International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

Www.ijisae.org

1JISAE

ISSN:2147-6799 Original Research Paper

Enhancing Intrusion Detection Effectiveness through the
Implementation of Advanced Machine Learning Boosting Strategies

Pulyala Radhika*!, Geeta Kakarla?
Submitted: 27/01/2024 Revised: 05/03/2024 Accepted: 13/03/2024

Abstract: In the rapidly evolving digital landscape, the increased utilization of networks has given rise to numerous security challenges.
With the integration of the digital world into society, the emergence of new threats such as viruses and worms has become prevalent.
Malicious actors employ various techniques, including password cracking and detecting unencrypted text, to exploit vulnerabilities within
computer systems. Consequently, users must prioritize security measures to safeguard their systems against unauthorized intrusions. One
well-established method for protecting private networks from external threats is the firewall technique. Firewalls serve as a protective
barrier by filtering incoming Internet traffic. However, certain access methods, such as connecting to the Intranet via a modem within the
private network, can evade detection by conventional firewalls. To address this issue, a novel system known as a Network Intrusion
Detection System (IDS) has been developed to effectively identify and mitigate network attacks. In this project, an Intrusion Detection
System utilizing Machine Learning has been developed to accurately determine the presence of intrusions. Multiple models have been
constructed using sklearn and ensemble techniques, resulting in exceptional accuracy. This system serves as a proactive approach to bolster
network security and confront the constantly developing spectrum of cyber-attacks.

Keywords: Network Intrusion Detection System, IDS, Machine Learning, Cyber Security, Cyber Threats, Ensemble Learning, Firewall
Technique, System Vulnerabilities, Network Attacks, Intrusion Detection

1. Introduction To address these issues, the development of a novel system
called a Network Intrusion Detection System (IDS)
becomes necessary. Such a system aims to detect and
mitigate network attacks by utilizing advanced
technologies. In this research project, we have developed an
IDS using Machine Learning techniques. This system is
designed to accurately identify the presence of intrusions,

offering a proactive approach to enhance network security.

In today's digital era, the extensive use of computers and the
internet has introduced an array of security challenges. The
volatile nature of networks in this digital world has given
rise to an increasing number of security issues, including the
importation of new threats such as viruses and worms.
Malignant users exploit various techniques, such as
password cracking and the detection of unencrypted text, to

target system vulnerabilities. As a result, ensuring the
security of computer systems and protecting them from
unauthorized intrusions has become imperative.

The firewall technique has emerged as a well-known
method for safeguarding private networks from external
threats. By filtering incoming traffic, firewalls act as a
protective barrier between the private and public networks.
However, conventional firewalls have limitations in
detecting certain access methods, such as external users
connecting to the Intranet through modems installed within
private networks. This poses a significant challenge in
effectively securing the network infrastructure.

Assistant Professor, Department of CSE-Cyber Security,
Sreenidhi Institute of Science and Technology,

Yamnampet, Telangana, India,

Corresponding author email id: pulyalaradhika@gmail.com
Orcid id: 0000-0002-3991-098X

2Assistant Professor, Department of CSE-Cyber Security,
Sreenidhi Institute of Science and Technology,

Yamnampet, Telangana, India,

Email ID: geetavemula333@gmail.com

Orcid id: 0000-0002-6643-275X

Multiple models have been developed, leveraging sklearn
and ensemble techniques, to achieve high accuracy in
detecting network intrusions. Our technology detects and
responds to developing cyber threats more effectively by
leveraging the power of Machine Learning. Through this
research, we aim to contribute to the field of network
security and provide practical solutions for mitigating
security risks in the digital landscape.

The following sections of this article will go into the
methodology, experimental findings, and discussions,
offering an in-depth analysis of the performance of our IDS
and its implications for network security.

2. Literature Review

Authors in [1] designed an attention-based deep-learning
models, such as Attention-based RNN and Transformer-
based architectures, which emerged as powerful techniques
for intrusion detection. They leverage attention mechanisms
to selectively focus on crucial features and have
demonstrated improved performance in accurately
identifying network intrusions.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 34263439 | 3426

https://orcid.org/0000-0002-3991-098X?lang=en

Using machine learning techniques, the paper [2] provides
a unique approach for detecting network intrusions in
Software-Defined Networks (SDNs). The authors tackled
the growing security concerns in SDNs by exploiting
machine learning algorithms' capacity to analyse network
traffic and identify aberrant patterns associated with attacks.
Their proposed system, called ML-IDSDN, integrates
machine learning models into the SDN architecture to
enhance network security and mitigate the risks of cyber
threats. The paper highlights the efficiency of ML-IDSDN
in accurately finding the various kinds of network
intrusions, providing a promising solution for securing
software-defined networks against malicious activities.

The goal of the paper [3] is to identify intrusionsin a
distributed network made up of various source networks. In
intrusion detection, the system model obtains a validation
accuracy of 95.18% and a miss rate of 4.82%.

The purpose of the research [4] is to distinguish and assess
various ML based approaches for network intrusion
identification. In the context of network intrusion detection,
the article is likely to investigate several machine learning
models, such assupport vector machines, random
forests, decision trees, and neural networks, among others.
The authors likely discuss the strengths, weaknesses, and
performance metrics of each approach, aiming to provide
insights into their effectiveness in detecting network
intrusions.

The authors presented a Crow-Search-based ensemble
model for classifying the loT-based UNSW-NB15 sample
in their paper [5]. The first stage is to use the Crow-Search
algorithm to choose the most important features ffrom the
dataset. These features are then sent into the ensemble
classifier, which combines Random Forest, Linear
Regression, and other models for training.

The authors' model in [6] incorporates five machine learning
approaches as weak learners and combines them using
Adaboost.M1 to get the final hypothesis. The efficiency and
comparison of the algorithm are evaluated using a four-
stage training approach that includes data preprocessing,
hybrid weak classifier training, strong classifier training,
and performance evaluation. Symbolic features are
translated to numeric features during the data preprocessing
stage, and correlation-based feature selection is used to
reduce feature dimensionality. Individual training is
undertaken for five classifiers (k-NN, MLP, LDA,
C4.5, and SVM) at the weak classifier training stage, each
specialising in identifying a specific sort of intrusion. The
strong classifier is then constructed by combining these
diverse weak classifiers using Adaboost.M1. The final stage
entails evaluating the performance of the classifier. Notably,
the proposed approach introduces a modification in the
combination of weak classifiers, moving from a

homogeneous type to a heterogeneous combination
involving various types.

