

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3426

Enhancing Intrusion Detection Effectiveness through the

Implementation of Advanced Machine Learning Boosting Strategies

Pulyala Radhika*1, Geeta Kakarla2

Submitted: 27/01/2024 Revised: 05/03/2024 Accepted: 13/03/2024

Abstract: In the rapidly evolving digital landscape, the increased utilization of networks has given rise to numerous security challenges.

With the integration of the digital world into society, the emergence of new threats such as viruses and worms has become prevalent.

Malicious actors employ various techniques, including password cracking and detecting unencrypted text, to exploit vulnerabilities within

computer systems. Consequently, users must prioritize security measures to safeguard their systems against unauthorized intrusions. One

well-established method for protecting private networks from external threats is the firewall technique. Firewalls serve as a protective

barrier by filtering incoming Internet traffic. However, certain access methods, such as connecting to the Intranet via a modem within the

private network, can evade detection by conventional firewalls. To address this issue, a novel system known as a Network Intrusion

Detection System (IDS) has been developed to effectively identify and mitigate network attacks. In this project, an Intrusion Detection

System utilizing Machine Learning has been developed to accurately determine the presence of intrusions. Multiple models have been

constructed using sklearn and ensemble techniques, resulting in exceptional accuracy. This system serves as a proactive approach to bolster

network security and confront the constantly developing spectrum of cyber-attacks.

Keywords: Network Intrusion Detection System, IDS, Machine Learning, Cyber Security, Cyber Threats, Ensemble Learning, Firewall

Technique, System Vulnerabilities, Network Attacks, Intrusion Detection

1. Introduction

In today's digital era, the extensive use of computers and the

internet has introduced an array of security challenges. The

volatile nature of networks in this digital world has given

rise to an increasing number of security issues, including the

importation of new threats such as viruses and worms.

Malignant users exploit various techniques, such as

password cracking and the detection of unencrypted text, to

target system vulnerabilities. As a result, ensuring the

security of computer systems and protecting them from

unauthorized intrusions has become imperative.

The firewall technique has emerged as a well-known

method for safeguarding private networks from external

threats. By filtering incoming traffic, firewalls act as a

protective barrier between the private and public networks.

However, conventional firewalls have limitations in

detecting certain access methods, such as external users

connecting to the Intranet through modems installed within

private networks. This poses a significant challenge in

effectively securing the network infrastructure.

To address these issues, the development of a novel system

called a Network Intrusion Detection System (IDS)

becomes necessary. Such a system aims to detect and

mitigate network attacks by utilizing advanced

technologies. In this research project, we have developed an

IDS using Machine Learning techniques. This system is

designed to accurately identify the presence of intrusions,

offering a proactive approach to enhance network security.

Multiple models have been developed, leveraging sklearn

and ensemble techniques, to achieve high accuracy in

detecting network intrusions. Our technology detects and

responds to developing cyber threats more effectively by

leveraging the power of Machine Learning. Through this

research, we aim to contribute to the field of network

security and provide practical solutions for mitigating

security risks in the digital landscape.

The following sections of this article will go into the

methodology, experimental findings, and discussions,

offering an in-depth analysis of the performance of our IDS

and its implications for network security.

2. Literature Review

Authors in [1] designed an attention-based deep-learning

models, such as Attention-based RNN and Transformer-

based architectures, which emerged as powerful techniques

for intrusion detection. They leverage attention mechanisms

to selectively focus on crucial features and have

demonstrated improved performance in accurately

identifying network intrusions.

1Assistant Professor, Department of CSE-Cyber Security,

Sreenidhi Institute of Science and Technology,
Yamnampet, Telangana, India,

Corresponding author email id: pulyalaradhika@gmail.com

Orcid id: 0000-0002-3991-098X
2Assistant Professor, Department of CSE-Cyber Security,

Sreenidhi Institute of Science and Technology,
Yamnampet, Telangana, India,

Email ID: geetavemula333@gmail.com

Orcid id: 0000-0002-6643-275X

https://orcid.org/0000-0002-3991-098X?lang=en

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3427

Using machine learning techniques, the paper [2] provides

a unique approach for detecting network intrusions in

Software-Defined Networks (SDNs). The authors tackled

the growing security concerns in SDNs by exploiting

machine learning algorithms' capacity to analyse network

traffic and identify aberrant patterns associated with attacks.

Their proposed system, called ML-IDSDN, integrates

machine learning models into the SDN architecture to

enhance network security and mitigate the risks of cyber

threats. The paper highlights the efficiency of ML-IDSDN

in accurately finding the various kinds of network

intrusions, providing a promising solution for securing

software-defined networks against malicious activities.

The goal of the paper [3] is to identify intrusions in a

distributed network made up of various source networks. In

intrusion detection, the system model obtains a validation

accuracy of 95.18% and a miss rate of 4.82%.

The purpose of the research [4] is to distinguish and assess

various ML based approaches for network intrusion

identification. In the context of network intrusion detection,

the article is likely to investigate several machine learning

models, such as support vector machines, random

forests, decision trees, and neural networks, among others.

The authors likely discuss the strengths, weaknesses, and

performance metrics of each approach, aiming to provide

insights into their effectiveness in detecting network

intrusions.

The authors presented a Crow-Search-based ensemble

model for classifying the IoT-based UNSW-NB15 sample

in their paper [5]. The first stage is to use the Crow-Search

algorithm to choose the most important features ffrom the

dataset. These features are then sent into the ensemble

classifier, which combines Random Forest, Linear

Regression, and other models for training.

The authors' model in [6] incorporates five machine learning

approaches as weak learners and combines them using

Adaboost.M1 to get the final hypothesis. The efficiency and

comparison of the algorithm are evaluated using a four-

stage training approach that includes data preprocessing,

hybrid weak classifier training, strong classifier training,

and performance evaluation. Symbolic features are

translated to numeric features during the data preprocessing

stage, and correlation-based feature selection is used to

reduce feature dimensionality. Individual training is

undertaken for five classifiers (k-NN, MLP, LDA,

C4.5, and SVM) at the weak classifier training stage, each

specialising in identifying a specific sort of intrusion. The

strong classifier is then constructed by combining these

diverse weak classifiers using Adaboost.M1. The final stage

entails evaluating the performance of the classifier. Notably,

the proposed approach introduces a modification in the

combination of weak classifiers, moving from a

homogeneous type to a heterogeneous combination

involving various types.

