic 

techniques, their growing expense, and the lack of 

necessary resources in certain places, especially isolated 

areas, make it imperative to create faster and more 

effective approaches. Creating a diagnosis model could 

help doctors learn more about the risk factors associated 

with chronic illnesses and group patients according to their 

own health patterns for more personalized care. When 

working with high-dimensional medical data, many 

methods are inefficient due to several issues. Because of 

this, only a small number of input features that have an 

effect on the algorithms' predictive outcome should be 

kept; the rest should be eliminated. Sufficient data pre-

processing techniques are needed to address the 

heterogeneity problem. The following is a brief summary 

of the paper's main contributions: 

• Implemented an ensemble model that combines 

the strengths of CNN [12] with LSTM [13] and 

Gated Recurrent Unit [14] architectures to 

effectively capture both spatial and temporal 

features in medical data related to CKD. 

• To enhance the performance, SVM [15] with 

stacking framework is integrated in the model. 

• Assessed the performance of the model with 

existing CKD detection approaches. 

The remaining sections of the document are organized as 

follows: In section 2 the literature review and research 

gaps are provided. The methodology is highlighted in 

section 3. The detailed results of the proposed method and 

the comparative study with existing research work are 

presented in section 4. Finally, the conclusion and future 

scopes are discussed in section 5.  

2. Background of the Study 

Machine learning (ML) techniques in the healthcare 

industry has advanced significantly in recent years, with an 

emphasis on early detection. This improvement has also 

been shown in the field of CKD, where a number of 

notable studies have advanced our understanding of the 

disease. By carefully going over the pertinent articles, we 

offer a thorough overview of the state of CKD research as 

it is in this literature review. We have thoroughly 

examined the methods used, the results, and the limitations 

found in each study as part of our analysis. By doing this, 

we hope to provide a thorough and objective knowledge of 

the advancements and difficulties in CKD research. 

Integration of feature selection techniques and ML 

classification algorithms were suggested by Abdel-Fattah 

et al. [16] based on big data platforms. The condition 

known as chronic kidney disease (CKD) is becoming quite 

common among adults. Medical scientists can greatly 

benefit from the use of ML algorithms in precisely 

diagnosing diseases at the early stages of their 

development. Healthcare is enhanced by the integration of 

algorithms with big data platforms. Relief-F and chi-

squared are used as the feature selection method along with 

six ML classification techniques. A ML model for CKD 

prediction was presented by Arif et al. [17]. Authors 

utilized sequential data scaling, z-standardization, min-max 

scaling, robust scaling, along with iterative imputation for 

missing values to overcome difficulties with medical 

datasets. The Boruta method is used for feature selection, 

while ML algorithms are used to create the model. Study 

used UCI CKD dataset and the primary drawback of the 

study was its dependence on a single dataset, which has a 

significant number of missing values. The missing data 

was estimated by the authors using iterative imputation; 

nonetheless, it is important to recognize that imputation 
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techniques introduce uncertainty, which may affect the 

prediction power of the model. 

Venkatesan et al.'s [18] ML techniques let experts in 

research of CKD preventive methods through earlier 

detection. With a publicly accessible dataset, authors use 

ML techniques to predict and categorize CKD. CKD 

dataset with 400 cases were collected from the Irvine ML 

Repository, a publicly accessible dataset. Extreme 

Gradient Boosting (XGBoost) has been used to compare 

the performance of six ML techniques as base learners. 

Every ML algorithm is assessed based on various 

performance metrics. 

Srivastava et al. [19] concentrated on accurate disease 

prediction by utilizing ML and data mining to give 

decisionmakers vital data-driven insights. The fundamental 

properties of the dataset determine the classification 

systems' accuracy, which is why feature selection 

strategies are used to simplify algorithm models and 

maximize classification precision. There are five different 

classification schemes used to identify chronic renal 

illness. The goal of Silveira et al.'s work [20] is to aid in 

the early prediction of CKD by addressing issues with 

imbalanced and small-scale datasets, using three ML 

methods. The following characteristics were gathered by 

the authors from Brazilians' medical records, regardless of 

whether they were diagnosed with CKD: age, gender, 

creatinine, urea, albuminuria, and diabetes mellitus. The 

technique of oversampling is based on both automated and 

manual augmentation.  