The study [7] proposes an Intrusion Detection Tree
(IntruDTree) security paradigm based on machine learning.
The model takes into account the importance of security
features and builds a tree-based generalised intrusion
detection system based on these aspects. By lowering
feature dimensions, our approach assures both accurate
predictions for unseen test situations and reduced
computational complexity. The efficiency of the IntruDTree
model is assessed via tests on cybersecurity datasets, with
metrics like as precision, recall, fl-score, accuracy, and
ROC values taken into account. The research also compares
the IntruDTree model's findings to those of other standard
ML approaches such as the Naive Bayes, Support Vector
Machines, Logistic Regression, and K-Nearest Neighbour.
The purpose of this comparison is to assess the efficacy of
the resulting security model.

Researchers have identified numerous security issues
arising from the volatile nature of networks and the
emergence of new threats such as viruses and worms [9].
Malicious users employ various techniques to exploit
system vulnerabilities, including password cracking and the
detection of unencrypted text [8]. Consequently, the need
for robust security measures to protect computer systems
from intruders has gained significant attention in the
literature [10].

In response to these challenges, the development of
Network Intrusion Detection Systems has acquired
significant traction in the research. IDSs aim to identify and
mitigate network attacks by leveraging advanced
technologies. In the context of this research, Machine
Learning techniques have gained prominence due to their
ability to accurately detect intrusions and adapt to evolving
threats). Several studies have successfully applied ML
algorithms in the field of intrusion detection in the network.

The current research project builds upon this existing body
of literature by developing an IDS using Machine Learning
techniques. Our approach draws inspiration from the works
of previous researchers who have demonstrated the
efficiency of Machine Learning in detecting network
intrusions. By utilizing ensemble techniques and leveraging
the capabilities of sklearn for model development, our
research aims to contribute to the field of network security
and provide practical solutions for mitigating security risks.

In the further sections of this paper, we will present the
methodology employed in developing the Intrusion
Detection System, discuss the experimental results, and
provide a comprehensive analysis of our system's
performance and its implications for network security.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 3426 3439 | 3427

3. Methodology

The objective of this study is to increase network security
by proficiently identifying intrusions. The goal is to create a
intrusion detection system (IDS) based on machine learning
that can precisely identify and categorise harmful network
activity. The IDS offers real-time or nearly real-time
monitoring, detection, and response capabilities in an effort
to improve the network's complete security posture. The
precise objectives include minimising the effects of security
breaches on the network infrastructure and systems,
lowering false positives and false negatives, and improving
the detection accuracy of various sorts of intrusions. By
focusing on these goals, the study hopes to further the
creation of reliable and effective intrusion detection systems
that can improve network security and reduce threats from
malicious intruders. Figure 1 shows the framework of 1IDS
using various Machine Learning algorithms Logistic
Regression, Decision Trees, Naive Bayes, KNN, Ada Boost,
Random Forest, XG Boost, Support Vector Machine,
Ensemble Learning (Stacking & Voting) and Bagging
Classifier.

Class
Balancing

Feature Feature
Data
Dataset o v ol 2 L—— Training
Preprocessing Extraction| | Selection Dataset
Model [| Model Model
Evaluation Tuning Selection
TRAINING
Evaluation Metrics
1A
Testing Model o || Acceptable
Dataset \\/ 3. Recall Performance?
4, F1-score
5. Support

Result
Analysis

Fig 1: Overall framework of IDS using Machine Learning
models

The approach employs two crucial phases and makes use
of UNSW-NB15 dataset. Data pre-processing, which
includes the use of standardisation and normalisation
procedures, is the initial phase. Given the enormous
complexity of the information, the accuracy of attack
detection can be hampered by certain features that are
irrelevant or redundant. Feature selection is used to pick a
subset of pertinent features, removing extraneous and noisy
components from multidimensional datasets, in order to get
over this problem. We also talk about the topic of class
disparity. The next phase involves training different
classifiers to detect all forms of assaults using the attributes
that have been chosen, with the goal of achieving maximum
accuracy. Eventually, measurements of accuracy, recall,

precision, and F1-score are used to assess the model's
efficiency. The three main phases in this framework are
described as follows.

3.1 Data Preprocessing

Data Preprocessing is defined as the process of cleaning the
collected data by removing noise, handling missing values,
and normalizing or standardizing the features. To ensure
data quality and consistency, data cleaning techniques,
imputation methods and feature scaling will be applied. In
this research, data preprocessing is done using correlation
analysis which involves analyzing the relationships between
features in the dataset to identify the degree of correlation
or dependence between them. This method helps to
determine the relevance of each feature and its impact on the
intrusion detection process.

Correlation analysis is a statistical technique for
determining the degree and direction of a linear relationship
between two variables. In the context of data preprocessing
for intrusion detection systems, correlation analysis helps
assess the relationship among features and the target
variable (i.e., the intrusion label). Here's a description of
correlation analysis and its formula:

(i) Pearson's Correlation Coefficient (r): It assesses the
strength and directionality of a linear link between two
continuous variables. It is denoted by the symbol "r" and
ranges from -1 to 1.

The formula for calculating Pearson's correlation
coefficient is:

2(xi—0)i—y)
Y(xi—0)? X (vi—y)?

e X" and"y;" are the values of the two variables being
correlated.

e "X"and "y" denote the mean values of the respective
variables.

The resulting value of "r" represents the degree and
direction of the correlation:

e A positive result shows a positive linear relationship,
which means that when one variable increases, so
does the other.

e A negative number implies a negative linear
relationship, which means that when one variable
increases, so does the other.

e A value close to 0 indicates no or weak linear
relationship.

(ii) Correlation Matrix: A correlation matrix provides a
comprehensive view of the correlation between multiple
variables. Each cell in the matrix represents the
correlation coefficient between two variables. It enables

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 34263439 | 3428

a fast assessment of the strength and direction of all pairs
of variables in the dataset's relationships.

The correlation matrix can be visualized as a table or
heatmap, where the cells are color-coded to indicate the
strength and direction of the correlations.

e Positive correlations are often represented by shades
of green.

e Negative correlations are typically represented by
shades of red.

e No or weak correlations are represented by shades of
gray.

By analyzing the correlation matrix, you can identify highly
correlated features and potential multicollinearity issues
(high correlations between predictor variables), which can
impact the performance of the intrusion detection model.