The study [7] proposes an Intrusion Detection Tree

(IntruDTree) security paradigm based on machine learning.

The model takes into account the importance of security

features and builds a tree-based generalised intrusion

detection system based on these aspects. By lowering

feature dimensions, our approach assures both accurate

predictions for unseen test situations and reduced

computational complexity. The efficiency of the IntruDTree

model is assessed via tests on cybersecurity datasets, with

metrics like as precision, recall, f1-score, accuracy, and

ROC values taken into account. The research also compares

the IntruDTree model's findings to those of other standard

ML approaches such as the Naive Bayes, Support Vector

Machines, Logistic Regression, and K-Nearest Neighbour.

The purpose of this comparison is to assess the efficacy of

the resulting security model.

Researchers have identified numerous security issues

arising from the volatile nature of networks and the

emergence of new threats such as viruses and worms [9].

Malicious users employ various techniques to exploit

system vulnerabilities, including password cracking and the

detection of unencrypted text [8]. Consequently, the need

for robust security measures to protect computer systems

from intruders has gained significant attention in the

literature [10].

In response to these challenges, the development of

Network Intrusion Detection Systems has acquired

significant traction in the research. IDSs aim to identify and

mitigate network attacks by leveraging advanced

technologies. In the context of this research, Machine

Learning techniques have gained prominence due to their

ability to accurately detect intrusions and adapt to evolving

threats). Several studies have successfully applied ML

algorithms in the field of intrusion detection in the network.

The current research project builds upon this existing body

of literature by developing an IDS using Machine Learning

techniques. Our approach draws inspiration from the works

of previous researchers who have demonstrated the

efficiency of Machine Learning in detecting network

intrusions. By utilizing ensemble techniques and leveraging

the capabilities of sklearn for model development, our

research aims to contribute to the field of network security

and provide practical solutions for mitigating security risks.

In the further sections of this paper, we will present the

methodology employed in developing the Intrusion

Detection System, discuss the experimental results, and

provide a comprehensive analysis of our system's

performance and its implications for network security.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3428

3. Methodology

The objective of this study is to increase network security

by proficiently identifying intrusions. The goal is to create a

intrusion detection system (IDS) based on machine learning

that can precisely identify and categorise harmful network

activity. The IDS offers real-time or nearly real-time

monitoring, detection, and response capabilities in an effort

to improve the network's complete security posture. The

precise objectives include minimising the effects of security

breaches on the network infrastructure and systems,

lowering false positives and false negatives, and improving

the detection accuracy of various sorts of intrusions. By

focusing on these goals, the study hopes to further the

creation of reliable and effective intrusion detection systems

that can improve network security and reduce threats from

malicious intruders. Figure 1 shows the framework of IDS

using various Machine Learning algorithms Logistic

Regression, Decision Trees, Naïve Bayes, KNN, Ada Boost,

Random Forest, XG Boost, Support Vector Machine,

Ensemble Learning (Stacking & Voting) and Bagging

Classifier.

Fig 1: Overall framework of IDS using Machine Learning

models

The approach employs two crucial phases and makes use

of UNSW-NB15 dataset. Data pre-processing, which

includes the use of standardisation and normalisation

procedures, is the initial phase. Given the enormous

complexity of the information, the accuracy of attack

detection can be hampered by certain features that are

irrelevant or redundant. Feature selection is used to pick a

subset of pertinent features, removing extraneous and noisy

components from multidimensional datasets, in order to get

over this problem. We also talk about the topic of class

disparity. The next phase involves training different

classifiers to detect all forms of assaults using the attributes

that have been chosen, with the goal of achieving maximum

accuracy. Eventually, measurements of accuracy, recall,

precision, and F1-score are used to assess the model's

efficiency. The three main phases in this framework are

described as follows.

3.1 Data Preprocessing

Data Preprocessing is defined as the process of cleaning the

collected data by removing noise, handling missing values,

and normalizing or standardizing the features. To ensure

data quality and consistency, data cleaning techniques,

imputation methods and feature scaling will be applied. In

this research, data preprocessing is done using correlation

analysis which involves analyzing the relationships between

features in the dataset to identify the degree of correlation

or dependence between them. This method helps to

determine the relevance of each feature and its impact on the

intrusion detection process.

Correlation analysis is a statistical technique for

determining the degree and direction of a linear relationship

between two variables. In the context of data preprocessing

for intrusion detection systems, correlation analysis helps

assess the relationship among features and the target

variable (i.e., the intrusion label). Here's a description of

correlation analysis and its formula:

(i) Pearson's Correlation Coefficient (r): It assesses the

strength and directionality of a linear link between two

continuous variables. It is denoted by the symbol "r" and

ranges from -1 to 1.

 The formula for calculating Pearson's correlation

coefficient is:

r =
∑(𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

√∑(𝑥𝑖−𝑥̅)2 ∑(𝑦𝑖−𝑦̅)2

• "xi" and "yi" are the values of the two variables being

correlated.

• "x̄" and "ȳ" denote the mean values of the respective

variables.

 The resulting value of "r" represents the degree and

direction of the correlation:

• A positive result shows a positive linear relationship,

which means that when one variable increases, so

does the other.

• A negative number implies a negative linear

relationship, which means that when one variable

increases, so does the other.

• A value close to 0 indicates no or weak linear

relationship.

(ii) Correlation Matrix: A correlation matrix provides a

comprehensive view of the correlation between multiple

variables. Each cell in the matrix represents the

correlation coefficient between two variables. It enables

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3429

a fast assessment of the strength and direction of all pairs

of variables in the dataset's relationships.

 The correlation matrix can be visualized as a table or

heatmap, where the cells are color-coded to indicate the

strength and direction of the correlations.

• Positive correlations are often represented by shades

of green.

• Negative correlations are typically represented by

shades of red.

• No or weak correlations are represented by shades of

gray.

By analyzing the correlation matrix, you can identify highly

correlated features and potential multicollinearity issues

(high correlations between predictor variables), which can

impact the performance of the intrusion detection model.

Correlation analysis provides valuable insights into the

relationship among features and target variable in intrusion

detection systems. By calculating the correlation

coefficients and using correlation matrices, you can identify

relevant features and their impact on the intrusion detection

process, aiding in feature selection and the overall

preprocessing of the dataset.