Singh et al. [21 build a deep neural network and assess 

how well it performs in comparison to other modern ML 

methods. In order to address this, they put up a deep 

learning model for CKD early detection and prediction. 

During testing, all missing values in the database were 

replaced with the average of the related features. After 

setting the parameters and completing several trials, the 

neural network's ideal parameters were determined. 

Recursive Feature Elimination was used to choose the 

most crucial features (RFE). The limitation of the model 

was that it had only been evaluated on limited data sets, 

which limited the generalizability of the method. 

The main goal of Prakash et al. [22] is to present and 

advance predictive algorithms for CKD prediction. The 

authors proposed for the efficient administration of huge 

dataset samples. Random forests and ensemble nonlinear 

SVM are used to formulate a binary classification issue. 

Thus, in prototype examples, the work generates nonlinear 

combinations of kernel activations instead of employing 

the standard linear combination of activations. The study's 

main drawback is that because it depends so heavily on a 

single dataset, it cannot be applied in real time. 

AdaBoost classifier and an information-gain-based feature 

selection technique are used in Ebiaredoh-Mienye et al.'s 

[23] suggested approach to efficiently identify CKD. The 

University of California, Irvine (UCI) ML repository has 

made the dataset freely accessible. The study's main flaw is 

that it depends too heavily on the scant data. For the 

purpose of diagnosing CKD, Rama et al. [24] suggested a 

ML methodology. The study used CKD dataset from UCI, 

which contains missing values. Six algorithms are typically 

employed to create the models. There are just 400 data 

samples total that were used in the study, making them 

relatively tiny. As a result, the model's capacity for 

generalization may be restricted. The hybrid approach for 

diagnosing chronic renal disease was proposed by Khalid 

et al. [25]. The study makes use of the CKD dataset from 

the UCI repository.  

While previous research has shown that integrating 

different neural network architectures can be effective, 

more thorough studies are required to examine the possible 

advantages of integrating not only different deep learning 

models but also taking non-neural network techniques into 

account. Furthermore, there is little investigation of 

interpretability and explainability features in the context of 

CKD detection, and there is disagreement on the best 

combination tactics and ensemble sizes. By filling in these 

research gaps, ensemble models for chronic kidney disease 

diagnosis could become more reliable and accurate, and 

they could also be easier to understand.  

3. Materials and methods 

Deep stacking ensemble modelling is used in the suggested 

CKD detection model. Two hybrid deep learning models 

are combined in the suggested model, and the SVM serves 

as the meta learner. The illustration in Figure 3 visually 

depicts the representation of the proposed model. The 

dataset for CKD is gathered via Kaggle. Preprocessing and 

data augmentation techniques are applied to the dataset. 

CNN-LSTM, CNN-GRU are the hybrid model utilized in 

the approach. The convolutional layer, fully connected 

layer,  flatten layer, LSTM layer, max-pooling layer, and 

an output layer make up the CNN-LSTM model.  The 

convolutional layer, GRU layer, fully connected layer, 

max-pooling layer, flatten layer, and an output layer make 

up the CNN-GRU architecture.  
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Fig. 3. Block diagram of the proposed model 

3.1. Dataset Description 

The CSV file dataset used for CKD detection was obtained 

from the Kaggle repository to validate the model. The 

depiction of sample data is presented in Figure 4. The 

dataset is a tabular data structure in two dimensions that 

supports row and column data storage. There are 400 

samples in the collection, and each sample has 37 distinct 

properties. Essential clinical characteristics, test results, 

and demographic data on patients with CKD are included 

in the dataset to help identify patterns and temporal 

dependencies in the data.  