Correlation analysis provides valuable insights into the
relationship among features and target variable in intrusion
detection systems. By calculating the correlation
coefficients and using correlation matrices, you can identify
relevant features and their impact on the intrusion detection
process, aiding in feature selection and the overall
preprocessing of the dataset.

3.2 Feature Extraction and Feature Selection

These are the important steps in data preprocessing to
reduce dimensionality and enhance machine learning
models performance. Here's a detailed explanation of these
procedures:

(i) Feature Extraction: Feature extraction involves
transforming raw data into a reduced set of meaningful
features which capture the important information
necessary for the analysis. It aims to extract the highly
relevant and informative characteristics from the
original data. The process of feature extraction can vary
depending on the nature of the data and the specific
problem at hand. Here are a few common techniques
used for feature extraction:

a. Statistical Methods: Statistical measures such as
mean, standard deviation, variance, or percentiles
can be calculated from the data to extract useful
features that describe the distribution or variability of
the data.

b. Transformations: Transforming the data using
mathematical functions such as logarithmic,
exponential, or power transformations can uncover
patterns or nonlinear relationships that are not
apparent in the original representation.

c. Frequency Domain Analysis: Applying Fourier
Transform or wavelet transforms can extract

frequency components or decompose the data into
different frequency bands, revealing hidden patterns.

d. Dimensionality Reduction: Methods such as
Singular Value Decomposition (SVD) or Principal
Component Analysis (PCA) may be utilised to
project the data into a low-dimensional space while
retaining the crucial information.

(ii) Feature Selection: The process of selecting a subset of
relevant features from the original feature set is known
as feature selection. The purpose is to reduce the number
of dimensions, remove irrelevant or redundant
characteristics, and increase model efficiency and
performance. Here are some commonly used feature
selection techniques:

a. Filter Methods: These methods use statistical
measurements such as correlation, chi-square tests,
and mutual information to rank attributes. The subset
of relevant features is determined by using a
predetermined threshold and selecting features based
on their scores.

b. Wrapper Methods: These methods use a specific
machine learning algorithm to analyze the
performance of different feature subsets. They
perform a search over the feature space, selecting the
subset that optimizes the model's performance.

¢. Embedded Methods: These methods incorporate
feature selection directly into the model training
process. Machine learning algorithms with built-in
feature selection, such as Lasso or Ridge regression,
automatically select the most relevant features
during the model training.

d. Stepwise Selection: This iterative strategy begins
with an empty collection of features and adds or
removes features incrementally based on their
contribution to the model's performance. Forward
selection begins with no features and adds the most
important ones, whereas backward elimination
begins with all features and removes the least
important ones.

e. Domain Knowledge: Incorporating expert
knowledge about the problem domain can help
identify relevant features. Domain experts can
provide insights into which features are likely to be
important based on their understanding of the
problem and the data.

It's very important to note that the choice of feature
extraction and selection techniques depends on the specific
dataset, problem domain, and machine learning algorithms
being used. It often requires experimentation and validation
to identify the most effective subset of features for a given
problem.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 34263439 | 3429

3.3 Model Selection and Tuning

The model selection step involves selecting suitable ML
algorithms for intrusion detection, considering their
performance on similar datasets and their ability to handle
high-dimensional and imbalanced data. There is a need to
evaluate the chosen algorithms based on their relevance to
the problem and their potential strengths in capturing
intricate intrusion patterns.

Following the selection of the model, hyperparameter
tweaking must be carried out using approaches like grid or
random search. Experimentation has to be done with various
combinations of hyperparameters inorder to optimize the
model's performance. Usage of cross-validation here
ensures the robustness of hyperparameter tuning.

3.4 Model Training and Model Evaluation

Each machine learning model that is chosen must be
trained on a training set with relevant features and optimised
hyperparameters. Appropriate training algorithms (e.g.,
stochastic gradient descent, backpropagation) for deep
learning models like neural networks should be utilized.

To measure their performance on unknown data, trained
models must be evaluated on the testing set. The calculation
of evaluation measures such as accuracy, recall, precision,
F1-score, area under the ROC curve, and confusion matrix
is critical in order to examine the findings and comprehend
the model's capacity to correctly categorise normal and
attack occurrences.

Accuracy, Precision, F1 Score, and Recall are regularly
used performance metrics for evaluating classification
model performance. In the context of binary classification
(where there are two classes: positive and negative), these
metrics can be defined using the following equations:

(i) Accuracy: It assesses the overall accuracy of the
model's predictions.

Number of Correct Predictions

Accuracy =
Y Total Number of Predictions

(ii) Precision: It is defined as the fraction of actual positive
predictions made by the model out of every positive
prediction made by the model.

True Positives

Precision = — "
True Positives + False Positives

(iii) Recall (Sensitivity or True Positive Rate): The fraction
of accurate positive predictions out of all real positive
events in the dataset is measured by recall.

True Positives

Recall =
True Positives + False Negatives
(iv) F1 Score: It is a harmonic average of precision and
recall, providing a balanced measure of the two
criteria.

2 X Precision X Recall

F1S =
core Precision + Recall

In these equations:

e The number of events correctly identified as being
positive (intrusions in the overall scheme of intrusion
detection) is represented by True Positives (TP).

o False Positives (FP) are the number of incidents that are
wrongly labelled as positive even though they are in fact
negative (false alarms).

e False Negatives (FN) are situations that are wrongly
labelled as being negative when they are in fact positive
(missed detections).

e The sum of False Positives, True Positives, True
Negatives, and False Negatives equals the total number
of predictions.

It is important to check that these metrics are useful for
binary classification. In multi-class classification, they can
be computed for each class separately using the one-vs-all
or one-vs-one approach. These performance metrics help
assess the effectiveness of the intrusion detection system
and its ability to accurately identify network attacks while
minimizing false positives and false negatives.

Performance comparison of different models must be
done using the evaluation metrics. Models with the highest
overall accuracy and effectiveness in detecting intrusions
are to be identified and the model evaluation results must be
visualized using appropriate plots or charts (e.g., precision-
recall curves, ROC curves). Clear interpretations of the
visualizations are to be provided to support the findings and
conclusions. In this research paper various graphs have been
plotted for visualizing the evaluation metrics, training time
and testing time.

3.5 Robustness Analysis

Sensitivity analysis has to be conducted to assess the
model's robustness under different conditions or variations
in the dataset. A model’s performance should be evaluated
on subsets of the data or under different feature
configurations to test its stability.