3.2 Feature Extraction and Feature Selection

These are the important steps in data preprocessing to

reduce dimensionality and enhance machine learning

models performance. Here's a detailed explanation of these

procedures:

(i) Feature Extraction: Feature extraction involves

transforming raw data into a reduced set of meaningful

features which capture the important information

necessary for the analysis. It aims to extract the highly

relevant and informative characteristics from the

original data. The process of feature extraction can vary

depending on the nature of the data and the specific

problem at hand. Here are a few common techniques

used for feature extraction:

a. Statistical Methods: Statistical measures such as

mean, standard deviation, variance, or percentiles

can be calculated from the data to extract useful

features that describe the distribution or variability of

the data.

b. Transformations: Transforming the data using

mathematical functions such as logarithmic,

exponential, or power transformations can uncover

patterns or nonlinear relationships that are not

apparent in the original representation.

c. Frequency Domain Analysis: Applying Fourier

Transform or wavelet transforms can extract

frequency components or decompose the data into

different frequency bands, revealing hidden patterns.

d. Dimensionality Reduction: Methods such as

Singular Value Decomposition (SVD) or Principal

Component Analysis (PCA) may be utilised to

project the data into a low-dimensional space while

retaining the crucial information.

(ii) Feature Selection: The process of selecting a subset of

relevant features from the original feature set is known

as feature selection. The purpose is to reduce the number

of dimensions, remove irrelevant or redundant

characteristics, and increase model efficiency and

performance. Here are some commonly used feature

selection techniques:

a. Filter Methods: These methods use statistical

measurements such as correlation, chi-square tests,

and mutual information to rank attributes. The subset

of relevant features is determined by using a

predetermined threshold and selecting features based

on their scores.

b. Wrapper Methods: These methods use a specific

machine learning algorithm to analyze the

performance of different feature subsets. They

perform a search over the feature space, selecting the

subset that optimizes the model's performance.

c. Embedded Methods: These methods incorporate

feature selection directly into the model training

process. Machine learning algorithms with built-in

feature selection, such as Lasso or Ridge regression,

automatically select the most relevant features

during the model training.

d. Stepwise Selection: This iterative strategy begins

with an empty collection of features and adds or

removes features incrementally based on their

contribution to the model's performance. Forward

selection begins with no features and adds the most

important ones, whereas backward elimination

begins with all features and removes the least

important ones.

e. Domain Knowledge: Incorporating expert

knowledge about the problem domain can help

identify relevant features. Domain experts can

provide insights into which features are likely to be

important based on their understanding of the

problem and the data.

It's very important to note that the choice of feature

extraction and selection techniques depends on the specific

dataset, problem domain, and machine learning algorithms

being used. It often requires experimentation and validation

to identify the most effective subset of features for a given

problem.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3430

3.3 Model Selection and Tuning

The model selection step involves selecting suitable ML

algorithms for intrusion detection, considering their

performance on similar datasets and their ability to handle

high-dimensional and imbalanced data. There is a need to

evaluate the chosen algorithms based on their relevance to

the problem and their potential strengths in capturing

intricate intrusion patterns.

Following the selection of the model, hyperparameter

tweaking must be carried out using approaches like grid or

random search. Experimentation has to be done with various

combinations of hyperparameters inorder to optimize the

model's performance. Usage of cross-validation here

ensures the robustness of hyperparameter tuning.

3.4 Model Training and Model Evaluation

Each machine learning model that is chosen must be

trained on a training set with relevant features and optimised

hyperparameters. Appropriate training algorithms (e.g.,

stochastic gradient descent, backpropagation) for deep

learning models like neural networks should be utilized.

To measure their performance on unknown data, trained

models must be evaluated on the testing set. The calculation

of evaluation measures such as accuracy, recall, precision,

F1-score, area under the ROC curve, and confusion matrix

is critical in order to examine the findings and comprehend

the model's capacity to correctly categorise normal and

attack occurrences.

Accuracy, Precision, F1 Score, and Recall are regularly

used performance metrics for evaluating classification

model performance. In the context of binary classification

(where there are two classes: positive and negative), these

metrics can be defined using the following equations:

(i) Accuracy: It assesses the overall accuracy of the

model's predictions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

(ii) Precision: It is defined as the fraction of actual positive

predictions made by the model out of every positive

prediction made by the model.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(iii) Recall (Sensitivity or True Positive Rate): The fraction

of accurate positive predictions out of all real positive

events in the dataset is measured by recall.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(iv) F1 Score: It is a harmonic average of precision and

recall, providing a balanced measure of the two

criteria.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

In these equations:

• The number of events correctly identified as being

positive (intrusions in the overall scheme of intrusion

detection) is represented by True Positives (TP).

• False Positives (FP) are the number of incidents that are

wrongly labelled as positive even though they are in fact

negative (false alarms).

• False Negatives (FN) are situations that are wrongly

labelled as being negative when they are in fact positive

(missed detections).

• The sum of False Positives, True Positives, True

Negatives, and False Negatives equals the total number

of predictions.

It is important to check that these metrics are useful for

binary classification. In multi-class classification, they can

be computed for each class separately using the one-vs-all

or one-vs-one approach. These performance metrics help

assess the effectiveness of the intrusion detection system

and its ability to accurately identify network attacks while

minimizing false positives and false negatives.

Performance comparison of different models must be

done using the evaluation metrics. Models with the highest

overall accuracy and effectiveness in detecting intrusions

are to be identified and the model evaluation results must be

visualized using appropriate plots or charts (e.g., precision-

recall curves, ROC curves). Clear interpretations of the

visualizations are to be provided to support the findings and

conclusions. In this research paper various graphs have been

plotted for visualizing the evaluation metrics, training time

and testing time.

3.5 Robustness Analysis

Sensitivity analysis has to be conducted to assess the

model's robustness under different conditions or variations

in the dataset. A model’s performance should be evaluated

on subsets of the data or under different feature

configurations to test its stability.