3.2. Data Preprocessing and Augmentation 

Data preprocessing is a crucial step in preparing datasets 

for Before the dataset is executed by the algorithm, it is 

pre-processed to look for missing values and other 

irregularities. Preprocessing data can also help to cut down 

on the amount of time needed to train the model. We can 

minimize the quantity of data that the algorithm must 

process by eliminating duplicated or unnecessary data, 

which can significantly cut down on the time and resources 

needed to train the model. Overfitting can potentially be 

avoided by preprocessing the data. Model overfitting is 

occurred when it performs well on training data but poorly 

on, untrained data. The interpretability of the model can 

also be enhanced by preprocessing the data. Understanding 

the links between various variables and how they affect the 

model's predictions will be made simpler by cleaning and 

formatting the data.  

The term statistical analysis refers to the procedure of 

collecting and analysing data. It is a method for applying 

numerical analysis to remove bias from the evaluation of 

data. Massive data sets should be gathered and analysed in 

order to turn common patterns and trends into insightful 

knowledge. In data analysis, measurements like mean, 

standard deviation, and others are commonly employed.  

Exploratory data analysis can make use of visual data 

analysis techniques. Data visualization refers to data 

analysis done with graphs or maps. Figure 4 provides 

visualization of dataset. A score of 1 denotes a patient with 

CKD, while a value of 0 denotes no CKD. 
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Fig. 4. Data Visualization 

High correlation features have approximately the same 

influence on the dependent variable since they are more 

linearly dependent. Figure 5 illustrates the correlation of 

features with CKD. Thus, we can exclude one of the two 

traits when the other has a significant correlation. Feature 

selection attempts to eliminate uninformative 

characteristics in order to simplify models since highly 

correlated features provide redundant information. It can 

determine redundant features and choose a small number 

of crucial attributes that most accurately describe the target 

variable by looking at correlations. 

. 

 

Fig. 5. Correlation of Features with CKD 

Figure 6 's bar plot of the dataset illustrates how each 

attribute correlates with the goal variable, 

"CKD_1_NonCKD_0." The relationship between every 

feature and the goal variable will be shown on the plot. 
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Fig. 6. Correlation with Case type 

The pattern of the medical variables produced by 

categorization was shown using a heatmap in Figure 7. The 

heatmap was a graphical display of data that showed 

clustering on both rows and columns along with colour 

grids containing individual values in a matrix. A collection 

of patients was grouped using clustering based on the 

results of their health examinations. Using hierarchical 

clustering technique, participants were separated into many 

clusters, and the biomarker patterns for each cluster were 

displayed in the heatmap's centre as coloured patterns.

 

 
Fig. 7. Heatmap Visualization of Data 

3.3. CNN- LSTM Model 

CNN is frequently employed in feature engineering 

because of its propensity to focus on the most noticeable 

elements in the field of view. For time series analysis 

LSTM is the best option, due to its ability to expand based 

on time sequence. A CNN-LSTM based model is built for 

CKD detection based on the features of CNN and LSTM. 

Figure 8 illustrates the architecture of the basic LSTM 

model.  
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Fig. 8. Basic CNN Architecture 

CNN consist of layers of interconnected neurons with 

learnable parameters, including convolutional layers that 

apply convolution operations to input data, pooling layers 

that down sample spatial dimensions, and fully connected 

layers for high-level feature integration. CNNs excel at 

capturing hierarchical and spatial dependencies in data, 

making them well-suited for tasks like image recognition 

and classification. The convolutional layers enable the 

network to automatically learn spatial hierarchies of 

features, allowing it to recognize patterns and 

representations at various scales. Overall, CNNs have 

become instrumental in computer vision applications, 

demonstrating significant success in tasks ranging from 

image classification to object detection and segmentation. 

Eq (1) displays the computation formula for each 

convolution layer, which has several convolution kernels.   

                            (1) 

 where tanh is the activation function, is the input 

vector, is the convolution kernel's weight, and 

is the convolution kernel's bias. The output value 

after convolution is represented by Four of the 

LSTM modules function in a unique interactive way and 

resemble the typical RNN modules. An LSTM memory 

cell is composed of input gate, forget gate, and output gate. 

The forget gate's output value can be calculated using (2) 

            (2) 

For the current time  is the input value,  denotes 

the output value at the most recent moment,  is the 

weight of forget gate, and  is its bias. The value range 

of is therefore (0,1).  