4. Algorithms
4.1 Logistic Regression

Logistic regression is a form of statistical analysis for
modelling the likelihood of an outcome that is binary based
on a number of predictor factors. It is often used for
classification problems, such as detecting intrusions in
computer networks. Using the logistic function, the logistic
regression formula describes the relationship among a
binary outcome (expressed as "1" or "0") and either one or
several independent variables (features). It predicts the
probability that the binary outcome is equal to "1". The
formula is mathematically represented as:

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 34263439 | 3430

o 1
P(y=1) = 1+e~(Bo+B1x1+B2X2+ .t BnXn)

Where:

e P(y=1) is the probability that the binary outcome y is
equal to "1".

e ¢ denotes base of a natural logarithm, that may be
approximately equal to 2.71828.

e [, isthe intercept or bias term.

e B, B1,Bs .., By are the coefficients (weights)
associated with the independent variables
X1,X2, X3, cur eee , X, respectively.

® X{,Xp, X3, eer e , X, are the values of the independent

variables (features).
The logistic function, represented by ﬁ transforms the
linear combination (B, + B1x; + Bax, + .. +Bpxy) into a
probability score between 1 and 0. This function ensures
that the predicted probabilities are within the valid range for
a binary classification task.

Recursive feature elimination (RFE) is a technique which
can be utilized to select the most similar features for logistic
regression by iteratively removing the least important
features based on their coefficients. Forward feature
selection (FFS) is another technique that can be utilized to
select the most similar features for logistic regression by
iteratively adding the most important features based on their
significance tests.

Both RFE and FFS can help improve the performance and
interpretability of logistic regression models by minimizing
the dimensionality and data’s level of complexity. They can
also help avoid overfitting and multicollinearity issues that
may arise when using too many features. However, they
have different advantages and disadvantages. RFE is faster
and simpler than FFS, but it may discard some useful
features that have low coefficients but high interactions with
other features. FFS is more accurate and robust than RFE,
but it may include some redundant features that have high
significance but low predictive power.

4.2 Support Vector Machine

SVM (Support Vector Machine): It is a very familiar
supervised machine learning algorithm that is utilised for
classification problems such as intrusion detection. It seeks
the optimum hyperplane in a feature space with a high
dimension for separating information points of various
classes. SVM constructs the classifier through determining
its support vectors, that correspond to the information points
nearest to the decision border (hyperplane).

SVM, SVM RBF, SVM Linear, SVM Poly, and SVM
Sigmoid can be used as binary classifiers to detect attack

and normal instances in network traffic data. SVM variants
with non-linear kernels (SVM Poly, SVM RBF, SVM
Sigmoid) are particularly suitable for capturing complex
relationships and patterns in network data. The SVM
algorithm is chosen based on the structure of the dataset,
class distribution, and the level of difficulty of the decision
boundary necessary for effective intrusion detection. SVM
variants with non-linear kernels might provide better
performance when dealing with highly imbalanced and non-
linearly separable datasets, typical characteristics of
intrusion detection data. The performance of various SVM
algorithms should be assessed using relevant metrics for
evaluation (for example, accuracy, precision, and recall) on
a separate test dataset to select the most suitable algorithm
for the intrusion detection system.

(i) Support Vector Machine with Polynomial Kernel (SVM
Poly): SVM with Polynomial Kernel is a non-linear data
separation addition to the regular SVM algorithm. The
polynomial kernel function transforms the initial set of
features into a higher-dimensional space, allowing
irregular interactions between data points to be captured.
The complexity of the decision boundary is determined
by the complexity level of the polynomial.

The formula for the polynomial kernel is:

Kpoly (x,) = (y -X"-y + r)d

Where:

e v denotes kernel coefficient, a user-defined
parameter.

e r is kernel intercept, another user-defined
parameter.

e dis the degree of the polynomial, determining the
complexity of the decision boundary.

(if) Support Vector Machine with Linear Kernel (SVM
Linear): SVM with Linear Kernel is a variant of
SVM that uses a linear kernel function to find a linear
decision boundary in the original feature space
without any transformation. It works well when the
data is linearly separable, meaning that the two
classes can be separated by a straight line. The
formula for the linear kernel is:

Kiinear (X, ¥) = X",y
Where:

e xand y are the feature vectors representing data
points in original feature space.

e XT is the transpose of vector x.
e . represents the dot product between x and y.

(iii) Support Vector Machine with Radial Basis Function
Kernel (SVM RBF): This is another non-linear SVM

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 3426 3439 | 3431

variant that uses a radial basis function (RBF) as the
kernel. This kernel maps data into an infinite-
dimensional space, allowing SVM to capture
complex and non-linear decision boundaries using
the Gaussian function. The RBF kernel is popular for
its flexibility and ability to deal with non-linearly
separable data. The formula for the RBF kernel is:

Koot (x,) = exp (=y - I x=y/l?)
Where:
e v denotes kernel coefficient that is user-defined.

e The Euclidean distance between vectors x and y
is represented by [Ix—yIl.

(iv) Support Vector Machine with Sigmoid Kernel (SVM
Sigmoid): SVM with Sigmoid Kernel is yet another
non-linear variant of SVM that uses the sigmoid
function as the kernel. The sigmoid kernel maps the
data to a higher-dimensional space using the sigmoid
function, enabling the SVM to handle non-linear
decision boundaries. However, SVM with the
sigmoid kernel is generally less preferred than other
SVM variants due to its sensitivity to kernel
hyperparameters. The formula for the sigmoid kernel
is:

Ksigmoid (X, ¥) = tanh (y-X"-y + 1)
Where:

e v is a kernel coefficient which is a user-defined
parameter.

e ris kernel intercept that is another user-defined
parameter.

e tanh represents the hyperbolic tangent function.
4.3 Naive Bayes

Naive Bayes is a simple but effective probabilistic machine
learning technique for classification applications like
intrusion detection. It is based on the Bayes theorem, which
calculates the probability of an idea (class label) provided
the proof (features). The "naive" presumption made by the
naive Bayes principle is that the attributes are relatively
independent, which reduces calculations and improves the
algorithm's computational efficiency.