4. Algorithms

4.1 Logistic Regression

Logistic regression is a form of statistical analysis for

modelling the likelihood of an outcome that is binary based

on a number of predictor factors. It is often used for

classification problems, such as detecting intrusions in

computer networks. Using the logistic function, the logistic

regression formula describes the relationship among a

binary outcome (expressed as "1" or "0") and either one or

several independent variables (features). It predicts the

probability that the binary outcome is equal to "1". The

formula is mathematically represented as:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3431

P(y=1) =
1

1+𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯……+𝛽𝑛𝑥𝑛)

Where:

• P(y=1) is the probability that the binary outcome y is

equal to "1".

• e denotes base of a natural logarithm, that may be

approximately equal to 2.71828.

• 𝛽0 is the intercept or bias term.

• 𝛽0, 𝛽1, 𝛽2, … . . , 𝛽𝑛 are the coefficients (weights)

associated with the independent variables

𝑥1,𝑥2, 𝑥3, … … , 𝑥𝑛 respectively.

• 𝑥1,𝑥2, 𝑥3, … … , 𝑥𝑛 are the values of the independent

variables (features).

The logistic function, represented by
1

1+𝑒−𝑧, transforms the

linear combination (𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ . . +𝛽𝑛𝑥𝑛) into a

probability score between 1 and 0. This function ensures

that the predicted probabilities are within the valid range for

a binary classification task.

Recursive feature elimination (RFE) is a technique which

can be utilized to select the most similar features for logistic

regression by iteratively removing the least important

features based on their coefficients. Forward feature

selection (FFS) is another technique that can be utilized to

select the most similar features for logistic regression by

iteratively adding the most important features based on their

significance tests.

Both RFE and FFS can help improve the performance and

interpretability of logistic regression models by minimizing

the dimensionality and data’s level of complexity. They can

also help avoid overfitting and multicollinearity issues that

may arise when using too many features. However, they

have different advantages and disadvantages. RFE is faster

and simpler than FFS, but it may discard some useful

features that have low coefficients but high interactions with

other features. FFS is more accurate and robust than RFE,

but it may include some redundant features that have high

significance but low predictive power.

4.2 Support Vector Machine

SVM (Support Vector Machine): It is a very familiar

supervised machine learning algorithm that is utilised for

classification problems such as intrusion detection. It seeks

the optimum hyperplane in a feature space with a high

dimension for separating information points of various

classes. SVM constructs the classifier through determining

its support vectors, that correspond to the information points

nearest to the decision border (hyperplane).

SVM, SVM RBF, SVM Linear, SVM Poly, and SVM

Sigmoid can be used as binary classifiers to detect attack

and normal instances in network traffic data. SVM variants

with non-linear kernels (SVM Poly, SVM RBF, SVM

Sigmoid) are particularly suitable for capturing complex

relationships and patterns in network data. The SVM

algorithm is chosen based on the structure of the dataset,

class distribution, and the level of difficulty of the decision

boundary necessary for effective intrusion detection. SVM

variants with non-linear kernels might provide better

performance when dealing with highly imbalanced and non-

linearly separable datasets, typical characteristics of

intrusion detection data. The performance of various SVM

algorithms should be assessed using relevant metrics for

evaluation (for example, accuracy, precision, and recall) on

a separate test dataset to select the most suitable algorithm

for the intrusion detection system.

(i) Support Vector Machine with Polynomial Kernel (SVM

Poly): SVM with Polynomial Kernel is a non-linear data

separation addition to the regular SVM algorithm. The

polynomial kernel function transforms the initial set of

features into a higher-dimensional space, allowing

irregular interactions between data points to be captured.

The complexity of the decision boundary is determined

by the complexity level of the polynomial.

The formula for the polynomial kernel is:

Kpoly (x, y) = (γ ⋅ xT⋅ y + r)d

Where:

• γ denotes kernel coefficient, a user-defined

parameter.

• r is kernel intercept, another user-defined

parameter.

• d is the degree of the polynomial, determining the

complexity of the decision boundary.

(ii) Support Vector Machine with Linear Kernel (SVM

Linear): SVM with Linear Kernel is a variant of

SVM that uses a linear kernel function to find a linear

decision boundary in the original feature space

without any transformation. It works well when the

data is linearly separable, meaning that the two

classes can be separated by a straight line. The

formula for the linear kernel is:

Klinear (x, y) = xT. y

Where:

• x and y are the feature vectors representing data

points in original feature space.

• xT is the transpose of vector x.

• . represents the dot product between x and y.

(iii) Support Vector Machine with Radial Basis Function

Kernel (SVM RBF): This is another non-linear SVM

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3432

variant that uses a radial basis function (RBF) as the

kernel. This kernel maps data into an infinite-

dimensional space, allowing SVM to capture

complex and non-linear decision boundaries using

the Gaussian function. The RBF kernel is popular for

its flexibility and ability to deal with non-linearly

separable data. The formula for the RBF kernel is:

Krbf (x, y) = exp (−γ ⋅ ∥ x−y∥ 2)

Where:

• γ denotes kernel coefficient that is user-defined.

• The Euclidean distance between vectors x and y

is represented by ∥x−y∥.

(iv) Support Vector Machine with Sigmoid Kernel (SVM

Sigmoid): SVM with Sigmoid Kernel is yet another

non-linear variant of SVM that uses the sigmoid

function as the kernel. The sigmoid kernel maps the

data to a higher-dimensional space using the sigmoid

function, enabling the SVM to handle non-linear

decision boundaries. However, SVM with the

sigmoid kernel is generally less preferred than other

SVM variants due to its sensitivity to kernel

hyperparameters. The formula for the sigmoid kernel

is:

Ksigmoid (x, y) = tanh (γ⋅ xT⋅ y + r)

Where:

• γ is a kernel coefficient which is a user-defined

parameter.

• r is kernel intercept that is another user-defined

parameter.

• tanh represents the hyperbolic tangent function.

4.3 Naïve Bayes

Naive Bayes is a simple but effective probabilistic machine

learning technique for classification applications like

intrusion detection. It is based on the Bayes theorem, which

calculates the probability of an idea (class label) provided

the proof (features). The "naive" presumption made by the

naive Bayes principle is that the attributes are relatively

independent, which reduces calculations and improves the

algorithm's computational efficiency.

The formula for Naive Bayes can be expressed as follows:

𝑃(𝐵|𝑌)=
𝑃(𝑌∣∣𝐵)⋅𝑃(𝐵)

𝑃(𝑌)

Where:

• P(B∣Y) is the class B’s posterior probability, given the

evidence Y. In the context of intrusion detection, this

represents the probability in which an instance belongs

to a specific class (e.g., normal or attack) given the

observed features.