Cell state and the output value are as follows 

          (3) 

  (4) 

where the input gate's weight , bias  and input gate's 

bias are all expressed in terms of the (0,1) value range 

of . 

Current state of the cell is as follows 

*             (5) 

The value of  is between (0,1),  from the output gate 

is obtained as follows: At time t,  and  are 

received as input values of the output gate. 

        (6) 

where  denotes the weight output gate and  its bias, 

 is between (0,1). 

             (7) 

Equation (7) is employed for computing the LSTM output, 

providing a mathematical expression to determine the 

resulting value based on the specified inputs and 

parameters. 

3.4. CNN- GRU Model 

GRU networks have the ability to selectively retain and 

forget past inputs, which allows them to handle long-term 

dependencies in sequential data.  Compared to the LSTM, 

the GRU is simpler because it only contains two gates: 

reset and updated gates. This gate is used to decide 

whether or not the data is useful. The following formula 

determines the hidden layer output: Output of forget gate 

can be calculated using (8). 

          (8) 

where  represents an update gate, and  indicates the 

memory data.  controls how many data of the preceding 

and present memory would be added. 

The data value is estimated as 
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, ])         (9) 

in which determined is the GRU reset gate that 

effectively reset the data in the memory. 

=sigmoid ( .[       (10) 

In order to transform the classification process into a 

sequential task and improve the accuracy of CNN 

detection, the CNN-FC layer is replaced by the GRU 

network. The classification results of each feature map are 

then included in the classification of the next feature map 

in the same hidden layer. The CNN-GRU architecture does 

not modify the parameters of the convolution layers with 

sizes, pooling, or the original CNN input in order to do 

feature extraction. The pth convolution layer's output 

feature maps are all computed using 

=

        (11) 

Subsequently, every feature across all feature maps in the 

final CNN pooling layers is linked to an appropriate GRU 

technique. This suggests that there are twelve GRU 

networks in total. Each GRU network consists of three 

layers: ten layers for the output neuron, twenty-five layers 

for the input neuron, and fifty layers for the hidden neuron. 

Finally, the softmax function found in the equation to 

classify the CKD is used to activate the GRU output. Each 

GRU output has been selected during the testing phase in 

order to determine the ultimate detection result. 

                                 (12) 

The model architecture is depicted in Figure 9.CNN-

LSTM, CNN-GRU are the hybrid models employed in this 

ensemble approach. Ultimately, stacking is used to train 

the SVM, and its performance is assessed. 

 

Fig. 9. Proposed Hybrid Model Architectures 

3.5. Proposed Ensemble Approach 

A stacking ensemble model serves as the foundation for 

the suggested CKD detection model. SVM is used as the 

meta-learner and combines two hybrid deep learning 

models. Stacking is an effective framework that combines 

the predictions of several base learning algorithms in the 

most practical way using a meta-learning algorithm. There 

are two layers in the stacking framework. Base models are 

found in layer 0 and a meta-learning process is found in 

layer 1. The original data set is first divided into datasets 
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for testing and training. Each of the base models goes 

through this process once more. The SVM model is trained 

using the last new feature training dataset, and predictions 

are made using the trained model. 

The selection of the base learning models affects stacking 

performance. CNN-LSTM and CNN-GRU were selected 

as the basis learning models for this investigation. SVM is 

used to classify the incorrectly categorized samples, 

creating fresh feature training and test data sets. It is 

possible to forecast the new feature test data when SVM 

trained on fresh feature training data discovers new feature 

patterns. Stated otherwise, the combined strength of the 

basic learners equals the resultant accuracy. 

3.6. Model Optimization and Hyperparameters 

TensorFlow and Python were used to implement the 

suggested models following the preparation of the dataset. 

Deep neural network hyperparameters are empirically set 

and have a significant impact on learning. As a result, a 

large range of values are tested to identify the most 

optimized model in terms of the offered classification 

performance. 

Table 1. Hyperparameters 

Parameters CNN- LSTM 

Model 

CNN- GRU 

Model 

Optimizer Adam Adam 

Loss function Binary 

Crossentropy 

Binary 

Crossentropy 

Batch size 16 16 

Number of 

Epochs 

10 10 

 

3.7. Simulation Setup 

Utilizing an Intel Core i7-6850K 3.60 GHz 12-core 

processor and a NVIDIA GeForce GTX 1080 Ti GPU with 

11GB VRAM, the system operates on the Google 

Collaboratory and Microsoft Windows 10 environment. 