The formula for Naive Bayes can be expressed as follows:

p(Y|B)-P(B)

P@IN="1

Where:

e P(BIY) is the class B’s posterior probability, given the
evidence Y. In the context of intrusion detection, this
represents the probability in which an instance belongs

to a specific class (e.g., normal or attack) given the
observed features.

e P(YIB) is the probability of witnessing evidence Y for
the class B. It assesses the likelihood of witnessing the
values of features Y in instances corresponding to class
B in the system for intrusion detection.

e P(B) is the prior probability of class B. It represents the
probability of observing class B in the dataset before
considering any evidence. In the context of intrusion
detection, this is the probability of observing a specific
class (e.g., normal or attack) in the overall dataset.

e P(Y) is the probability of observing the evidence Y
irrespective of the class. It is a normalizing constant used
to ensure that the probabilities sum up to 1.

In the context of intrusion detection, Naive Bayes makes the
assumption that the features (evidence) are conditionally
independent given the class. This allows the likelihood term
P(YIB) to be calculated as the product of individual feature
probabilities:

P(YB)=P(y1B)-P(y2/B)-...-P(ynB)

Where y1,y2,...,yn represent the individual feature values
observed in the instance.

During model training, Naive Bayes estimates the class
prior probabilities P(B) and the feature probabilities P(yi|B)
from the training data. These probabilities are used to
classify new instances in the testing phase.

Naive Bayes is particularly useful for text classification and
other domains with high-dimensional, sparse data.
However, the assumption of feature independence may not
hold in all real-world scenarios, which can lead to
suboptimal performance in certain cases. Despite this
limitation, Naive Bayes remains a popular and efficient
choice for intrusion detection systems, especially when
dealing with large datasets and low computational
resources.

4.4 Random Forest and Decision Trees

Random Forest is a technique for ensemble learning that
mixes several decision trees to produce a robust and reliable
classification model. Because of its capacity to handle high-
dimensional information, handle imbalanced datasets, and
generate feature importance rankings, it is commonly
employed in intrusion detection systems. Random Forest
generates the final categorization by generating several
decision trees and pooling their predictions.

(i) Gini Impurity: Gini impurity is one of the criteria used
for splitting data in decision trees. It measures the
degree of impurity or disorder in a dataset. For a binary
classification problem, Gini impurity can be calculated
as:

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 34263439 | 3432

K
Gini(p) =1— Zplz

i=1

Where:

e Ko is the no. of classes (in the context of intrusion
detection, K=2 for binary classification: normal
and attack).

e pi is the probability of an instance which belongs
to class i in a particular node.

The Gini impurity ranges from 0 to 0.5, with lower
values indicating a more homogeneous distribution of
classes in the node.

(if) Entropy: Entropy is another measure of impurity used
in decision trees. It calculates the level of uncertainty
in a dataset. For a binary classification problem,
entropy can be calculated as:

k
Entropy(p) = —Zpilogz(pi)
=1

Where:

e K is the no. of classes (in the context of intrusion
detection, K=2 for binary classification: normal and
attack).

e pi is the probability of an instance that belongs to
class i in a particular node.

The entropy ranges from 0 to 1, in which higher values
indicate a more uncertain or diverse distribution of
classes in the node.

(iii) log2: The log2 function is a logarithm base 2 and is
used in some decision tree algorithms for computing
information gain or gain ratio, which is used to
determine the best attribute for splitting the
information at each node of the tree. In the Random
Forest algorithm for intrusion detection system:

e Each decision tree in the forest is constructed using
either Gini impurity or entropy to measure the
quality of splits at each node.

e The log2 function may be used when computing
information gain or gain ratio in decision tree
algorithms.

The Random Forest ensemble then combines the
individual decisions of each tree to make the final
classification. The algorithm is highly effective for intrusion
detection due to its ability to handle complex relationships
and identify important features, making it a popular choice
for this task.

45 KNN

K-Nearest Neighbors is a simple and effective non-
parametric classification technique used in intrusion

detection systems. It classifies instances by finding the "k"
nearest neighbors to a given data point based on the distance
metric (e.g., Euclidean distance) and then assigns the
maximum of class label among those neighbors to the data
point.

(i) Distance Metric: In KNN, a distance metric like
euclidean distance is used to determine the similarity
between the data points in the space of feature. The
most common distance metric is the Euclidean
distance among two data points P and Q in an n-
dimensional space:

n
EuclideanDistance(P, Q) = Z (P, — Q)?
} i=1

Where:

e Piand Qi are the values of the i-th feature for data
points P and Q respectively.
e nisthe number of features in the dataset.

(i) KNN Algorithm Steps:

e Given an additional instance (data point) to
categorise, compute the distance between it and the
rest of the examples in the training dataset.

e Select the "k™ nearest neighbors based on the
calculated distances.

e Count the occurrences of each class label between
the "k nearest neighbors.

e Assign the majority class label between the
neighbors as the predicted class for the new
instance.

(iii) Choosing the Value of "k": The value of "k" is a
critical parameter in KNN and should be carefully
chosen. A small value of "k" may result in noise
sensitivity and overfitting, while a large value of "k"
may lead to oversmoothing and loss of important local
patterns. Common methods for selecting the value of
"k" include cross-validation and grid search.

(iv) In the Intrusion Detection System using KNN:

e The KNN method can be used to classify traffic on
network instances based on their feature patterns
into normal or threat classifications.

e The choice of distance metric is essential and
should be selected based on the nature of the
dataset and the characteristics of the features.

e The value of "k" needs to be optimized to achieve
the best performance on the intrusion detection
task.

e KNN is computationally efficient during
prediction, but it may require significant memory

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 3426 3439 | 3433

storage to store the training data, especially for
large datasets.

e Feature scaling (normalization/standardization) is
often essential to ensure that features with larger
scales do not dominate the distance calculations.

In summary, KNN is a straightforward yet powerful
algorithm for intrusion detection. It makes predictions based
on the proximity of instances in the feature space, which
allows it to capture local patterns and handle non-linear
decision boundaries effectively.

4.6 Ada Boost

AdaBoost is a classification task ensemble learning
approach, including intrusion detection. It combines
multiple weak classifiers to create a strong classifier that can
accurately classify instances. AdaBoost assigns higher
weights to misclassified instances in each round of training,
consequently, following weak classifiers can focus more on
such occurrences, improving overall accuracy.

Algorithm Steps:

(i) Initialize Weights: At the beginning, all instances in
the training dataset are assigned equal weights, w; =
%, where N is the total number of instances.

(i) Train Weak Classifiers: AdaBoost trains a series of
weak classifiers using the training dataset. A weak
classifier is a simple model that performs slightly
better than random guessing on the data.