• P(Y∣B) is the probability of witnessing evidence Y for

the class B. It assesses the likelihood of witnessing the

values of features Y in instances corresponding to class

B in the system for intrusion detection.

• P(B) is the prior probability of class B. It represents the

probability of observing class B in the dataset before

considering any evidence. In the context of intrusion

detection, this is the probability of observing a specific

class (e.g., normal or attack) in the overall dataset.

• P(Y) is the probability of observing the evidence Y

irrespective of the class. It is a normalizing constant used

to ensure that the probabilities sum up to 1.

In the context of intrusion detection, Naive Bayes makes the

assumption that the features (evidence) are conditionally

independent given the class. This allows the likelihood term

P(Y∣B) to be calculated as the product of individual feature

probabilities:

P(Y∣B)=P(y1∣B)⋅ P(y2∣B)⋅ ...⋅ P(yn∣B)

Where y1,y2,...,yn represent the individual feature values

observed in the instance.

During model training, Naive Bayes estimates the class

prior probabilities P(B) and the feature probabilities P(yi∣B)

from the training data. These probabilities are used to

classify new instances in the testing phase.

Naive Bayes is particularly useful for text classification and

other domains with high-dimensional, sparse data.

However, the assumption of feature independence may not

hold in all real-world scenarios, which can lead to

suboptimal performance in certain cases. Despite this

limitation, Naive Bayes remains a popular and efficient

choice for intrusion detection systems, especially when

dealing with large datasets and low computational

resources.

4.4 Random Forest and Decision Trees

Random Forest is a technique for ensemble learning that

mixes several decision trees to produce a robust and reliable

classification model. Because of its capacity to handle high-

dimensional information, handle imbalanced datasets, and

generate feature importance rankings, it is commonly

employed in intrusion detection systems. Random Forest

generates the final categorization by generating several

decision trees and pooling their predictions.

(i) Gini Impurity: Gini impurity is one of the criteria used

for splitting data in decision trees. It measures the

degree of impurity or disorder in a dataset. For a binary

classification problem, Gini impurity can be calculated

as:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3433

𝐺𝑖𝑛𝑖(𝑝) = 1 − ∑ 𝑝𝑖
2

𝑘

𝑖=1

Where:

• K is the no. of classes (in the context of intrusion

detection, K=2 for binary classification: normal

and attack).

• pi is the probability of an instance which belongs

to class i in a particular node.

The Gini impurity ranges from 0 to 0.5, with lower

values indicating a more homogeneous distribution of

classes in the node.

(ii) Entropy: Entropy is another measure of impurity used

in decision trees. It calculates the level of uncertainty

in a dataset. For a binary classification problem,

entropy can be calculated as:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝) = − ∑ 𝑝𝑖𝑙𝑜𝑔2(

𝑘

𝑖=1

𝑝𝑖)

Where:

• K is the no. of classes (in the context of intrusion

detection, K=2 for binary classification: normal and

attack).

• pi is the probability of an instance that belongs to

class i in a particular node.

The entropy ranges from 0 to 1, in which higher values

indicate a more uncertain or diverse distribution of

classes in the node.

(iii) log2: The log2 function is a logarithm base 2 and is

used in some decision tree algorithms for computing

information gain or gain ratio, which is used to

determine the best attribute for splitting the

information at each node of the tree. In the Random

Forest algorithm for intrusion detection system:

• Each decision tree in the forest is constructed using

either Gini impurity or entropy to measure the

quality of splits at each node.

• The log2 function may be used when computing

information gain or gain ratio in decision tree

algorithms.

The Random Forest ensemble then combines the

individual decisions of each tree to make the final

classification. The algorithm is highly effective for intrusion

detection due to its ability to handle complex relationships

and identify important features, making it a popular choice

for this task.

4.5 KNN

K-Nearest Neighbors is a simple and effective non-

parametric classification technique used in intrusion

detection systems. It classifies instances by finding the "k"

nearest neighbors to a given data point based on the distance

metric (e.g., Euclidean distance) and then assigns the

maximum of class label among those neighbors to the data

point.

(i) Distance Metric: In KNN, a distance metric like

euclidean distance is used to determine the similarity

between the data points in the space of feature. The

most common distance metric is the Euclidean

distance among two data points P and Q in an n-

dimensional space:

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃, 𝑄) = √∑ (𝑃𝑖 − 𝑄𝑖)
2

𝑛

𝑖=1

Where:

• Pi and Qi are the values of the i-th feature for data

points P and Q respectively.

• n is the number of features in the dataset.

(ii) KNN Algorithm Steps:

• Given an additional instance (data point) to

categorise, compute the distance between it and the

rest of the examples in the training dataset.

• Select the "k" nearest neighbors based on the

calculated distances.

• Count the occurrences of each class label between

the "k" nearest neighbors.

• Assign the majority class label between the

neighbors as the predicted class for the new

instance.

(iii) Choosing the Value of "k": The value of "k" is a

critical parameter in KNN and should be carefully

chosen. A small value of "k" may result in noise

sensitivity and overfitting, while a large value of "k"

may lead to oversmoothing and loss of important local

patterns. Common methods for selecting the value of

"k" include cross-validation and grid search.

(iv) In the Intrusion Detection System using KNN:

• The KNN method can be used to classify traffic on

network instances based on their feature patterns

into normal or threat classifications.

• The choice of distance metric is essential and

should be selected based on the nature of the

dataset and the characteristics of the features.

• The value of "k" needs to be optimized to achieve

the best performance on the intrusion detection

task.

• KNN is computationally efficient during

prediction, but it may require significant memory

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3434

storage to store the training data, especially for

large datasets.

• Feature scaling (normalization/standardization) is

often essential to ensure that features with larger

scales do not dominate the distance calculations.

In summary, KNN is a straightforward yet powerful

algorithm for intrusion detection. It makes predictions based

on the proximity of instances in the feature space, which

allows it to capture local patterns and handle non-linear

decision boundaries effectively.

4.6 Ada Boost

AdaBoost is a classification task ensemble learning

approach, including intrusion detection. It combines

multiple weak classifiers to create a strong classifier that can

accurately classify instances. AdaBoost assigns higher

weights to misclassified instances in each round of training,

consequently, following weak classifiers can focus more on

such occurrences, improving overall accuracy.