Keras, an accessible open-source library, is employed for 

constructing efficient neural network models that leverage 

TensorFlow, specifically tailored for swift computations in 

deep learning, serving as an ideal framework for chronic 

kidney disease (CKD) detection. 

4. Result and Discussion 

4.1. Performance Evaluation 

Table 2 displays the metrics employed in this study to 

assess the effectiveness and performance of the proposed 

architecture. These performance parameters provide 

different perspectives on the model's effectiveness in 

detecting CKD.  

Table 2. Performance parameters 

Parameters Equation 

Accuracy 
 

Precision 
 

Recall 
 

F1- Score 
 

TP: True Positive, TN: True Negative, FP: 

False Positive, FN: False Negative 

 

• Accuracy: It measures how often a model 

correctly classify CKD and non-CKD. 

• Precision: In predictive analytics, precision is the 

degree to which the model's predictions agree 

with the observed data. The data points match the 

predictions more closely when the model is more 

accurate. 

• Recall: The recall is a metric that indicates how 

well our model finds True Positives. Recall thus 

indicates the number of individuals that we 

accurately identified as having CKD out of all 

those who do. 

• F1 Score: The precision and recall's harmonic 

mean is known as the F1-score. 

• Cohen's Kappa: It assesses the level of agreement 

between the model's predictions and the actual 

presence or absence of CKD, while accounting for 

the agreement that could occur by chance. 

• ROC AUC: It indicates how well the model can 

differentiate between CKD and non-CKD. 
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The proposed model was trained and evaluated on the 

dataset of CSV file for the detection of CKD to reveal their 

efficiencies in terms of the classification of CKD. 

According to the experimental result, the proposed model 

obtained the best accuracy of 98.95%. 

Table 3. Classification Report 

Parameters CNN- 

LSTM 

CNN-

GRU 

Ensemble 

Model 

Accuracy 0.9875 0.9886 0.9895 

Precision 1.0000 1.0000 1.0000 

Recall 0.9787 0.9832 0.9856 

 F1- Score 0.9892 0.9885 0.9934 

Cohens Kappa 0.9743 0.9756 0.9812 

ROC AUC 0,9893 0.9893 0.9893 

 

The accuracy and loss plot depicted in Figure 10; Figure 

11 give an overview of how the model trained over a series 

of epochs. The graph shows that accuracy increases 

proportionately to the number of epochs. Furthermore, as 

the number of epochs reduced, the loss also fell until it 

reached its lowest point, suggesting that the model was 

sufficiently trained and that the CKD illness categorization 

could be completed. 

 

Fig. 10 Visual Representation of Accuracy and Loss for the CNN-LSTM Model 

 

Fig. 11. Visual Representation of Accuracy and Loss for the CNN-GRU Model 

In Figure 12, the confusion matrix [26] illustrates the 

performance evaluation of the suggested architecture, 

providing a comprehensive overview of its classification 

outcomes. The confusion matrix shows how many images 

the model properly and erroneously detected. The output 

dimension of the classification issue determines the 

matrix's size. It has a 2 × 2 size for binary categorization. 

The classification model's target and projected outputs are 

compared in the matrix. 
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Fig. 12. Confusion Matrix of Proposed Model 

 

Fig. 13. ROC Curve of Proposed Model 

   To visualize the performance of CKD classification, the 

ROC curve is plotted is shown in Figure 13. The curve will 

showcase the model's performance at various classification 

thresholds, and calculating the corresponding TPR and 

FPR, indicating how well it distinguishes between CKD 

and non-CKD. The ROC curve serves as a visual depiction 

illustrating the classification model's performance. On the 

x-axis, it delineates the false positive rate, denoting the 

fraction of non-CKD instances inaccurately identified as 

CKD. Meanwhile, the y-axis portrays the true positive rate, 

signifying the proportion of CKD cases correctly identified 

as such. This graphical representation offers a 

comprehensive view of the model's ability to discriminate 

between CKD and non-CKD cases, highlighting the trade-

off between sensitivity and specificity in the classification 

process. Random chances are important to consider when 

interpreting the ROC curve. The diagonal line in the ROC 

space represents the performance of a random classifier. 