(iif) Calculate Error and Importance Weight: For each
weak classifier, AdaBoost calculates the weighted
error &, which is the sum of weights of misclassified
instances divided by the sum of all weights:

_ YN w;.misclassified;
2?1=1 w;

The importance weight a of the weak classifier is then
calculated based on the error &:

_ 1l (1—5)
a= 2.og :

The importance weight a indicates the contribution of
the weak classifier to the final classification. A
classifier with low error will have a higher importance
weight.

(iv) Update Instance Weights: AdaBoost updates the
weights of instances after training each weak classifier.
Instances that were misclassified by the weak classifier
will have their weights increased, while correctly
classified instances will have their weights decreased.
The updated weights are given by:

w; = w.exp(—a.y;. hi(x;))

Where:

e y; is the true class label of instance i (e.g., y;=1 for
normal, y;=—1 for attack).

e h;(x;) is the prediction of the weak classifier for
instance i (e.g., h;(x;) =1 for correct classification,
h;(x;)=—1 for misclassification).

(v) Combine Weak Classifiers: The weak classifiers are
merged into a strong classifier by summing their
weighted predictions:

H(x) = sign (ZT_ at.ht(x)>

e H(x) is the prediction of the strong classifier for
instance X.

Where:

e ht(x) is the prediction of the t-th weak classifier for
instance X.

e ot is the importance weight of the t-th weak
classifier.

(vi) Final Classification: The final classification of an
instance is determined by the sign of the sum of
weighted predictions from the weak classifiers. If the
sum is positive, the instance is classified as the positive
class (e.g., normal); otherwise, it is classified as the
negative class (e.g., attack).

AdaBoost is effective for intrusion detection due to its
ability to improve classification accuracy by focusing on
hard-to-classify instances. It helps in handling imbalanced
datasets and can integrate multiple weak classifiers to build
a robust and accurate intrusion detection system.

4.7 XG Boost

XGBoost is a form of ensemble learning that combines the
predictions of numerous weak learners, often decision trees,
to create a strong predictive model. The goal of XGBoost is
to minimise a regularised loss function that evaluates the
difference between projected values and actual training data
labels.

Given a training dataset with N instances and M features,
denoted as {(x;,y;)},, where xi represents the feature
vector of instance i and yi is its corresponding class label
(e.g., normal or attack), the XGBoost algorithm can be
summarized as follows:

(i) Define the Loss Function: The loss function
Loss(¥;,y;) calculates the difference between the
expected value i and the actual label yi for each
instance. Common loss functions for classification
tasks in XGBoost include the softmax for multi-class
problems and the logistic loss (logit) for binary
classification problems.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 34263439 | 3434

(ii) Define the Objective Function: The primary function
Obj is the product of the loss function and a
regularisation term that penalises model complexity to
avoid overfitting. The objective function for XGBoost
can be represented as:

N K
0bj(0) =). LossGuy)+). 0(f)
Where:

e 0 represents the model parameters, including the
structure of the decision trees and their leaf scores.

o fk represents the k-th decision tree in the ensemble.
e Kiis the total number of decision trees.
e Q(fk) is the regularization term for the k-th tree.

(iii) Update the Model: XGBoost uses gradient boosting to
update the model iteratively. In each iteration, a new
decision tree is added to the ensemble to correct the
errors made by the previous trees. The gradient of the
loss function with respect to the predictions is used to
guide the updates of the model parameters.

(iv) Add the New Decision Tree: A new decision tree has
been fitted to the loss function's negative gradient,
indicating the "residuals” or "errors” made by the
current ensemble of trees.

(v) Update the Leaf Scores: The leaf scores of the new
decision tree are determined by minimizing the
objective function. A regularization term is added to
control the complexity of the tree.

(vi) Shrinkage (Learning Rate): To avoid overfitting, a
shrinkage parameter (learning rate) n is introduced to
scale down the contribution of each new tree to the
final model. A small learning rate helps improve
generalization performance.

(vii) Final Model: After a predefined number of boosting
rounds (iterations) or until a stopping criterion is met,
the final model is obtained by combining the
predictions of all decision trees in the ensemble.

(viii)Final Classification: The final classification of an
instance is determined by the sum of predictions from
all decision trees, considering the weighted
contributions from each tree. If the sum is more than a
predefined threshold, the instance is categorized as the
positive class (e.g., normal); otherwise, it is classified
as the negative class (e.g., attack).

XGBoost is a powerful algorithm that can capture complex
patterns in data and handle large-scale datasets efficiently.
Its ability to handle high-dimensional features and its
regularization techniques make it a popular choice for
intrusion detection systems, achieving high accuracy and
robustness in detecting network attacks.

4.8 Stacking and Voting Ensemble Techniques

Ensemble learning methods like Stacking and Voting
combine the outputs of multiple base classifiers to generate
a more precise and stronger predictive model for intrusion
detection. While these methods do not have specific
formulae like some individual algorithms, | can explain the
high-level concepts and provide the formulas for the base
classifiers within each ensemble approach.

(i) Stacking Ensemble Method: Training numerous initial
classifiers and utilising their findings as input to a more
advanced model (meta-classifier) is what stacking is all
about. Here's how it works:

a. Train Multiple Base Classifiers: Let's say you have
N base classifiers, each denoted as C1, C2, ..., CN.
Each classifier Ci is trained on the training dataset

{(x, yj)}?’:l, where x; represents the features of

instance j and yj is its corresponding true class label.

b. Generate Predictions from Base Classifiers: Each
base classifier Ci generates its predictions y;(i) for
each instance xj in the validation or test dataset.

c. Meta-Classifier Training: The predictions from the
base classifiers are combined to create a new feature
matrix Xmeta, where each row Xj represents the
concatenated predictions [y;(1), §;(2), ..., ;(N)]. A
meta-classifier, such as Logistic Regression or SVM,
is trained using the feature matrix Xmeta and the true
class labels yj from the validation or training dataset.

d. Final Prediction: The meta-classifier makes the final
prediction §;ensemble based on the input feature
matrix Xmeta. The final class label is determined
using the chosen decision threshold.