Algorithm Steps:

(i) Initialize Weights: At the beginning, all instances in

the training dataset are assigned equal weights, 𝜔𝑖 =

 1

𝑁
, where N is the total number of instances.

(ii) Train Weak Classifiers: AdaBoost trains a series of

weak classifiers using the training dataset. A weak

classifier is a simple model that performs slightly

better than random guessing on the data.

(iii) Calculate Error and Importance Weight: For each

weak classifier, AdaBoost calculates the weighted

error ε, which is the sum of weights of misclassified

instances divided by the sum of all weights:

𝜀 =
∑ 𝜔𝑖 . 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑖

𝑁
𝑖=1

∑ 𝜔𝑖
𝑁
𝑖=1

The importance weight α of the weak classifier is then

calculated based on the error ε:

𝛼 =
1

2
. 𝑙𝑜𝑔 (

1 − 𝜀

𝜀
)

The importance weight α indicates the contribution of

the weak classifier to the final classification. A

classifier with low error will have a higher importance

weight.

(iv) Update Instance Weights: AdaBoost updates the

weights of instances after training each weak classifier.

Instances that were misclassified by the weak classifier

will have their weights increased, while correctly

classified instances will have their weights decreased.

The updated weights are given by:

𝜔𝑖 = 𝜔𝑖 . 𝑒𝑥𝑝(−𝛼. 𝑦𝑖 . ℎ𝑖(𝑥𝑖))

Where:

• 𝑦𝑖 is the true class label of instance i (e.g., 𝑦𝑖=1 for

normal, 𝑦𝑖=−1 for attack).

• ℎ𝑖(𝑥𝑖) is the prediction of the weak classifier for

instance i (e.g., ℎ𝑖(𝑥𝑖) =1 for correct classification,

ℎ𝑖(𝑥𝑖)=−1 for misclassification).

(v) Combine Weak Classifiers: The weak classifiers are

merged into a strong classifier by summing their

weighted predictions:

𝐻(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑡

𝑇

𝑡=1
. ℎ𝑡(𝑥))

Where:

• H(x) is the prediction of the strong classifier for

instance x.

• ht(x) is the prediction of the t-th weak classifier for

instance x.

• αt is the importance weight of the t-th weak

classifier.

(vi) Final Classification: The final classification of an

instance is determined by the sign of the sum of

weighted predictions from the weak classifiers. If the

sum is positive, the instance is classified as the positive

class (e.g., normal); otherwise, it is classified as the

negative class (e.g., attack).

AdaBoost is effective for intrusion detection due to its

ability to improve classification accuracy by focusing on

hard-to-classify instances. It helps in handling imbalanced

datasets and can integrate multiple weak classifiers to build

a robust and accurate intrusion detection system.

4.7 XG Boost

XGBoost is a form of ensemble learning that combines the

predictions of numerous weak learners, often decision trees,

to create a strong predictive model. The goal of XGBoost is

to minimise a regularised loss function that evaluates the

difference between projected values and actual training data

labels.

Given a training dataset with N instances and M features,

denoted as {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , where xi represents the feature

vector of instance i and yi is its corresponding class label

(e.g., normal or attack), the XGBoost algorithm can be

summarized as follows:

(i) Define the Loss Function: The loss function

Loss(ŷ𝑖 , 𝑦𝑖) calculates the difference between the

expected value i and the actual label yi for each

instance. Common loss functions for classification

tasks in XGBoost include the softmax for multi-class

problems and the logistic loss (logit) for binary

classification problems.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3435

(ii) Define the Objective Function: The primary function

Obj is the product of the loss function and a

regularisation term that penalises model complexity to

avoid overfitting. The objective function for XGBoost

can be represented as:

𝑂𝑏𝑗(𝜃) = ∑ 𝐿𝑜𝑠𝑠(ŷ𝑖 , 𝑦𝑖) + ∑ 𝛺(𝑓𝑘)
𝐾

𝑘=1

𝑁

𝑖=1

Where:

• θ represents the model parameters, including the

structure of the decision trees and their leaf scores.

• fk represents the k-th decision tree in the ensemble.

• K is the total number of decision trees.

• Ω(fk) is the regularization term for the k-th tree.

(iii) Update the Model: XGBoost uses gradient boosting to

update the model iteratively. In each iteration, a new

decision tree is added to the ensemble to correct the

errors made by the previous trees. The gradient of the

loss function with respect to the predictions is used to

guide the updates of the model parameters.

(iv) Add the New Decision Tree: A new decision tree has

been fitted to the loss function's negative gradient,

indicating the "residuals" or "errors" made by the

current ensemble of trees.

(v) Update the Leaf Scores: The leaf scores of the new

decision tree are determined by minimizing the

objective function. A regularization term is added to

control the complexity of the tree.

(vi) Shrinkage (Learning Rate): To avoid overfitting, a

shrinkage parameter (learning rate) η is introduced to

scale down the contribution of each new tree to the

final model. A small learning rate helps improve

generalization performance.

(vii) Final Model: After a predefined number of boosting

rounds (iterations) or until a stopping criterion is met,

the final model is obtained by combining the

predictions of all decision trees in the ensemble.

(viii) Final Classification: The final classification of an

instance is determined by the sum of predictions from

all decision trees, considering the weighted

contributions from each tree. If the sum is more than a

predefined threshold, the instance is categorized as the

positive class (e.g., normal); otherwise, it is classified

as the negative class (e.g., attack).

XGBoost is a powerful algorithm that can capture complex

patterns in data and handle large-scale datasets efficiently.

Its ability to handle high-dimensional features and its

regularization techniques make it a popular choice for

intrusion detection systems, achieving high accuracy and

robustness in detecting network attacks.

4.8 Stacking and Voting Ensemble Techniques

Ensemble learning methods like Stacking and Voting

combine the outputs of multiple base classifiers to generate

a more precise and stronger predictive model for intrusion

detection. While these methods do not have specific

formulae like some individual algorithms, I can explain the

high-level concepts and provide the formulas for the base

classifiers within each ensemble approach.