Points above the diagonal line indicate that the 

classification model performs better than random chance, 

while points below the diagonal line suggest worse 

performance than random chance. The threshold is set at 

1.0 at the lowest possible point, or at (0, 0). This implies 

that all patients are categorized by our model as without 

CKD.  

• The threshold is set to 0.0 at the highest position, 

or (1, 1). This indicates that all patients are 

categorized with CKD. 

• With FPR near to 0, we are achieving a TPR close 

to 1 at specific threshold values. At this point, the 

model will nearly accurately predict which 

patients will get CKD. 

• AUC is the region bounded by the axes and a 

curve. This region is thought to be a sign of a 

high-quality model. A high AUC number is what 

we should strive for, as this metric ranges from 0 
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to 1. Models with good skills are those that have a 

high AUC.  

The visual representation of the random sample provides 

insights into the accuracy of the predictions and any 

potential misclassifications. By plotting the images along 

with their predicted and true labels, we can assess how 

accurately the model is identifying CKD in the test dataset. 

4.2.  Performance Comparison with Existing 

Methods 

Upon analyzing the table 4 comparing our system with 

existing methods, it becomes evident that our system 

outperforms other approaches in several key aspects. It 

achieves higher accuracy rates, demonstrating its superior 

ability to make correct predictions for CKD. 

 

Table 4. Performance Comparison with Existing Methods 

Author 

& 

Reference 

Accuracy Precision Recall F1-

Score 

Cohens 

Kappa 

ROC 

AUC 

Sensitivity 

Ramat et al  

2022 

[28] 

97.98 97.67 - - - - 97.17 

Prakash et al  

2022 

[29] 

91.92 90.17 91.47 91.67 -  91.54 

Venkatesan  

2023 

[27] 

 

97 97.90 97.90 97.90 - -  

Jain et al  

2021 

[30] 

97.48 97 97.43 97.33 - - - 

Alex et al  

2022 

[31] 

96.67 96 96.32 - - - - 

Proposed 98.95 100 98.56 99.34 98.95 98.93 - 

 

 

Moreover, our system demonstrates enhanced precision 

and recall metrics, underscoring its proficiency in reducing 

both false positives and false negatives, thereby enhancing 

the reliability of diagnostic outcomes. Furthermore, the 

system's F1-score surpasses that of current methodologies, 

underscoring a superior equilibrium between precision and 

recall in our approach. This balanced performance is 

crucial in accurately identifying high-risk individuals early 

and guiding appropriate personalized treatment plans. In 

Figure 14, a comprehensive comparison with existing 

approaches is presented, highlighting the relative 

performance and effectiveness of the proposed model in 

relation to other methods. 
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Fig. 14. Performance Comparison with Existing Approaches 

5. Conclusion 

The prognostic assessment of chronic disorders, 

particularly in cases like chronic kidney disease, is 

frequently impeded by substantial variability, introducing 

uncertainty into clinical decision-making and contributing 

to adverse outcomes.  Traditional approaches for detecting 

chronic kidney disease (CKD) often suffer from accuracy 

limitations as they heavily depend on a restricted set of 

biological attributes for diagnosis. An ensemble model 

based on hybrid deep learning models for chronic kidney 

disease detection is designed and analysed in this work. 

CNN-GRU and CNN- LSTM were used as the hybrid 

model and SVM as the meta learner. The model 

demonstrated exceptional performance across various 

evaluation metrics, including accuracy, F1-score, recall, 

Cohen's Kappa, ROC AUC and precision. The model 

achieved a high accuracy of 98.95%, indicating overall 

correct predictions.  Precision and recall scores of 1.0000 

and 98.56, respectively, demonstrate the model's ability to 

make precise and comprehensive classifications. These 

results suggest that the model is robust and effective in its 

predictions for the given binary classification task. 
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