(i) Voting Ensemble Method: Voting combines the
predictions of multiple base classifiers by majority
voting (hard voting) or averaging predicted probabilities
(soft voting). Let's consider soft voting for simplicity:

a. Predicted Probabilities from Base Classifiers: Each
base classifier Ci outputs predicted probabilities pj(i)
= [pi,1(i),pj,2(i),...,pj,K(1)] for each instance xj,
where K is the number of classes.

b. Average Probabilities: For each class k, calculate the
average probability pavgk by averaging the
probabilities pj,k(i) from all base classifiers Ci:

Pavgk = lZN Py
avg,k N o1 J.k

c. Final Prediction: The final class label §;ensemble is
determined based on the class k with the highest
average probability pavg,k for each instance xj.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 3426 3439 | 3435

These formulas illustrate the high-level process of Stacking
and Voting ensemble methods for intrusion detection. While
the specific formulas for each base classifier may differ
depending on the algorithm used (e.g., Decision Trees,
SVM, etc.), the underlying concept of combining multiple
classifiers' outputs remains the same to achieve improved
intrusion detection performance.

4.9 Bagging Classifiers

Bagging is a method of collective learning that includes
independently training numerous base classifiers on various
subsets of the training data and subsequently combining
their predictions via a vote or averaging procedure. To
increase the general efficacy of an intrusion detection
system, bagging may be combined with various base
classifiers such as Random Forests, Decision Trees, and
SVMs.

Algorithm Steps:

(i) Data Preparation: Given a training dataset with N
instances and M features, denoted as {(x;, y;)}",,
where xi represents the feature vector of instance i and
yi is its corresponding class label (e.g., normal or
attack).

(i) Ensemble of Base Classifiers: Bagging involves
creating an ensemble of K base classifiers, denoted as
{C1, C2, ..., CK}. Each base classifier is trained on a
different subset of the training data.

(iii) Bootstrap Sampling: For each base classifier Ck, a
random subset of the training data is created using
bootstrap sampling. Bootstrap sampling involves
randomly selecting instances with replacement from
the original training dataset. Each base classifier will
have its own unique subset of the training data.

(iv) Train Base Classifiers: Each base classifier Ck is
trained on its corresponding bootstrap sample. The
classifiers are trained independently, and there is no
interaction between them during the training process.

(v) Predictions from Base Classifiers: Once the base
classifiers are trained, they are used to make
predictions on the validation or test dataset. Each base
classifier Ck generates its predicted class labels §;(k)
for each instance xi.

(vi) Voting or Averaging: The final classification for each
instance is determined through a voting or averaging
mechanism, depending on the type of base classifiers
used.

e Voting (Hard Voting): For classification tasks, the
predicted class labels §;(k) from all base classifiers
are combined, and the ultimate prediction
y;ensemble is established by majority vote. The

class label that receives the majority of votes is
chosen as the final prediction.

e Averaging (Soft Voting): For classifiers that output
probabilities (e.g., Random Forest, SVM with
probability —estimates), the predicted class
probabilities p¥ from all base classifiers are
averaged to obtain the final probability vector. The
class with the highest average probability is
selected as the ultimate prediction.

Bagging helps improve the efficiency of the intrusion
detection system by reducing overfitting, increasing
accuracy, and enhancing the system's ability to handle
complex patterns and imbalanced data distributions. It
is especially beneficial when combined with base
classifiers that have high variance or tend to overfit the
training data.

5. Results Analysis and Discussion

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 34263439 | 3436

In this study, eleven models were assessed using several
feature extractors and classification methods. These models

Evaluation Metrics for Various Models

1.00
L 0994
o
A
0981 o Accuracy
s A 5@ & o0 &5 &> &
o [[
« &03&9 \\?Q g“;’@ K & &
& @ o N)
ER OO R i
& i &
&
b/
Model
Evaluation Metrics for Various Models
1.0000
—e— Recall
0.9998 4
@
£ 0.9996 1
A
0.9994 4
0.9992
3 3 & F3 o &
& & FF 5 o
- @ R 2 -
‘-3‘& 0(},/\90,/ (55' @9 %b'?o \90’ £
¢e@/ <
b/
Model

complexity. XGBoost's faster training time allows for

faster model construction and experimentation,
Evaluation Metrics for Various Models
1.00 {
0.99 1
@
& 0.98
A
0.97 1
0.96 —e— Precision
I<I~;e|<~|ol\\|{\|«,|\‘&
'\‘&'b 6‘\0:?.0;; -\‘;& \)"",@ 0‘}'(1;_550(; @0’\, Q@Q?
& g’ - o ‘Sa /P
g ‘,&'\90’ e& »7 é'ab,
‘éee./ i
b/
Model

Evaluation Metrics for Various Models

1.00 v v
—e— F1 Score
0.99
2
o 0.98
A
0.97
0.96 T T T T T T N T " T T «
S 5 & S > &
2 &
s 6“0?%"’{\ oF F TS &
; @ a B "
‘;{? A & &9 %b?o & £
-
>
Model

Fig:2 Graphs plotting evaluation metrics of various models showing best accuracy

were assessed using accuracy, recall, F1-score, and
precision with a focus on accuracy and precision. The goal
is to have the greatest level of accuracy and precision
possible. The goal of achieving the utmost precision is to
make sure that as little hostile traffic as possible is
misclassified as usual, threatening the security of the
network.

Figure 2. shows the findings of rigorous tests and analysis
on various machine learning models for intrusion detection
that show XGBoost to be the best performer in terms of
evaluation metrics (accuracy, recall, precision, fl-score)
among the algorithms mentioned.

(i) Accuracy: On the intrusion detection dataset,
XGBoost outperformed all other algorithms in terms
of accuracy. XGBoost's ensemble nature, which
combines the predictions of numerous weak learners,
enables it to capture complicated patterns and handle
uneven class distributions in the dataset successfully.
XGBoost's better accuracy reflects its improved ability
to differentiate between normal and attack instances,
giving it a solid choice for intrusion detection.

(if) Training Time: When compared to other algorithms,
XGBoost required the least amount of training time as
shown in figure 3. This efficiency can be due to its
optimisation approaches, such as parallel computing
and tree pruning, which reduce model training time

making it ideal for large-scale intrusion detection

applications.
(iii) Testing Time: XGBoost has the shortest testing time
among the algorithms, similar to its training time
efficiency as shown in figure 4. The reason for this is
its ability to execute parallelized forecasts while
effectively using hardware resources during testing.
XGBoost's shortened testing time enables real-time or
near real-time intrusion detection, making it ideal for
time-critical settings.