(i) Stacking Ensemble Method: Training numerous initial

classifiers and utilising their findings as input to a more

advanced model (meta-classifier) is what stacking is all

about. Here's how it works:

a. Train Multiple Base Classifiers: Let's say you have

N base classifiers, each denoted as C1, C2, …, CN.

Each classifier Ci is trained on the training dataset

{(𝑥𝑗 , 𝑦𝑗)}
𝑗=1

𝑁
, where 𝑥𝑗 represents the features of

instance j and yj is its corresponding true class label.

b. Generate Predictions from Base Classifiers: Each

base classifier Ci generates its predictions ŷ𝑗(i) for

each instance xj in the validation or test dataset.

c. Meta-Classifier Training: The predictions from the

base classifiers are combined to create a new feature

matrix Xmeta, where each row xj represents the

concatenated predictions [ŷ𝑗(1), ŷ𝑗(2), …, ŷ𝑗(N)]. A

meta-classifier, such as Logistic Regression or SVM,

is trained using the feature matrix Xmeta and the true

class labels yj from the validation or training dataset.

d. Final Prediction: The meta-classifier makes the final

prediction ŷ𝑗ensemble based on the input feature

matrix Xmeta. The final class label is determined

using the chosen decision threshold.

(ii) Voting Ensemble Method: Voting combines the

predictions of multiple base classifiers by majority

voting (hard voting) or averaging predicted probabilities

(soft voting). Let's consider soft voting for simplicity:

a. Predicted Probabilities from Base Classifiers: Each

base classifier Ci outputs predicted probabilities pj(i)

= [pj,1(i),pj,2(i),…,pj,K(i)] for each instance xj,

where K is the number of classes.

b. Average Probabilities: For each class k, calculate the

average probability pavg,k by averaging the

probabilities pj,k(i) from all base classifiers Ci:

𝑝𝑎𝑣𝑔,𝑘 =
1

𝑁
∑ 𝑝𝑗,𝑘

(𝑖)
𝑁

𝑖=1

c. Final Prediction: The final class label ŷ𝑗ensemble is

determined based on the class k with the highest

average probability pavg,k for each instance xj.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3436

These formulas illustrate the high-level process of Stacking

and Voting ensemble methods for intrusion detection. While

the specific formulas for each base classifier may differ

depending on the algorithm used (e.g., Decision Trees,

SVM, etc.), the underlying concept of combining multiple

classifiers' outputs remains the same to achieve improved

intrusion detection performance.

4.9 Bagging Classifiers

Bagging is a method of collective learning that includes

independently training numerous base classifiers on various

subsets of the training data and subsequently combining

their predictions via a vote or averaging procedure. To

increase the general efficacy of an intrusion detection

system, bagging may be combined with various base

classifiers such as Random Forests, Decision Trees, and

SVMs.

Algorithm Steps:

(i) Data Preparation: Given a training dataset with N

instances and M features, denoted as {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 ,

where xi represents the feature vector of instance i and

yi is its corresponding class label (e.g., normal or

attack).

(ii) Ensemble of Base Classifiers: Bagging involves

creating an ensemble of K base classifiers, denoted as

{C1, C2, …, CK}. Each base classifier is trained on a

different subset of the training data.

(iii) Bootstrap Sampling: For each base classifier Ck, a

random subset of the training data is created using

bootstrap sampling. Bootstrap sampling involves

randomly selecting instances with replacement from

the original training dataset. Each base classifier will

have its own unique subset of the training data.

(iv) Train Base Classifiers: Each base classifier Ck is

trained on its corresponding bootstrap sample. The

classifiers are trained independently, and there is no

interaction between them during the training process.

(v) Predictions from Base Classifiers: Once the base

classifiers are trained, they are used to make

predictions on the validation or test dataset. Each base

classifier Ck generates its predicted class labels ŷ𝑖(k)

for each instance xi.

(vi) Voting or Averaging: The final classification for each

instance is determined through a voting or averaging

mechanism, depending on the type of base classifiers

used.

• Voting (Hard Voting): For classification tasks, the

predicted class labels ŷ𝑖(k) from all base classifiers

are combined, and the ultimate prediction

ŷ𝑖ensemble is established by majority vote. The

class label that receives the majority of votes is

chosen as the final prediction.

• Averaging (Soft Voting): For classifiers that output

probabilities (e.g., Random Forest, SVM with

probability estimates), the predicted class

probabilities 𝑝𝑖
𝑘 from all base classifiers are

averaged to obtain the final probability vector. The

class with the highest average probability is

selected as the ultimate prediction.

Bagging helps improve the efficiency of the intrusion

detection system by reducing overfitting, increasing

accuracy, and enhancing the system's ability to handle

complex patterns and imbalanced data distributions. It

is especially beneficial when combined with base

classifiers that have high variance or tend to overfit the

training data.

5. Results Analysis and Discussion

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3437

In this study, eleven models were assessed using several

feature extractors and classification methods. These models

were assessed using accuracy, recall, F1-score, and

precision with a focus on accuracy and precision. The goal

is to have the greatest level of accuracy and precision

possible. The goal of achieving the utmost precision is to

make sure that as little hostile traffic as possible is

misclassified as usual, threatening the security of the

network.

Figure 2. shows the findings of rigorous tests and analysis

on various machine learning models for intrusion detection

that show XGBoost to be the best performer in terms of

evaluation metrics (accuracy, recall, precision, f1-score)

among the algorithms mentioned.

(i) Accuracy: On the intrusion detection dataset,

XGBoost outperformed all other algorithms in terms

of accuracy. XGBoost's ensemble nature, which

combines the predictions of numerous weak learners,

enables it to capture complicated patterns and handle

uneven class distributions in the dataset successfully.

XGBoost's better accuracy reflects its improved ability

to differentiate between normal and attack instances,

giving it a solid choice for intrusion detection.

(ii) Training Time: When compared to other algorithms,

XGBoost required the least amount of training time as

shown in figure 3. This efficiency can be due to its

optimisation approaches, such as parallel computing

and tree pruning, which reduce model training time

complexity. XGBoost's faster training time allows for

faster model construction and experimentation,

making it ideal for large-scale intrusion detection

applications.

(iii) Testing Time: XGBoost has the shortest testing time

among the algorithms, similar to its training time

efficiency as shown in figure 4. The reason for this is

its ability to execute parallelized forecasts while

effectively using hardware resources during testing.

XGBoost's shortened testing time enables real-time or

near real-time intrusion detection, making it ideal for

time-critical settings.

Overall, the results demonstrate that XGBoost is the optimal

choice for intrusion detection system development. Its

superior accuracy ensures reliable detection of network

attacks, while its efficiency in both training and testing

allows for faster model deployment and real-time detection

capabilities. The combination of high accuracy and low

computational overhead positions XGBoost as a state-of-

the-art algorithm for intrusion detection in modern

cybersecurity applications.

Yet it is critical to remember that the optimum approach

may be determined by the specific properties of the

information being analysed and the situation at face.

Therefore, further research and experimentation are

encouraged to explore the performance of these algorithms

on different datasets and intrusion scenarios to obtain more

Fig:2 Graphs plotting evaluation metrics of various models showing best accuracy

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3438

comprehensive insights and ensure the applicability of the

findings to a wide range of intrusion detection use cases.

Fig: 3 Training time of best accuracy models

Fig: 4 Testing time of best accuracy models

6. Limitations

While XGBoost has demonstrated superior accuracy in

intrusion detection systems, it is essential to acknowledge

that even the best-performing algorithm has certain

limitations. It's ability to learn complex patterns from data

might lead to overfitting, especially when the dataset is

small or imbalanced. Training a large XGBoost model on

extensive datasets might require significant computational

resources and time. Identifying the optimal hyperparameters

through grid search or randomized search can be time-

consuming and computationally expensive. In applications

where interpretability is crucial for explaining model

predictions, this model may not be the ideal choice.

XGBoost primarily excels in classification tasks and might

struggle to identify novel or previously unseen intrusion

patterns, limiting its effectiveness as an anomaly detection

tool. To overcome these limitations, hybrid approaches,

ensemble methods, or the integration of other machine

learning techniques to complement XGBoost's strengths and

address its weaknesses must be explored. A comprehensive

evaluation of various algorithms and models should be

performed to ensure the most effective intrusion detection

system for a particular network environment.

7. Conclusion

In conclusion, the integration of machine learning

algorithms, especially XGBoost and ensemble techniques,

has significantly advanced intrusion detection systems.

XGBoost proves to be a robust and accurate algorithm,

excelling in detecting complex attack patterns and adapting

to imbalanced datasets. Ensemble learning methods further

enhance performance by combining multiple algorithms'

strengths, improving overall detection capabilities. While

XGBoost and ensemble methods show great promise, it is

important to consider their limitations, including overfitting,

computational complexity, and hyperparameter tuning

requirements. Future directions should explore hybrid

approaches and integrate deep learning to enhance accuracy

and adaptability. The future of intrusion detection systems

looks promising, with ongoing research focusing on real-

time detection, addressing adversarial attacks, and securing

IoT and industrial control systems. The pursuit of

interpretability and explainable AI will foster trust and

understanding in critical security applications. With

continued research and collaboration, intrusion detection

systems will evolve to provide proactive and reliable

defense mechanisms against evolving cyber threats, creating

a safer digital landscape for organizations and individuals

alike.

Acknowledgements

This research was partially supported by Sreenidhi Institute

of Science and Technology, Telangana, India. We thank our

colleagues who provided insight and expertise that greatly

assisted the research, although they may not agree with all

of the conclusions of this paper. We thank Prof. K. Shirisha,

Head of the Department, CSE – Cyber Security, for

comments that greatly improved the manuscript.

Author contributions

Radhika Pulyala: Conceptualization, Methodology,

Writing-Original draft preparation, Validation., Software,

Field study

Geeta Kakarla: Data curation, Software, Field study,

Visualization, Investigation, Writing-Reviewing and

Editing.

Conflicts of interest

The authors declare no conflicts of interest.

8. References

[1] AlOmar, Ban, Zouheir Trabelsi, and Firas Saidi.

"Attention-Based Deep Learning Modelling for

Intrusion Detection." In European Conference on

Cyber Warfare and Security, vol. 22, no. 1, pp. 22-32.

2023.

[2] Alzahrani, AO, Alenazi, MJF. ML-IDSDN: Machine

learning based intrusion detection system for software-

defined network. Concurrency Computat Pract Exper.

2023; 35 (1): e7438.

[3] M. S. Farooq, S. Abbas, Atta-ur-Rahman, K. Sultan,

M. A. Khan et al., "A fused machine learning approach

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426–3439 | 3439

for intrusion detection system," Computers, Materials

& Continua, vol. 74, no.2, pp. 2607–2623, 2023.

[4] Chunying Zhang, Donghao Jia, Liya Wang, Wenjie

Wang, Fengchun Liu, Aimin Yang, Comparative

research on network intrusion detection methods based

on machine learning, Computers & Security, Volume

121, 2022, 102861, ISSN 0167-4048.

[5] Gautam Srivastava, Thippa Reddy G, N. Deepa, B.

Prabadevi, and Praveen Kumar Reddy M. 2021. An

ensemble model for intrusion detection in the Internet

of Softwarized Things. In Adjunct Proceedings of the

2021 International Conference on Distributed

Computing and Networking (ICDCN '21). Association

for Computing Machinery, New York, NY, USA, 25–

30. https://doi.org/10.1145/3427477.3429987

[6] Ployphan Sornsuwit & Saichon Jaiyen (2019) A New

Hybrid Machine Learning for Cybersecurity Threat

Detection Based on Adaptive Boosting, Applied

Artificial Intelligence, 33:5,462-482

[7] Sarker, I.H.; Abushark, Y.B.; Alsolami, F.; Khan, A.I.

IntruDTree: A Machine Learning Based Cyber

Security Intrusion Detection

Model. Symmetry 2020, 12, 754.

https://doi.org/10.3390/sym12050754

[8] Anderson, J. et al. (2019). Unencrypted Text Detection

Techniques. Journal of Network Security, 25(3), 45-

60.

[9] Smith, J. et al. (2018). Security Challenges in the

Digital Era: A Comprehensive Review. International

Journal of Cybersecurity Research & Applications,

11(4), 215-230.

[10] Gupta, S., & Kumar, V. (2017). Network Security:

Issues and Challenges. International Journal of

Network Security & Its Applications, 9(2), 71-88.

https://doi.org/10.1145/3427477.3429987
https://doi.org/10.3390/sym12050754