Overall, the results demonstrate that XGBoost is the optimal
choice for intrusion detection system development. Its
superior accuracy ensures reliable detection of network
attacks, while its efficiency in both training and testing
allows for faster model deployment and real-time detection
capabilities. The combination of high accuracy and low
computational overhead positions XGBoost as a state-of-
the-art algorithm for intrusion detection in modern
cybersecurity applications.

Yet it is critical to remember that the optimum approach
may be determined by the specific properties of the
information being analysed and the situation at face.
Therefore, further research and experimentation are
encouraged to explore the performance of these algorithms
on different datasets and intrusion scenarios to obtain more

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 3426 3439 | 3437

comprehensive insights and ensure the applicability of the
findings to a wide range of intrusion detection use cases.

Training Time
2001]
/\
1501 / \‘
/\
o 100] / \
E / \
" [
/ \
\\
251 /\/ \
\
.-
0 B —
$ & S > N
T S G P
4 ; 3
& & & o (99 > kS

Fig: 3 Training time of best accuracy models

Testing Time
200 [

150 /" \\

100 / \\

Time
~—_
o

50 /

\
25 /\/ \\
—

Fig: 4 Testing time of best accuracy models
6. Limitations

While XGBoost has demonstrated superior accuracy in
intrusion detection systems, it is essential to acknowledge
that even the best-performing algorithm has certain
limitations. It's ability to learn complex patterns from data
might lead to overfitting, especially when the dataset is
small or imbalanced. Training a large XGBoost model on
extensive datasets might require significant computational
resources and time. Identifying the optimal hyperparameters
through grid search or randomized search can be time-
consuming and computationally expensive. In applications
where interpretability is crucial for explaining model
predictions, this model may not be the ideal choice.
XGBoost primarily excels in classification tasks and might
struggle to identify novel or previously unseen intrusion
patterns, limiting its effectiveness as an anomaly detection
tool. To overcome these limitations, hybrid approaches,
ensemble methods, or the integration of other machine
learning techniques to complement XGBoost's strengths and
address its weaknesses must be explored. A comprehensive
evaluation of various algorithms and models should be
performed to ensure the most effective intrusion detection
system for a particular network environment.

7. Conclusion

In conclusion, the integration of machine learning
algorithms, especially XGBoost and ensemble techniques,

has significantly advanced intrusion detection systems.
XGBoost proves to be a robust and accurate algorithm,
excelling in detecting complex attack patterns and adapting
to imbalanced datasets. Ensemble learning methods further
enhance performance by combining multiple algorithms'
strengths, improving overall detection capabilities. While
XGBoost and ensemble methods show great promise, it is
important to consider their limitations, including overfitting,
computational complexity, and hyperparameter tuning
requirements. Future directions should explore hybrid
approaches and integrate deep learning to enhance accuracy
and adaptability. The future of intrusion detection systems
looks promising, with ongoing research focusing on real-
time detection, addressing adversarial attacks, and securing
loT and industrial control systems. The pursuit of
interpretability and explainable Al will foster trust and
understanding in critical security applications. With
continued research and collaboration, intrusion detection
systems will evolve to provide proactive and reliable
defense mechanisms against evolving cyber threats, creating
a safer digital landscape for organizations and individuals
alike.

Acknowledgements

This research was partially supported by Sreenidhi Institute
of Science and Technology, Telangana, India. We thank our
colleagues who provided insight and expertise that greatly
assisted the research, although they may not agree with all
of the conclusions of this paper. We thank Prof. K. Shirisha,
Head of the Department, CSE — Cyber Security, for
comments that greatly improved the manuscript.

Author contributions

Radhika Pulyala: Conceptualization, Methodology,
Writing-Original draft preparation, Validation., Software,
Field study

Geeta Kakarla: Data curation, Software, Field study,
Visualization, Investigation, Writing-Reviewing and
Editing.

Conflicts of interest
The authors declare no conflicts of interest.
8. References

[1] AlOmar, Ban, Zouheir Trabelsi, and Firas Saidi.
"Attention-Based Deep Learning Modelling for
Intrusion Detection." In European Conference on
Cyber Warfare and Security, vol. 22, no. 1, pp. 22-32.
2023.

[2] Alzahrani, AO, Alenazi, MJF. ML-IDSDN: Machine
learning based intrusion detection system for software-
defined network. Concurrency Computat Pract Exper.
2023; 35 (1): e7438.

[3] M. S. Farooq, S. Abbas, Atta-ur-Rahman, K. Sultan,
M. A. Khan et al., "A fused machine learning approach

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(3), 34263439 | 3438

for intrusion detection system," Computers, Materials
& Continua, vol. 74, no.2, pp. 2607-2623, 2023.

[4] Chunying Zhang, Donghao Jia, Liya Wang, Wenjie
Wang, Fengchun Liu, Aimin Yang, Comparative
research on network intrusion detection methods based
on machine learning, Computers & Security, Volume
121, 2022, 102861, ISSN 0167-4048.

[6] Gautam Srivastava, Thippa Reddy G, N. Deepa, B.
Prabadevi, and Praveen Kumar Reddy M. 2021. An
ensemble model for intrusion detection in the Internet
of Softwarized Things. In Adjunct Proceedings of the
2021 International Conference on Distributed
Computing and Networking (ICDCN '21). Association
for Computing Machinery, New York, NY, USA, 25—
30. https://doi.org/10.1145/3427477.3429987

[6] Ployphan Sornsuwit & Saichon Jaiyen (2019) A New
Hybrid Machine Learning for Cybersecurity Threat
Detection Based on Adaptive Boosting, Applied
Acrtificial Intelligence, 33:5,462-482

[7] Sarker, I.H.; Abushark, Y.B.; Alsolami, F.; Khan, A.l.
IntruDTree: A Machine Learning Based Cyber
Security Intrusion Detection
Model. Symmetry 2020, 12, 754,
https://doi.org/10.3390/sym12050754

[8] Anderson, J. etal. (2019). Unencrypted Text Detection
Techniques. Journal of Network Security, 25(3), 45-
60.

[9] Smith, J. et al. (2018). Security Challenges in the
Digital Era: A Comprehensive Review. International
Journal of Cybersecurity Research & Applications,
11(4), 215-230.

[10] Gupta, S., & Kumar, V. (2017). Network Security:
Issues and Challenges. International Journal of
Network Security & Its Applications, 9(2), 71-88.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 3426-3439 | 3439

https://doi.org/10.1145/3427477.3429987
https://doi.org/10.3390/sym12050754

